Skip to main content
Log in

Functional Anatomy of the Forelimb of Plesiotypotherium achirense (Mammalia, Notoungulata, Mesotheriidae) and Evolutionary Insights at the Family Level

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

In the present work, we provide muscular reconstruction and we infer functional properties of the forelimb of Plesiotypotherium achirense, a fossil mesotheriid notoungulate from the late Miocene of Achiri (Bolivia). This locality has yielded the widest sample ever available for the forelimb of a mesotheriid. In addition, we propose a qualitative comparison of the forelimb (osteology and myology) at the family level, including the Miocene–Pleistocene mesotheriines Mesotherium cristatum, Plesiotypotherium achirense, Caraguatypotherium munozi, Plesiotypotherium casirense, and Pseudotypotherium sp, and the late Oligocene trachytheriine Trachytherus alloxus. Functional properties are consistent with a digging ability and a “scratch-digger” lifestyle for Mesotheriidae. In general, there are only slight differences among the comparison sample, except for Mesotherium cristatum, which reflect significant osteological modifications, likely to help increasing the moment arm while scratch-digging. These features are mainly observable on scapulae (distal border caudally displaced) and humeri (deltoid crest distally oriented and crista supracondylaris lateralis laterally projected).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agrawal VC (1967) Skull adaptations in fossorial rodents. Mammalia 31:300-312

    Article  Google Scholar 

  • Ameghino F (1889) Contribución al conocimiento de los mamíferos fósiles de la República Argentina. Acad Nac Cienc Córdoba 6:918-919

    Google Scholar 

  • Ameghino F (1891) Observaciones sobre algunas especies de los géneros Typotherium y Entelomorphus. Rev Arg Hist Nat: 1:433-437

    Google Scholar 

  • Argot C (2001) Functional-adaptative anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 247:51-79

    Article  CAS  PubMed  Google Scholar 

  • Argot C (2012) Postcranial analysis of a carnivoran-like archaic ungulate: the case of Arctocyon primaevus (Arctocyonidae, Mammalia) from the late Paleocene of France. J Mammal Evol 20:83-114

    Article  Google Scholar 

  • Billet G, Muizon C de, Mamani Quispe B (2008) Late Oligocene mesotheriids (Mammalia, Notoungulata) from Salla and Lacayani (Bolivia): implications for basal mesotheriid phylogeny and distribution. Zool J Linn. Soc 152:153-200

  • Bond M, Cerdeño E, López G (1995) Los ungulados nativos de América del Sur. Mon Mus Nac Cienc Nat: Cons Sup Inv Cient Madrid 12:257-276

    Google Scholar 

  • Bou J, Castiella JJ, Casinos A (1990) Multivariate analysis and locomotor morphology in insectivores and rodents. Zool Anz 225:287-294

    Google Scholar 

  • Candela AM, Picasso MBJ (2008) Functional anatomy of the limbs of Erethizontidae (Rodentia, Caviomorpha): indicators of locomotor behavior in Miocene porcupines. J Morphol 269:552-593

    Article  PubMed  Google Scholar 

  • Cartmill M (1974) Pads and claws in arboreal locomotion. In: FA Jenkins Jr (ed) Primate Locomotion. Academic Press, New York, pp 45-83

    Google Scholar 

  • Cattoi N (1943) Osteografía y osteometría comparada de los géneros Typotheriodon and Typotherium. Mus Arg Cienc Nat Buenos Aires, 119 pp

  • Cerdeño E, Vera B, Schmidt GI, Pujos F, Mamani Quispe B (2012) An almost complete skeleton of a new Mesotheriidae (Notoungulata) from the late Miocene of Casira, Bolivia. J Syst Palaentol 10:341-360

    Article  Google Scholar 

  • Croft DA (2007) The middle Miocene (Laventan) Quebrada Honda Fauna, southern Bolivia and a description of its notoungulates. Palaeontology 50: 277-303

    Article  Google Scholar 

  • Croft DA, Anderson LC (2008) Locomotion in the extinct notoungulate Protypotherium. Paleontol Electron 11:1-20

    Google Scholar 

  • Croft DA, Flynn JJ, Wyss AR (2004) Notoungulata and Litopterna of the early Miocene Chucal Fauna, northern Chile. Fieldiana Geol 50:1-52

    Google Scholar 

  • Davis DD (1949) The shoulder architecture of the bears and other carnivores. Fieldiana Zool 31:285-305

    Google Scholar 

  • Davis DD (1964) The giant panda: a morphological study of evolutionary mechanism. Fieldiana Zool 3:1-339

    Google Scholar 

  • De Iuliis G, Pulera D (2010) Dissection of Vertebrates: A Laboratory Manual. Elsevier/Academic Press, Amsterdam

    Google Scholar 

  • Ebensperger LA, Bozinovic F (2000) Energetics and burrowing behaviour in the semifossorial Octodon degus (Rodentia: Octodontidae). J Zool 252:179-186

    Article  Google Scholar 

  • Elissamburu A, Vizcaíno SF (2004) Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha). J Zool Lond 262:145-159

    Article  Google Scholar 

  • Ercoli MD, Álvarez A, Stefanini MI, Busker F, Morales MM (2014) Muscular anatomy of the forelimbs of the lesser grison (Galictis cuja), and a functional and phylogenetic overview of Mustelidae and other caniformia. J Mammal Evol 22:57-91

    Article  Google Scholar 

  • Fisher RE, Adrian B, Barton M, Holmgren J, Tang SY (2009) The phylogeny of the red panda (Ailurus fulgens): evidence from the forelimb. J Anat 215:611-635

    Article  PubMed  PubMed Central  Google Scholar 

  • Flynn JJ, Croft DA, Charrier R, Wyss AR, Hérail G, García M (2005) New Mesotheriidae (Mammalia, Notoungulata, Typotheria), geochronology and tectonics of the Caragua area, northernmost Chile. J South Am Earth Sci 19:55-74

    Article  Google Scholar 

  • Gambaryan PP (1974) How Mammals Run: Anatomical Adaptations. John Wiley and Sons, New York.

    Google Scholar 

  • Gervais P (1867) Sur une nouvelle collection d’ossements fossiles de mammifères recueillie par M. Fr. Seguin dans la confédération argentine. C R Acad Sci 55:279-282

  • Gervais P (1869) Zoologie et paléontologie générales: nouvelles recherches sur les animaux vertébrés vivants et fossiles. Librairie de la Société de Géographie, Paris 5:1-56

    Google Scholar 

  • Gomper ME (1995) Nasua narica. Mammal Spceies 487:1-10

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistic package for education and data analysis. Paleontol Electron 4, 9

    Google Scholar 

  • Hickman GC (1985) Surface-mound formation by the tuco-tuco Ctenomys fulvus (Rodentia: Ctenomydae), with comments on earth-pushing in other fossorial mammals. J Zool 3:385-390

    Google Scholar 

  • Hildebrand M (1974) Analysis of Vertebrate Structure. John Wiley & Sons Inc, New York

    Google Scholar 

  • Hildebrand M (1985) Digging of Quadrupeds. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Hildebrand M, Goslow G (2001) Analysis of Vertebrate Structure. John Wiley & Sons Inc, New York

    Google Scholar 

  • Holliger CD (1916) Anatomical Adaptations in the Thoracic Limb of the California Pocket Gopher and Other Rodents. University of California Press, Berkeley

    Google Scholar 

  • Kardong KV (2002) Vertebrates: Comparative Anatomy, Function, Evolution (3rd ed). McGraw-Hill, Boston

  • Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the Age of Dinosaurs:Origins, Evolution, and Structure. Columbia University Press, New York

    Book  Google Scholar 

  • Kley NJ, Kearney M (2007) Adaptations for digging and burrowing. In: Hall B (ed) Fins into Limbs: Evolution, Development, and Transformation. University of Chicago Press, Chicago, pp 284-309

    Google Scholar 

  • Landry SO (1958) The function of the entepicondylar foramen in mammals. Am Midl Nat 60:100-112

    Article  Google Scholar 

  • Larson SG (1993) Functional morphology of the shoulder in primates. In: Gebo DL(ed) Postcranial Adaptation in Nonhuman Primates. Northern Illinois University Press, DeKalb, pp 45-69

    Google Scholar 

  • Lessa EP, Stein BR (1992) Morphological constraints in the digging apparatus of pocket gophers (Mammalia: Geomyidae). Biol J Linn Soc 47:439-453

    Article  Google Scholar 

  • Lessa EP, Thaeler CS Jr (1989) A reassessment of morphological specializations for digging in pocket gophers. J. Mammal 70:689-700

    Article  Google Scholar 

  • Loomis FB (1914) The Deseado Formation of Patagonia. Runford Press, Concord

    Book  Google Scholar 

  • Marshall LG, Swisher CC, Lavenu A, Hoffstetter R, Curtis GH (1992) Geochronology of the mammal-bearing late Cenozoic on the northern Altiplano, Bolivia. J South Am Earth Sci 5:1-19

    Article  CAS  Google Scholar 

  • Maynard Smith J, Savage RJG (1956) Some locomotory adaptations in mammals. Zool J Linn Soc 42:603-622

    Article  Google Scholar 

  • McEvoy JS (1982) Comparative myology of the pectoral and pelvic appendages of the North Amercian porcupine (Erethizon dorsatum) and the prehensile-tailed porcupine (Coendou prehensilis). Bull Am Mus Nat Hist 173:337-421

    Google Scholar 

  • Meng J, Hu YM, Li CK (2003) The osteology of Rhombomylus (Mammalia, Glires): implications for phylogeny and evolution of glires. Bull Am Mus Nat Hist 275:1-247

    Article  Google Scholar 

  • Michener GR (2004) Hunting techniques and tool use by North American badgers preying on Richardson's ground squirrels. J Mammal 85:1019-1027

    Article  Google Scholar 

  • Muizon C de (1998) Mayulestes ferox, a borhyaenoid (Metatheria, Mammalia) from the early Palaeocene of Bolivia. Phylogenetic and palaeobiological implications. Geodiversitas 20:19-142

  • Olson RA, Womble MD, Thomas DR, Glen ZD, Butcher MT (2015) Functional morphology of the forelimb of the nine-banded armadillo (Dasypus novemcinctus): comparative perspectives on the myology of Dasypodidae. J Mammal Evol 23:49-69

    Article  Google Scholar 

  • Patterson B (1975) The fossil aardvarks (Mammalia: Tubulidentata). Bull Mus Comp Zool 147:185-237

    Google Scholar 

  • Paz ER, Kramarz A, Bond M (2011) Mesotheriid (Mammalia, Notoungulata) remains from the Colhuehuapian beds (early Miocene) of Chichinales Formation, Río Negro Province, Argentina. Ameghiniana 48:264-269

    Article  Google Scholar 

  • Polly PD (2007) Limbs in mammalian evolution. In: Hall BK (ed) Fins into Limbs: Evolution, Development, and Transformation. University of Chicago Press, Chicago, pp 245-268

    Google Scholar 

  • Rose J, Moore A, Russell A, Butcher M (2014) Functional osteology of the forelimb digging apparatus of badgers. J Mammal 95:543-558

    Article  Google Scholar 

  • Rose MD (1993) Functional anatomy of the elbow and forearm in primates. In: Gebo DL (ed) Postcranial Adaptation in Nonhuman Primates. Northern Illinois University Press, Dekalb, pp 70–95

  • Rovereto C (1914) Los estratos araucanos y sus fósiles. Anales Mus Nac Hist Nat Buenos Aires 25: 1-250

    Google Scholar 

  • Saint-André P-A (1993) Hoffstetterius imperator n. g., n. sp. du Miocène supérieur de l'Altiplano bolivien et le statut des Dinotoxodontinés (Mammalia, Notoungulata). C R Acad Sc 316:539-545

    Google Scholar 

  • Salesa MJ, Anton M, Peigné S, Morales J (2008) Functional anatomy and biomechanics of the postcranial skeleton of Simocyon batalleri (Viret, 1929) (Carnivora, Ailuridae) from the late Miocene of Spain. Zool J Linn Soc 152:593-621

    Article  Google Scholar 

  • Sargis EJ (2002) Fucntional morphology of the forelimbs of tupaiids (Mammalia, Scandentia) and its phylogenetic implications. J Morphol 253:10-42

    Article  PubMed  Google Scholar 

  • Schaller O (2007) Illustrated Veterinary Anatomical Nomenclature. Enke Verlag, Stuttgart

    Google Scholar 

  • Serres M (1867) De l’ostéographie du Mesotherium et de ses affinities zoologiques. C R Acad Sci 65:140-148

    Google Scholar 

  • Shockey BJ, Anaya F (2008) Postcranial osteology of mammals from Salla, Bolivia (late Oligocene): form, function, and phylogenetic implications In: Sargis EJ, Dagosto M (eds) Mammalian Evolutionary Morphology: A Tribute to Frederick S Szalay. Springer, Dordrecht, pp 135-157

  • Shockey BJ, Croft DA, Anaya F (2007) Analysis of function in the absence of extant functional homologues: a case study using mesotheriid notoungulates (Mammalia). Paleobiology 33:227-247

  • Shockey BJ, Flynn JJ, Croft DA, Gans PB, Wyss AR (2012) New leontiniid Notoungulata (Mammalia) from Chile and Argentina: comparative anatomy, character analysis, and phylogenetic hypotheses. Am Mus Novitates 3737:1-64

  • Stein BR (2000) Morphology of subterranean rodents. In: Lacey EA, Patton JL, Cameron G (eds) Life Underground: the Biology of Subterranean Rodents. University of Chicago Press, Chicago, pp 19-62

    Google Scholar 

  • Szalay FS, Dagosto M (1980) Locomotor adaptations as reflected on the humerus of Paleogene primates. Folia Primatol 34:1– 45

    Article  CAS  PubMed  Google Scholar 

  • Szalay FS, Sargis EJ (2001) Model-based analysis of postcranial osteology of marsupials from the Paleocene of Itaboraí, Brazil, and the phylogenetics and biogeography of Metatheria. Geodiversitas 23:139-302

    Google Scholar 

  • Taylor BK (1978) The anatomy of the forelimb in the anteater (Tamandua) and its functional implications. J Morphol 157:347-368

    Article  Google Scholar 

  • Villarroel C (1974) Les mésothérinés (Notoungulata, Mammalia) du Pliocène de Bolivie et leurs rapports avec ceux d'Argentine. Ann Paléontol 60:245-281

    Google Scholar 

  • Waibl H, Gasse H, Hashimoto Y (2005) Nomina Anatomica Veterinaria. International Committee on Veterinary Gross Anatomical Nomenclature, World Association of Veterinary Anatomists, Hannover

    Google Scholar 

Download references

Acknowledgments

We thank A. Kramarz and S. Alvarez (MACN, Buenos Aires, Argentina), C. de Muizon, C. Argot, and G. Billet (MNHN, Paris, France), and D. Rubilar (SGOPV, Santiago, Chile) who kindly gave access to the specimens under their care. We are grateful to R. C. Hulbert. Jr (FLMNH, Gainesville, USA) for sending and allowing us to reproduce images of Trachytherus alloxus (UF 91933) and to D. A. Croft for providing measurements of this specimen.

We thank all the team members (M. A. Abello, S. Adnet, G. Billet, L. Marivaux, M. B. Prámparo, P. Münch, and R. Andrade Flores) who participated in the collecting of the specimens from Achiri in 2010–2015). We are grateful to N. Toledo for helpful discussions on an earlier version of the manuscript. Finally, we thank MEDICENTRO clinic of La Paz (Bolivia) for providing us access to their computed tomography facility.

We warmly thank people from Achiri for facilitating our fieldwork (2010–2015). This work was partially funded by ECOS-FonCyT (A14U01). This project was made possible thanks to the cooperation agreement between the MNHN-Bol (Bolivia), the ISEM (France), and the CONICET (Argentina, CONICET Cooperation agreement N°864/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Fernández-Monescillo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 26 kb)

ESM 2

(DOC 579 kb)

ESM 3

(DOC 40 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Monescillo, M., Quispe, B.M., Pujos, F. et al. Functional Anatomy of the Forelimb of Plesiotypotherium achirense (Mammalia, Notoungulata, Mesotheriidae) and Evolutionary Insights at the Family Level. J Mammal Evol 25, 197–211 (2018). https://doi.org/10.1007/s10914-016-9372-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-016-9372-7

Keywords

Navigation