Journal of Mammalian Evolution

, Volume 25, Issue 1, pp 37–70 | Cite as

Bat Systematics in the Light of Unconstrained Analyses of a Comprehensive Molecular Supermatrix

  • Lucila I. Amador
  • R. Leticia Moyers Arévalo
  • Francisca C. Almeida
  • Santiago A. Catalano
  • Norberto P. GianniniEmail author
Original Paper


Bats (Chiroptera) represent the largest diversification of extant mammals after rodents. Here we report the results of a large-scale phylogeny of bats based on unconstrained searches for a data matrix of 804 non-chimeric, taxonomically updated bat terminals (796 species represented by a single terminal plus three species represented by ≥2 genetically distinct subspecies), able to preliminary test the systematics of most groups simultaneously. We used nine nuclear and mitochondrial DNA sequence markers fragmentary represented for ingroups (c. 90% and 64% of extant diversity at genus and species level, respectively) and 20 diverse placental outgroups. Maximum Likelihood and Parsimony analyses applied to the concatenated dataset yielded a highly resolved, variously supported phylogeny that recovered the majority of currently recognized clades at all levels of the chiropteran tree. Calibration points based on 44 key fossils allowed the Bayesian dating of bat origins at c. 4 my after the K-Pg boundary, and the determination of stem and crown ages of intraordinal clades. As expected, bats appeared nested in Laurasiatheria and split into Yinpterochiroptera and Yangochiroptera. More remarkable, all polytypic, currently recognized families were monophyletic, including Miniopteridae, Cistugidae, and Rhinonycteridae, as well as most polytypic genera with few expected exceptions (e.g., Hipposideros). The controversial Myzopodidae appeared in a novel position as sister of Emballonuroidea―a result with interesting biogeographic implications. Most recently recognized subfamilies, genera, and species groups were supported or only minor adjustments to the current taxonomy would be required, except Molossidae, which should be revised thoroughly. In light of our analysis, current bat systematics is strongly supported at all levels; the emergent perception of a strong biogeographic imprint on many recovered bat clades is emphasized.


Chiroptera Phylogeny Molecular dating Maximum likelihood Parsimony 



We thank the support from Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, grant PICT 2008–1798 to NPG, and grants PICT 1930_2011 and PIP 0260 to SAC.

Supplementary material

10914_2016_9363_MOESM1_ESM.docx (15 kb)
ESM 1 (DOCX 15 kb)
10914_2016_9363_MOESM2_ESM.xml (9.2 mb)
ESM 2 (XML 9403 kb)
10914_2016_9363_MOESM3_ESM.txt (69 kb)
ESM 3 (TXT 69 kb)
10914_2016_9363_MOESM4_ESM.docx (34 kb)
Table S1 (DOCX 33 kb)
10914_2016_9363_MOESM5_ESM.docx (235 kb)
Table S2 (DOCX 235 kb)
10914_2016_9363_Fig10_ESM.jpg (3.4 mb)
Fig S1.

Pteropodidae. A: Cynopterinae; B: Cynopterini; C: Balionycterini; D: Scotonycterini; E: Rousettinae; F: Eonycterini; G: Rousettini; H: Stenonycterini; I: Myonycterini; J: Epomophorini; K: Macroglossinae; L: Harpyionycterinae; M: Eidolinae; N: Nyctimeninae; O: Pteropodinae (JPEG 3447 kb)

10914_2016_9363_MOESM6_ESM.tif (5.7 mb)
High resolution image (TIFF 5864 kb)
10914_2016_9363_Fig11_ESM.jpg (3.7 mb)
Fig S2.

Rhinolophoidea. A: African Hipposideros species; B: Asian Hipposideros species; C: Afro-Paleartic Rhinolophus clade; D: Indomalayan Rhinolophus clade (JPEG 3767 kb)

10914_2016_9363_MOESM7_ESM.tif (6.3 mb)
High resolution image (TIFF 6448 kb)
10914_2016_9363_Fig12_ESM.jpg (4 mb)
Fig S3.

Yangochiroptera. A: Asian Nycteris clade; B: African Nycteris clade; C: Taphozoinae; D: Emballonurinae; E: Emballonurini; F: Diclidurini; G: Afro-Malagasy emballonurini genera; H: Indo-Pacific emballonurini genus; I: Chaerephon/Mops group; J: Otomops group; K: New World Molossidae group; L: Oriental-Australasian Miniopterus clade; M: Ethiopian Miniopterus clade; N: Indian Ocean Miniopterus clade (JPEG 4114 kb)

10914_2016_9363_MOESM8_ESM.tif (6.7 mb)
High resolution image (TIFF 6878 kb)
10914_2016_9363_Fig13_ESM.jpg (4.3 mb)
Fig S4.

Relationships within Phyllostomidae. The subfamilies are indicated in bold (JPEG 4357 kb)

10914_2016_9363_MOESM9_ESM.tif (7.3 mb)
High resolution image (TIFF 7445 kb)
10914_2016_9363_Fig14_ESM.jpg (3.6 mb)
Fig S5.

Relationships within Vespertilionidae (part 1: Kerivoulinae, Murininae, Myotinae). A: New World Myotis clade; B: Paleartic lineage “brandtii”; C: Neartic clade; D: Neotropical clade; E: Old World Myotis clade; F: Ethiopian clade; G: Euroasian clade (JPEG 3654 kb)

10914_2016_9363_MOESM10_ESM.tif (6.2 mb)
High resolution image (TIFF 6354 kb)
10914_2016_9363_Fig15_ESM.jpg (3.9 mb)
Fig S6.

Relationships within Vespertilionidae (part 2: Vespertilioninae). The tribes are indicated in bold (JPEG 3972 kb)

10914_2016_9363_MOESM11_ESM.tif (6.5 mb)
High resolution image (TIFF 6637 kb)
10914_2016_9363_Fig16_ESM.jpg (3.4 mb)
Fig S7.

Pteropodidae. A: Cynopterinae; B: Cynopterini; C: Balionycterini; D: Scotonycterini; E: Rousettinae; F: Eonycterini; G: Rousettini; H: Stenonycterini; I: Myonycterini; J: Epomophorini; K: Macroglossinae; L: Harpyionycterinae; M: Eidolinae; N: Nyctimeninae; O: “Pteropodinae” (JPEG 3509 kb)

10914_2016_9363_MOESM12_ESM.tif (5.6 mb)
High resolution image (TIFF 5707 kb)
10914_2016_9363_Fig17_ESM.jpg (3.5 mb)
Fig S8.

Rhinolophoidea. A: African Hipposideros species; B: Asian Hipposideros species; C: Afro-Paleartic Rhinolophus clade (JPEG 3578 kb)

10914_2016_9363_MOESM13_ESM.tif (5.7 mb)
High resolution image (TIFF 5785 kb)
10914_2016_9363_Fig18_ESM.jpg (3.8 mb)
Fig S9.

Yangochiroptera. A: Asian Nycteris clade; B: African Nycteris clade; C: Taphozoinae; D: Emballonurinae; E: Emballonurini; F: Diclidurini; G: Afro-Malagasy emballonurini genera; H: Indo-Pacific emballonurini genus; I: New World Molossidae group; J: Otomops group; K: Oriental-Australasian Miniopterus clade; L: Ethiopian Miniopterus clade; M: Indian Ocean Miniopterus clade (JPEG 3901 kb)

10914_2016_9363_MOESM14_ESM.tif (6.1 mb)
High resolution image (TIFF 6293 kb)
10914_2016_9363_Fig19_ESM.jpg (3.8 mb)
Fig S10.

Relationships within Phyllostomidae. The subfamilies are indicated in bold (JPEG 3877 kb)

10914_2016_9363_MOESM15_ESM.tif (6.3 mb)
High resolution image (TIFF 6451 kb)
10914_2016_9363_Fig20_ESM.jpg (3.5 mb)
Fig S11.

Relationships within Vespertilionidae (part 1: Kerivoulinae, Murininae, Myotinae). A: New World Myotis clade; B: Paleartic lineage “brandtii”; C: Neartic clade; D: Neotropical clade; E: Old World Myotis clade; F: Ethiopian clade; G: Euroasian clade; H: Oriental clade (JPEG 3563 kb)

10914_2016_9363_MOESM16_ESM.tif (5.7 mb)
High resolution image (TIFF 5872 kb)
10914_2016_9363_Fig21_ESM.jpg (4.2 mb)
Fig S12.

Relationships within Vespertilionidae (part 2: Vespertilioninae). The tribes are indicated in bold (JPEG 4337 kb)

10914_2016_9363_MOESM17_ESM.tif (6.8 mb)
High resolution image (TIFF 6940 kb)
10914_2016_9363_Fig22_ESM.jpg (608 kb)
Fig S13.

Outgroups (JPEG 608 kb)

10914_2016_9363_MOESM18_ESM.tif (952 kb)
High resolution image (TIFF 951 kb)
10914_2016_9363_Fig23_ESM.jpg (2.7 mb)
Fig S14.

Yinpterochiroptera (JPEG 2716 kb)

10914_2016_9363_MOESM19_ESM.tif (4.6 mb)
High resolution image (TIFF 4711 kb)
10914_2016_9363_Fig24_ESM.jpg (2.6 mb)
Fig S15.

Yangochiroptera (in part): Noctilionoidea + Emballonuroidea (JPEG 2677 kb)

10914_2016_9363_MOESM20_ESM.tif (4.7 mb)
High resolution image (TIFF 4790 kb)
10914_2016_9363_Fig25_ESM.jpg (3 mb)
Fig S16.

Yangochiroptera (in part): Vespertilionoidea (JPEG 3078 kb)

10914_2016_9363_MOESM21_ESM.tif (5 mb)
High resolution image (TIFF 5071 kb)
10914_2016_9363_MOESM22_ESM.pdf (73 kb)
Fig S17. Complete molecular dating obtained from a Bayesian analysis (PDF 72 kb)


  1. Agnarsson I, Zambrana-Torrelio CM, Flores-Saldana NP, May-Collado LJ (2011) A time-calibrated species-level phylogeny of bats (Chiroptera, Mammalia). PLoS Curr. doi: 10.1371/currents.RRN1212 PubMedPubMedCentralGoogle Scholar
  2. Akmali V, Farazmand A, Darvish J, Sharifi M (2011) Phylogeography and taxonomic status of the greater mouse-tailed bat Rhinopoma microphyllum (Chiroptera: Rhinopomatidae) in Iran. Acta Chiropt 13(2): 279–290CrossRefGoogle Scholar
  3. Almeida FC, Giannini NP, DeSalle R, Simmons NB (2009) The phylogenetic relationships of cynopterine fruit bats (Chiroptera: Pteropodidae: Cynopterinae). Mol Phylogenet Evol 53(3): 772–783PubMedCrossRefGoogle Scholar
  4. Almeida FC, Giannini NP, DeSalle R, Simmons NB (2011) Evolutionary relationships of the Old World fruit bats (Chiroptera, Pteropodidae): another star phylogeny? BMC Evol Biol 11(1): 281PubMedPubMedCentralCrossRefGoogle Scholar
  5. Almeida FC, Giannini NP, Simmons NB (2016) The evolutionary history of the African fruit bats (Chiroptera: Pteropodidae). Acta Chiropt 18: 73–90CrossRefGoogle Scholar
  6. Almeida FC, Giannini NP, Simmons NB, Helgen KM (2014) Each flying fox on its own branch: a phylogenetic tree for Pteropus and related genera (Chiroptera: Pteropodidae). Mol Phylogenet Evol 77: 83–95PubMedCrossRefGoogle Scholar
  7. Ammerman LK, Brashear WA, Bartlett SN (2013) Further evidence for the basal divergence of Cheiromeles (Chiroptera: Molossidae). Acta Chiropt 15(2): 307–312CrossRefGoogle Scholar
  8. Ammerman LK, Hillis DM (1992) A molecular test of bat relationships: monophyly or diphyly? Syst Biol 41(2): 222–232CrossRefGoogle Scholar
  9. Ammerman LK, Lee DN, Tipps TM (2012) First molecular phylogenetic insights into the evolution of free-tailed bats in the subfamily Molossinae (Molossidae, Chiroptera). J Mammal 93(1): 12–28CrossRefGoogle Scholar
  10. Andersen K (1912) Catalogue of the Chiroptera in the collection of the British museum, volume I: Megachiroptera, 2nd edn. British Museum (Natural History), London, 854 ppGoogle Scholar
  11. Appleton BR, McKenzie JA, Christidis L (2004) Molecular systematics and biogeography of the bent-wing bat complex Miniopterus schreibersii (Kuhl, 1817)(Chiroptera: Vespertilionidae). Mol Phylogenet Evol 31(2): 431–439PubMedCrossRefGoogle Scholar
  12. Archibald JD, Deutschman DH (2001) Quantitative analysis of the timing of the origin and diversification of extant placental orders. J Mammal Evol 8(2): 107–124CrossRefGoogle Scholar
  13. Bailey SE, Mao X, Struebig M, Tsagkogeorga G, Csorba G, Heaney LR, Rossiter SJ (2016) The use of museum samples for large-scale sequence capture: a study of congeneric horseshoe bats (family Rhinolophidae). Biol J Linn Soc 117(1): 58–70CrossRefGoogle Scholar
  14. Baird AB, Braun JK, Mares MA, Morales JC, Patton JC, Tran CQ, Bickham JW (2015) Molecular systematic revision of tree bats (Lasiurini): doubling the native mammals of the Hawaiian islands. J Mammal 96 (6): 1255–1274CrossRefGoogle Scholar
  15. Baker RJ, Bininda-Emonds OR, Mantilla-Meluk H, Porter CA, Van Den Bussche RA (2012) Molecular timescale of diversification of feeding strategy and morphology in New World leaf-nosed bats (Phyllostomidae): a phylogenetic perspective. In: Gunnell GF, Simmons NB (eds) Evolutionary History of Bats: Fossils, Molecules and Morphology. Cambridge University Press, Cambridge, pp 385–409CrossRefGoogle Scholar
  16. Baker RJ, Hoofer SR, Porter CA, Van Den Bussche RA (2003) Diversification among New World leaf-nosed bats: an evolutionary hypothesis and classification inferred from digenomic congruence of DNA sequence. Occas Papers Mus Texas Tech Univ 230(1): 1–32Google Scholar
  17. Baker RJ, Solari S, Cirranello A, Simmons NB (2016) Higher level classification of phyllostomid bats with a summary of DNA synapomorphies. Acta Chiropt 18(1): 1–38CrossRefGoogle Scholar
  18. Bartlett SN, McDonough MM, Ammerman LK (2013) Molecular systematics of bonneted bats (Molossidae: Eumops) based on mitochondrial and nuclear DNA sequences. J Mammal 94(4): 867–880CrossRefGoogle Scholar
  19. Benda P, Vallo P (2009) Taxonomic revision of the genus Triaenops (Chiroptera: Hipposideridae) with description of a new species from southern Arabia and definitions of a new genus and tribe. Folia Zool 58: 1Google Scholar
  20. Bergmans W (1997) Taxonomy and biogeography of African fruit bats (Mammalia, Megachiroptera). 5. The genera Lissonycteris Andersen, 1912, Myonycteris Matschie, 1899, and Megaloglossus Pagenstecher, 1885; general remarks and conclusions; annex: key to all species. Beaufortia 47: 11–90Google Scholar
  21. Bilgin R, Gürün K, Maraci Ö, Furman A, Hulva P, Çoraman E, Horáček I (2012) Syntopic occurrence in Turkey supports separate species status for Miniopterus schreibersii schreibersii and M. schreibersii pallidus (Mammalia: Chiroptera). Acta Chiropt 14(2): 279–289CrossRefGoogle Scholar
  22. Bogdanowicz W, Owen RD (1998) In the Minotaur’s labyrinth: phylogeny of the bat family Hipposideridae. In: Kunz TH, Racey PA (eds) Bat Biology and Conservation. Smithsonian Institution Press, Washington, D.C., pp 27–42Google Scholar
  23. Borisenko AV, Kruskop SV, Ivanova NV (2008) A new mouse-eared bat (Mammalia: Chiroptera: Vespertilionidae) from Vietnam. Russ J Theriol 7(2): 57–69CrossRefGoogle Scholar
  24. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput Biol 10(4): e1003537. doi: 10.1371/journal.pcbi.1003537 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Butler PM, Greenwood M (1965) Insectivora and Chiroptera. In: Leakey LSB (ed) Olduvai Gorge 1951–1961, vol. 1, Fauna and Background. Cambridge University Press, Cambridge, pp 13–15Google Scholar
  26. Butler PM, Hopwood AT (1957) Insectivora and Chiroptera from the Miocene rocks of Kenya colony. Fossil Mammals Afr 13:1–35Google Scholar
  27. Carter AM, Goodman SM, Enders AC (2008) Female reproductive tract and placentation in sucker-footed bats (Chiroptera: Myzopodidae) endemic to Madagascar. Placenta 29:484–491PubMedCrossRefGoogle Scholar
  28. Castresana J (2002) Gblocks v. 0.91 b. online version available at: http://molevol. cmima. csic. es/castresana.Google Scholar
  29. Chan LM, Goodman SM, Nowak MD, Weisrock DW, Yoder AD (2011) Increased population sampling confirms low genetic divergence among Pteropus (Chiroptera: Pteropodidae) fruit bats of Madagascar and other western Indian Ocean islands. PLoS Curr. doi: 10.1371/currents.RRN1226 PubMedPubMedCentralGoogle Scholar
  30. Cirranello A, Simmons NB, Solari S, Baker RJ (2016) Morphological diagnoses of higher-level phyllostomid taxa (Chiroptera: Phyllostomidae). Acta Chiropt 18(1): 39–71CrossRefGoogle Scholar
  31. Clare EL, Lim BK, Engstrom MD, Eger JL, Hebert PD (2007) DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Mol Ecol 7(2): 184–190CrossRefGoogle Scholar
  32. Colgan DJ, Soheili S (2008) Evolutionary lineages in Emballonura and Mosia bats (Mammalia: Microchiroptera) from the southwestern Pacific. Pac Sci 62(2): 219–232CrossRefGoogle Scholar
  33. Cozzuol MA (2006) The Acre vertebrate fauna: age, diversity, and geography. J So Am Earth Sci 21:185–203Google Scholar
  34. Csorba G (2011) A new species of Glischropus from the Indochinese subregion (Mammalia: Chiroptera: Vespertilionidae). Zootaxa 2925: 41–48Google Scholar
  35. Csorba G, Bates PJ (2005) Description of a new species of Murina from Cambodia (Chiroptera: Vespertilionidae: Murininae). Acta Chiropt 7(1): 1–7CrossRefGoogle Scholar
  36. Csorba G, Chou CH, Ruedi M, Görföl T, Motokawa M, Wiantoro S, Furey N (2014) The reds and the yellows: a review of Asian Chrysopteron Jentink 1910 (Chiroptera: Vespertilionidae: Myotis). J Mammal 95(4): 663–678CrossRefGoogle Scholar
  37. Csorba G, Görföl T, Wiantoro S, Kingston T, Bates PJ, Huang JCC (2015) Thumb-pads up—a new species of thick-thumbed bat from Sumatra (Chiroptera: Vespertilionidae: Glischropus). Zootaxa 3980(2): 267–278PubMedCrossRefGoogle Scholar
  38. Csorba G, Son NT, Saveng I, Furey NM (2011) Revealing cryptic bat diversity: three new Murina and redescription of M. tubinaris from Southeast Asia. J Mammal 92(4): 891–904CrossRefGoogle Scholar
  39. Csorba G, Ujhelyi P, Thomas N (2003) Horseshoe Bats of the World (Chiroptera: Rhinolophidae). Alana Books, ShropshireGoogle Scholar
  40. Czaplewski NJ (1996) Opossums (Didelphidae) and bats (Noctilionidae and Molossidae) from the late Miocene of the Amazon basin. J Mammal 77:84–94CrossRefGoogle Scholar
  41. Czaplewksi NJ, Cartelle C (1998) Pleistocene bats from cave deposits in Bahia, Brazil. J Mammal 79:784–803CrossRefGoogle Scholar
  42. Czaplewski NJ, Peachey WD (2003) Late Pleistocene bats from Arkenstone cave, Arizona. Southwest Nat 48:597–609CrossRefGoogle Scholar
  43. Czaplewski NJ, Rincón AD, Morgan GS (2005) Fossil bat (Mammalia: Chiroptera) remains from Inciarte Tar Pit, Sierra de Perijá, Venezuela. Caribb J Sci 41:768–781Google Scholar
  44. Czaplewski NJ, Takai M, Naeher TM, Shigehara N, Setoguchi T (2003b) Additional bats from the middle Miocene La Venta Fauna of Colombia. Rev Acad Colomb Cienc 27: 263–282Google Scholar
  45. Čermák S, Wagner J, Fejfar O, Horáček I (2007) New Pliocene localities with micromammals from the Czech Republic: a preliminary report. Fossil Rec 10:60–68CrossRefGoogle Scholar
  46. dos Reis M, Inoue J, Hasegawa M, Asher RJ, Donoghue PC, Yang Z (2012) Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc R Soc Lond [Biol] 279: 3491–3500CrossRefGoogle Scholar
  47. Dalquest WW (1978) Early Blancan mammals of the Beck Ranch Local Fauna of Texas. J Mammal 59: 269–298Google Scholar
  48. Dalquest WW, Roth E (1970) Late Pleistocene mammals from a cave in Tamaulipas, Mexico. Southwest Nat 15: 217–230CrossRefGoogle Scholar
  49. Datzmann T, von Helversen O, Mayer F (2010) Evolution of nectarivory in phyllostomid bats (Phyllostomidae gray, 1825, Chiroptera: Mammalia). BMC Evol Biol 10: 165PubMedPubMedCentralCrossRefGoogle Scholar
  50. Dávalos LM (2005) Molecular phylogeny of funnel-eared bats (Chiroptera: Natalidae), with notes on biogeography and conservation. Mol Phylogenet Evol 37(1): 91–103PubMedCrossRefGoogle Scholar
  51. Dávalos LM (2006) The geography of diversification in the mormoopids (Chiroptera: Mormoopidae). Biol J Linn Soc 88(1): 101–118CrossRefGoogle Scholar
  52. Dolman RW, Ammerman LK (2015) Molecular systematics of Nyctinomops (Chiroptera: Molossidae). West N Am Naturalist 75(1): 43–51CrossRefGoogle Scholar
  53. Dumont ER, Dávalos LM, Goldberg A, Santana SE, Rex K, Voigt CC (2011) Morphological innovation, diversification and invasion of a new adaptive zone. Proc R Soc Lond [Biol] 279: 1797–1805CrossRefGoogle Scholar
  54. Eick GN, Jacobs DS, Matthee CA (2005) A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol Biol Evol 22(9): 1869–1886PubMedCrossRefGoogle Scholar
  55. Eiting TP, Gunnell GF (2009) Global completeness of the bat fossil record. J Mammal Evol 16(3): 151–173CrossRefGoogle Scholar
  56. Engesser B, Ziegler R (1996) Didelphids, insectivores, and chiropterans from the later Miocene of France, Cental Europe, Greece, and Turkey. In: Bernor RL, Fahlbusch V, Mittman H-W (eds) The Evolution of Western Eurasian Neogene Mammal Faunas. Columbia University Press, New York, pp 157–167Google Scholar
  57. Esselstyn JA (2007) A new species of stripe-faced fruit bat (Chiroptera: Pteropodidae: Styloctenium) from the Philippines. J Mammal 88(4): 951–958CrossRefGoogle Scholar
  58. Esselstyn JA, Garcia HJ, Saulog MG, Heaney LR (2008) A new species of Desmalopex (Pteropodidae) from the Philippines, with a phylogenetic analysis of the Pteropodini. J Mammal 89(4): 815–825CrossRefGoogle Scholar
  59. Fabre PH, Hautier L, Dimitrov D, Douzery EJ (2012) A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evol Biol 12(1): 88PubMedPubMedCentralCrossRefGoogle Scholar
  60. Foley NM, Thong VD, Soisook P, Goodman SM, Armstrong KN, Jacobs DS, Teeling EC (2015) How and why overcome the impediments to resolution: lessons from rhinolophid and hipposiderid bats. Mol Biol Evol 32(2): 313–333PubMedCrossRefGoogle Scholar
  61. Furey NM, Thong VD, Bates PJ, Csorba G (2009) Description of a new species belonging to the Murina'suilla-group' (Chiroptera: Vespertilionidae: Murininae) from North Vietnam. Acta Chiropt 11(2): 225–236CrossRefGoogle Scholar
  62. Furman A, Postawa T, Öztunç T, Çoraman E (2010) Cryptic diversity of the bent-wing bat, Miniopterus schreibersii (Chiroptera: Vespertilionidae), in Asia minor. BMC Evol Biol 10(1): 121PubMedPubMedCentralCrossRefGoogle Scholar
  63. Giannini NP (2012) Toward an integrative theory on the origin of bat flight. In: Gunnell GF, Simmons NB (eds) Evolutionary History of Bats. Cambridge University Press, Cambridge, pp 355–384Google Scholar
  64. Giannini NP, Almeida FC, Simmons NB (2009) Phylogenetic relationships of harpyionycterine megabats. Bull Am Mus Nat Hist 331:183–204CrossRefGoogle Scholar
  65. Giannini NP, Almeida FC, Simmons NB, DeSalle R (2006) Phylogenetic relationships of the enigmatic harpy fruit bat, Harpyionycteris (Mammalia: Chiroptera: Pteropodidae). Am Mus Novitates 1–12Google Scholar
  66. Giannini NP, Almeida FC, Simmons NB, Helgen KM (2008) The systematic position of Pteropus leucopterus and its bearing on the monophyly and relationships of Pteropus (Chiroptera: Pteropodidae). Acta Chiropt 10(1): 11–20CrossRefGoogle Scholar
  67. Giannini NP, Simmons NB (2003) A phylogeny of megachiropteran bats (Mammalia: Chiroptera: Pteropodidae) based on direct optimization analysis of one nuclear and four mitochondrial genes. Cladistics 19(6): 496–511CrossRefGoogle Scholar
  68. Giannini NP, Simmons NB (2005) Conflict and congruence in a combined DNA–morphology analysis of megachiropteran bat relationships (Mammalia: Chiroptera: Pteropodidae). Cladistics 21(5): 411–437CrossRefGoogle Scholar
  69. Gingerich PD (1977) Radiation of Eocene Adapidae in Europe. Geobios 10: 165–182CrossRefGoogle Scholar
  70. Goloboff PA (1999) Analyzing large datasets in reasonable times: solutions for composite optima. Cladistics 15(4): 415–428CrossRefGoogle Scholar
  71. Goloboff PA, Catalano SA (2012) GB-to-TNT: facilitating creation of matrices from GenBank and diagnosis of results in TNT. Cladistics 28(5): 503–513CrossRefGoogle Scholar
  72. Goloboff P, Farris J, Nixon K (2003) TNT: tree analysis using new technology. Program and documentation available from the authors and at Google Scholar
  73. Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24(5): 774–786CrossRefGoogle Scholar
  74. Goodman SM, Puechmaille SJ, Friedli-Weyeneth N, Gerlach J, Ruedi M, Schoeman MC, Stanley WT, Teeling EC (2012) Phylogeny of the emballonurini (Emballonuridae) with descriptions of a new genus and species from Madagascar. J Mammal 93(6): 1440–1455CrossRefGoogle Scholar
  75. Gregorin R (2009) Phylogeny of Eumops miller, 1906 (Chiroptera: Molossidae) using morphological data. Acta Chiropt 11(2): 247–258CrossRefGoogle Scholar
  76. Gregorin R, Cirranello A (2015) Phylogeny of Molossidae Gervais (Mammalia: Chiroptera) inferred by morphological data. Cladistics 1–34Google Scholar
  77. Gregorin R, Ditchfield AD (2005) New genus and species of nectar-feeding bat in the tribe Lonchophyllini (Phyllostomidae: Glossophaginae) from northeastern Brazil. J Mammal 86(2): 403–414CrossRefGoogle Scholar
  78. Gregorin R, Gonçalves E, Lim BK, Engstrom MD (2006) New species of disk-winged bat Thyroptera and range extension for T. discifera. J Mammal 87(2): 238–246CrossRefGoogle Scholar
  79. Gregory WK (1910) The orders of mammals. Bull Am Mus Nat Hist 27: 1–542Google Scholar
  80. Griffiths TA (1994) Phylogenetic systematics of slit-faced bats (Chiroptera, Nycteridae), based on hyoid and other morphology. Am Mus Novitates 3090: 1–17Google Scholar
  81. Griffiths TA (1997) Phylogenetic position of the bat Nycteris javanica (Chiroptera: Nycteridae). J Mammal 78(1): 106–116CrossRefGoogle Scholar
  82. Griffiths TA, Smith AL (1991) Systematics of emballonuroid bats (Chiroptera, Emballonuridae and Rhinopomatidae), based on hyoid morphology. Bull Am Mus Nat Hist 206: 62–83Google Scholar
  83. Guillén-Servent A, Francis CM (2006) A new species of bat of the Hipposideros bicolor group (Chiroptera: Hipposideridae) from central Laos, with evidence of convergent evolution with Sundaic taxa. Acta Chiropt 8(1): 39–61Google Scholar
  84. Guillén-Servent A, Francis CM, Ricklefs RE (2003) Phylogeny and biogeography of the horseshoe bats. In: Thomas N, Csorba G, Ujhelyi P (eds) Horseshoe Bats of the World. Alana Books, pp. 12–24Google Scholar
  85. Gunnell GF, Simmons NB (2005) Fossil evidence and the origin of bats. J Mammal Evol 12: 209–246CrossRefGoogle Scholar
  86. Gunnell GF, Simmons NB, Seiffert ER (2014) New Myzopodidae (Chiroptera) from the late Paleogene of Egypt: emended family diagnosis and biogeographic origins of Noctilionoidea. PLoS One. doi: 10.1371/journal.pone.0086712 Google Scholar
  87. Gunnell GF, Simons EL, Seiffert ER (2008) New bats (Mammalia: Chiroptera) from the late Eocene and early Oligocene, Fayum depression, Egypt. J Vertebr Paleontol 28:1–11Google Scholar
  88. Handley CO (1959) A revision of bats of the Genera Euderma and Plecotus. Smithsonian Institution Press, WashingtonGoogle Scholar
  89. Hassanin A (2014) Description of a new bat species of the tribe Scotonycterini (Chiroptera, Pteropodidae) from southwestern Cameroon. C R Biol 337(2): 134–142PubMedCrossRefGoogle Scholar
  90. Hassanin A, Khouider S, Gembu GC, Goodman SM, Kadjo B, Nesi N, Pourrut X, Nakouné E, Bonillo C (2015) The comparative phylogeography of fruit bats of the tribe Scotonycterini (Chiroptera, Pteropodidae) reveals cryptic species diversity related to African Pleistocene forest refugia. C R Biol 338(3):197–211. doi: 10.1016/j.crvi.2014.12.003 PubMedCrossRefGoogle Scholar
  91. Havird JC, Miyamoto MM (2010) The importance of taxon sampling in genomic studies: an example from the cyclooxygenases of teleost fishes. Mol Phylogenet Evol 56(1): 451–455PubMedCrossRefGoogle Scholar
  92. Hill JE (1963) A revision of the genus Hipposideros. Bull Br Mus Nat Hist 11: 3–129Google Scholar
  93. Hoffmann FG, Hoofer SR, Baker RJ (2008) Molecular dating of the diversification of phyllostominae bats based on nuclear and mitochondrial DNA sequences. Mol Phylogenet Evol 49(2): 653–658PubMedCrossRefGoogle Scholar
  94. Hollar LJ, Springer MS (1997) Old World fruitbat phylogeny: evidence for convergent evolution and an endemic African clade. Proc Natl Acad Sci USA 94(11): 5716–5721Google Scholar
  95. Hoofer SR, Van Den Bussche RA (2001) Phylogenetic relationships of plecotine bats and allies based on mitochondrial ribosomal sequences. J Mammal 82(1): 131–137CrossRefGoogle Scholar
  96. Hoofer SR, Van Den Bussche RA (2003) Molecular phylogenetics of the chiropteran family Vespertilionidae. Acta Chiropt 5(1): 1–63CrossRefGoogle Scholar
  97. Horáček I (1986) Kerivoula (Mammalia, Chiroptera), fossil in Europe? Acta Univ Carolinae-Geol, Špinar 2: 213–222Google Scholar
  98. Horáček I (2001) On the early history of vespertilionid bats in Europe: the lower Miocene record from the Bohemian massif. Lynx 32: 123–154Google Scholar
  99. Horáček I, Hanák V, Gaisler J (2000) Bats of the palearctic region: a taxonomic and biogeographic review. Proceedings of the VIII European Bats Research Symposium: 11–157Google Scholar
  100. Hulva P, Horáček I, Benda P (2007) Molecules, morphometrics and new fossils provide an integrated view of the evolutionary history of Rhinopomatidae (Mammalia: Chiroptera). BMC Evol Biol 7(1): 1CrossRefGoogle Scholar
  101. Hurtado-Miranda NE, Pacheco-Torres V (2014) Análisis filogenético del género Mimon Gray, 1847 (Mammalia, Chiroptera, Phyllostomidae) con la descripción de un nuevo género. Therya 5(3): 751–791CrossRefGoogle Scholar
  102. Hutcheon JM, Kirsch JA (2004) Camping in a different tree: results of molecular systematic studies of bats using DNA–DNA hybridization. J Mammal Evol 11(1) 17–47CrossRefGoogle Scholar
  103. Hutcheon JM, Kirsch JA (2006) A moveable face: deconstructing the Microchiroptera and a new classification of extant bats. Acta Chiropt 8(1): 1–10CrossRefGoogle Scholar
  104. Hutcheon JM, Kirsch JA, Pettigrew JD (1998) Base–compositional biases and the bat problem III. The question of microchiropteran monophyly. Phil Trans R Soc Lond [Biol] 353(1368): 607–617CrossRefGoogle Scholar
  105. Hutson AM, Aulagnier S, Benda P, Karataş A, Palmeirim J, Paunović M (2008) Miniopterus schreibersii. The IUCN Red List of Threatened Species 2008: e.T13561A4160556. doi: 10.2305/IUCN.UK.2008.RLTS.T13561A4160556.en
  106. Jones KE, Bininda-Emonds OR, Gittleman JL (2005) Bats, clocks, and rocks: diversification patterns in Chiroptera. Evolution 59(10): 2243–2255PubMedCrossRefGoogle Scholar
  107. Juste J, Ferrández A, Fa JE, Masefield W, Ibáñez C (2007) Taxonomy of little bent-winged bats (Miniopterus, Miniopteridae) from the African islands of Sao Tomé, grand Comoro and Madagascar, based on mtDNA. Acta Chiropt 9(1): 27–37CrossRefGoogle Scholar
  108. Juste J, Álvarez Y, Tabarez E, Garrido-Pertierra A, Ibañez C, Bautista JM (1999) Phylogeography of African fruitbats (Megachiroptera). Mol Phylogenet Evol 13: 596–604CrossRefGoogle Scholar
  109. Juste J, Benda P, García-Mudarra JL, Ibáñez C (2013) Phylogeny and systematics of Old World serotine bats (genus Eptesicus, Vespertilionidae, Chiroptera): an integrative approach. Zool Scripta 42: 441–457Google Scholar
  110. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4): 772–780PubMedPubMedCentralCrossRefGoogle Scholar
  111. Kirsch JA, Hutcheon JM, Byrnes DG, Lloyd BD (1998) Affinities and historical zoogeography of the New Zealand short-tailed bat, Mystacina tuberculata gray 1843, inferred from DNA-hybridization comparisons. J Mammal Evol 5(1): 33–64CrossRefGoogle Scholar
  112. Koopman KF (1993) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference, 2nd edn. Smithsonian Institution Press, Washington, D.C., pp 137–241Google Scholar
  113. Koopman KF (1994) Chiroptera: Systematics. Handbuch der Zoologie, viii, Mammalia, part 60. Walter de Gruyter, Berlin, 216 ppGoogle Scholar
  114. Kruskop SV, Borisenko AV, Ivanova NV, Lim BK, Eger JL (2012) Genetic diversity of northeastern Palaearctic bats as revealed by DNA barcodes. Acta Chiropt 14(1): 1–14CrossRefGoogle Scholar
  115. Kruskop SV, Eger JL (2008) A new species of tube-nosed bat Murina (Vespertilionidae: Chiroptera) from Vietnam. Acta Chiropt 10: 213–220CrossRefGoogle Scholar
  116. Kunz TH, Pierson ED (1994) Bats of the world: an introduction. In: Walker’s Bats of the World. Johns Hopkins University Press, Baltimore and London, pp 1–46Google Scholar
  117. Kuo HC, Fang YP, Csorba G, Lee LL (2009) Three new species of Murina (Chiroptera: Vespertilionidae) from Taiwan. J Mammal 90(4): 980–991CrossRefGoogle Scholar
  118. Lack JB, Roehrs ZP, Stanley CE Jr, Ruedi M, Van Den Bussche RA (2010) Molecular phylogenetics of Myotis indicates familial-level divergence for the genus Cistugo (Chiroptera). J Mammal 91(4): 976–992CrossRefGoogle Scholar
  119. Lack JB, Van Den Bussche RA (2010) Identifying the confounding factors in resolving phylogenetic relationships in Vespertilionidae. J Mammal 91(6): 1435–1448CrossRefGoogle Scholar
  120. Lamb JM, Ralph TM, Naidoo T, Taylor PJ, Ratrimomanarivo F, Stanley WT, Goodman SM (2011) Toward a molecular phylogeny for the Molossidae (Chiroptera) of the Afro-Malagasy region. Acta Chiropt 13(1): 1–16Google Scholar
  121. Larsen PA, Hoofer SR, Bozeman MC, Pedersen SC, Genoways HH, Phillips CJ, Baker RJ (2007) Phylogenetics and phylogeography of the Artibeus jamaicensis Complex based on cytochrome-b DNA sequences. J Mammal 88(3): 712–727CrossRefGoogle Scholar
  122. Larsen RJ, Knapp MC, Genoways HH, Khan FAA, Larsen PA, Wilson DE, Baker RJ (2012) Genetic diversity of Neotropical Myotis (Chiroptera: Vespertilionidae) with an emphasis on South American species. PLoS One. doi: 10.1371/journal.pone.0046578 Google Scholar
  123. Legendre S (1980) Un chiroptère emballonuridé dans le néogène d’Europe occidentale; considerations paléobio- géographiques. Géobios 13: 839–847CrossRefGoogle Scholar
  124. Legendre S (1982) Hipposideridae (Mammalia: Chiroptera) from the Mediterranean middle and late Neogene, and evolution of the genera Hipposideros and Asellia. J Vertebr Paleontol 2(3): 372–385CrossRefGoogle Scholar
  125. Legendre S (1985) Molossidés (Mammalia, Chiroptera) cén- ozoïques de l’Ancien et du Nouveau Monde; statut systématique; integration phylogénique des données. N Jb Geol Paläont Abh 170: 205–227Google Scholar
  126. Lewis-Oritt N, Van Den Bussche RA, Baker RJ (2001) Molecular evidence for evolution of piscivory in Noctilio (Chiroptera: Noctilionidae). J Mammal 82(3): 748–759CrossRefGoogle Scholar
  127. Li G, Liang B, Wang Y, Zhao H, Helgen K M, Lin L, Zhang S (2007) Echolocation calls, diet, and phylogenetic relationships of Stoliczka's trident bat, Aselliscus stoliczkanus (Hipposideridae). J Mammal 88(3): 736–744CrossRefGoogle Scholar
  128. Lim BK, Engstrom MD, Bickham JW, Patton JC (2008) Molecular phylogeny of New World sheath-tailed bats (Emballonuridae: Diclidurini) based on loci from the four genetic transmission systems in mammals. Biol J Linn Soc 93(1): 189–209CrossRefGoogle Scholar
  129. Lim BK, Engstrom MD, Lee TE Jr, Patton JC, Bickham JW (2004) Molecular differentiation of large species of fruit-eating bats (Artibeus) and phylogenetic relationships based on the cytochrome b gene. Acta Chiropt 6(1): 1–12CrossRefGoogle Scholar
  130. Maddison WP, Maddison DR (2015) Mesquite: a modular system for evolutionary analysis. Vesion 3.03.Google Scholar
  131. Medina CE, Gregorin R, Zeballos H, Zamora HT, Moras LM (2014) A new species of Eumops (Chiroptera: Molossidae) from southwestern Peru. Zootaxa 3878(1): 19–36PubMedCrossRefGoogle Scholar
  132. Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, Goodbla A, Eizirik E, Simão TLL, Stadler T, Rabosky DL, Honeycutt RL, Flynn JJ, Ingram CM, Steiner C, Williams TL, Robinson TJ, Burk-Herrick A, Westerman M, Ayoub NA, Springer MS, Murphy WJ (2011) Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334(6055): 521–524PubMedCrossRefGoogle Scholar
  133. Miller MA, Pfeiffer W, Schwartz T (2010) “Creating the CIPRES Science Gateway for inference of large phylogenetic trees” in Proceedings of the Gateway Computing Environments Workshop (GCE) 14 Nov 2010, New Orleans, pp 1–8Google Scholar
  134. Miller-Butterworth CM, Eick G, Jacobs DS, Schoeman MC, Harley EH (2005) Genetic and phenotypic differences between south African long-fingered bats, with a global miniopterine phylogeny. J Mammal 86(6): 1121–1135CrossRefGoogle Scholar
  135. Miller-Butterworth CM, Murphy WJ, O'Brien SJ, Jacobs DS, Springer MS, Teeling EC (2007) A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, Miniopterus. Mol Biol Evol 24(7): 1553–1561PubMedCrossRefGoogle Scholar
  136. Morgan GS (1991) Neotropical Chiroptera from the Pliocene and Pleistocene of Florida. Bull Am Mus Nat Hist 206: 176–213Google Scholar
  137. Morgan GS, Czaplewski NJ (2003) A new bat (Chiroptera: Natalidae) from the early Miocene of Florida, with comments on natalid phylogeny. J Mammal 84:729–752CrossRefGoogle Scholar
  138. Morgan GS, Czaplewski NJ (2012) Evolutionary history of the Neotropical Chiroptera: the fossil record. In: Gunnell GF, Simmons NB (eds) Evolutionary History of Bats: Fossils, Molecules, and Morphology. Cambridge University Press, Cambridge, 105–161CrossRefGoogle Scholar
  139. Morgan GS, Linares OJ, Ray CE (1988) New species of fossil vampire bats (Mammalia: Chiroptera: Desmodontidae) from Florida and Venezuela. Proc Biol Soc Wash 101: 912–928Google Scholar
  140. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O'Brien SJ (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409(6820): 614–618PubMedCrossRefGoogle Scholar
  141. Murray SW, Campbell P, Kingston T, Zubaid A, Francis CM, Kunz TH (2012) Molecular phylogeny of hipposiderid bats from Southeast Asia and evidence of cryptic diversity. Mol Phylogenet Evol 62(2): 597–611PubMedCrossRefGoogle Scholar
  142. Nabholz B, Glémin S, Galtier N (2008) Strong variations of mitochondrial mutation rate across mammals – the longevity hypothesis. Mol Biol Evol 25(1): 120–130PubMedCrossRefGoogle Scholar
  143. Nesi N, Kadjo B, Pourrut X, Leroy E, Shongo CP, Cruaud C, Hassanin A (2013) Molecular systematics and phylogeography of the tribe Myonycterini (Mammalia, Pteropodidae) inferred from mitochondrial and nuclear markers. Mol Phylogenet Evol 66(1): 126–137PubMedCrossRefGoogle Scholar
  144. Nishihara H, Hasegawa M, Okada N (2006) Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc Natl Acad Sci USA 103(26): 9929–9934PubMedPubMedCentralCrossRefGoogle Scholar
  145. O’Brien J, Mariani C, Olson L, Russell AL, Say L, Yoder AD, Hayden TJ (2009) Multiple colonisations of the western Indian Ocean by Pteropus fruit bats (Megachiroptera: Pteropodidae): the furthest islands were colonised first. Mol Phylogenet Evol 51(2): 294–303PubMedCrossRefGoogle Scholar
  146. O'Leary MA, Bloch JI, Flyinn JJ, Gaudin TJ, Giallombardo A, Giannini NP, Goldberg SL, Kraatz BP, Luo ZX, Meng J, Ni X, Novacek MJ, Perini FA, Randall ZS, Rougier GW, Sargis EJ, Silcox MT, Simmons NB, Spaulding M, Velazco PM, Weksler M, Wible JR, Cirranello AL (2013) The placental mammal ancestor and the post–K-Pg radiation of placentals. Science 339(6120): 662–667PubMedCrossRefGoogle Scholar
  147. Parlos JP, Timm RM, Swier VJ, Zeballos J, Baker RJ (2014) Evaluation of paraphyletic assemblages witihin Lonchophyllinae, with description of a new tribe and genus. Occas Pap Mus Texas Tech Univ 320: 1–23Google Scholar
  148. Patton JC, Baker RJ (1978) Chromosomal homology and evolution of phyllostomatoid bats. Syst Biol 27(4): 449–462CrossRefGoogle Scholar
  149. Peel AJ, Sargan DR, Baker KS, Hayman DT, Barr JA, Crameri G, Suu-Ire R, Broder CC, Lembo T, Wang L-F, Fooks AR, Rossiter SJ, Wood JLN, Cunningham AA (2013) Continent-wide panmixia of an African fruit bat facilitates transmission of potentially zoonotic viruses. Nature 4:doi: 10.1038/ncomms3770
  150. Pettigrew JD (1986) Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231: 1304–1306PubMedCrossRefGoogle Scholar
  151. Pettigrew JD (1991a) Wings or brain? Convergent evolution in the origins of bats. Syst Zool 40: 199–216CrossRefGoogle Scholar
  152. Pettigrew JD (1991b) A fruitful, wrong hypothesis? Response to Baker, Novacek, and Simmons. Syst Biol 40: 231–239CrossRefGoogle Scholar
  153. Pick KS, Philippe H, Schreiber F, Erpenbeck D, Jackson DJ, Wrede P, Wiens M, Alié A, Morgenstern B, Manuel M, Wörheide G (2010) Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships. Mol Biol Evol 27(9): 1983–1987PubMedPubMedCentralCrossRefGoogle Scholar
  154. Rambaut A (2014) FigTree v 1.4.2.
  155. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6, Available from
  156. Ray CE (1967) Pleistocene mammals from Ladds, Bartow County, Georgia. Bull Georgia Acad Sci 25: 120–150Google Scholar
  157. Redondo RA, Brina LP, Silva RF, Ditchfield AD, Santos FR (2008) Molecular systematics of the genus Artibeus (Chiroptera: Phyllostomidae). Mol Phylogenet Evol 49(1): 44–58PubMedCrossRefGoogle Scholar
  158. Robbins LW, Sarich VM (1988) Evolutionary relationships in the family Emballonuridae (Chiroptera). J Mammal 69(1): 1–13CrossRefGoogle Scholar
  159. Robinson MF, Jenkins PD, Francis CM, Fulford AJ (2003) A new species of the Hipposideros pratti group (Chiroptera, Hipposideridae) from Lao PDR and Vietnam. Acta Chiropt 5(1): 31–48CrossRefGoogle Scholar
  160. Roehrs ZP, Lack JB, Van Den Bussche RA (2010) Tribal phylogenetic relationships within Vespertilioninae (Chiroptera: Vespertilionidae) based on mitochondrial and nuclear sequence data. J Mammal 91(5): 1073–1092CrossRefGoogle Scholar
  161. Roehrs ZP, Lack JB, Van Den Bussche RA (2011) A molecular phylogenetic reevaluation of the tribe Nycticeiini (Chiroptera: Vespertilionidae). Acta Chiropt 13(1): 17–31CrossRefGoogle Scholar
  162. Rojas D, Warsi OM, Dávalos LM (2016) Bats (Chiroptera: Noctilionoidea) challenge a recent origin of extant Neotropical diversity. Syst Biol 65(3): 432–448PubMedCrossRefGoogle Scholar
  163. Rossina VV, Kruskop SV, Tesakov AS, Titov VV (2006) The first record of late Miocene bat from European Russia. Acta Zool Cracov 49A: 125–133Google Scholar
  164. Ruedi M, Csorba G, Lin LK, Chou CH (2015) Molecular phylogeny and morphological revision of Myotis bats (Chiroptera: Vespertilionidae) from Taiwan and adjacent China. Zootaxa 3920(1): 301–342PubMedCrossRefGoogle Scholar
  165. Ruedi M, Friedli-Weyeneth N, Teeling EC, Puechmaille SJ, Goodman SM (2012) Biogeography of Old World emballonurine bats (Chiroptera: Emballonuridae) inferred with mitochondrial and nuclear DNA. Mol Phylogenet Evol 64(1): 204–211PubMedCrossRefGoogle Scholar
  166. Ruedi M, Stadelmann B, Gager Y, Douzery EJP, Francis CM, Lin L-K, Guillén-Serven A, Cibois A (2013) Molecular phylogenetic reconstructions identify East Asia as the cradle for the evolution of the cosmopolitan genus Myotis (Mammalia, Chiroptera). Mol Phylogenet Evol 69: 437–449PubMedCrossRefGoogle Scholar
  167. Samonds KE (2007) Late Pleistocene bat fossils from Anjohibe cave, northwestern Madagascar. Acta Chiropt 9: 39–65CrossRefGoogle Scholar
  168. Schutt WA Jr, Simmons NB (1998) Morphology and homology of the chiropteran calcar, with comments on the phylogenetic relationships of Archaeopteropus. J Mammal Evol 5(1): 1–32CrossRefGoogle Scholar
  169. Shi JJ, Rabosky DL (2015) Speciation dynamics during the global radiation of extant bats. Evolution 69(6): 1528–1545PubMedCrossRefGoogle Scholar
  170. Sigé B (1968) Les chiropteres du Miocene inferieur de Bouzigues I Etude systematique. Palaeovertebrata 1(3): 65–133Google Scholar
  171. Silva-Taboada G (1974) Fossil Chiroptera from cave deposits in central Cuba, with descriptions of two new species (genera Pteronotus and Mormoops) and the first west Indian record of Mormoops megalophylla. Acta Zool Cracov 19: 33–73Google Scholar
  172. Simmons NB (1994) The case for chiropteran monophyly. Am Mus Novitates 3103: 1–54Google Scholar
  173. Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammals Species of the World: A Taxonomic and Geographic Reference, 3rd edn. John Hopkins University Press, Baltimore, pp 312–529Google Scholar
  174. Simmons NB, Conway TM (2001) Phylogenetic relationships of mormoopid bats (Chiroptera: Mormoopidae) based on morphological data. Bull Am Mus Nat Hist 258: 1–97CrossRefGoogle Scholar
  175. Simmons NB, Geisler JH (1998) Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull Am Mus Nat Hist 235: 1–182Google Scholar
  176. Simmons NB, Seymour KL, Habersetzer J, Gunnell GF (2008) Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451: 818–822PubMedCrossRefGoogle Scholar
  177. Smith JD (1972) Systematics of the chiropteran family Mormoopidae. Misc Publ Mus Nat Hist Univ Kansas 56: 1–132Google Scholar
  178. Smith T, Habersetzer J, Simmons NB, Gunnell GF (2012) Systematics and paleobiogeography of early bats. In: Gunnell GF, Simmons NB (eds) Evolutionary History of Bats. Cambridge University Press, Cambridge, pp 23–66CrossRefGoogle Scholar
  179. Soisook P, Karapan S, Satasook C, Bates P J (2013) A new species of Murina (Mammalia: Chiroptera: Vespertilionidae) from peninsular Thailand. Zootaxa 3746(4): 567–579PubMedCrossRefGoogle Scholar
  180. Solari S, Hoofer SR, Larsen PA, Brown AD, Bull RJ, Guerrero JA, Ortega J, Carrera JP, Bradley RD, Baker RJ (2009) Operational criteria for genetically defined species: analysis of the diversification of the small fruit-eating bats, Dermanura (Phyllostomidae: Stenodermatinae). Acta Chiropt 11(2): 279–288CrossRefGoogle Scholar
  181. Son NT, Csorba G, Tu VT, Thong VD, Wu Y, Harada M, Motokawa M (2015) A new species of the genus Murina (Chiroptera: Vespertilionidae) from the central highlands of Vietnam with a review of the subfamily Murininae in Vietnam. Acta Chiropt 17(2): 201–232CrossRefGoogle Scholar
  182. Springer MS, Stanhope MJ, Madsen O, de Jong WW (2004) Molecules consolidate the placental mammal tree. Trends Ecol Evol 19(8): 430–438PubMedCrossRefGoogle Scholar
  183. Stadelmann B, Lin L-K, Kunz TH, Ruedi M (2007) Molecular phylogeny of the New World Myotis (Chiroptera, Vespertilionidae) inferred from mitochondrial and nuclear DNA genes. Mol Phylogenet Evol 43: 32–48PubMedCrossRefGoogle Scholar
  184. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57(5): 758–771PubMedCrossRefGoogle Scholar
  185. Stoffberg S, Jacobs DS, Mackie IJ, Matthee CA (2010) Molecular phylogenetics and historical biogeography of Rhinolophus bats. Mol Phylogenet Evol 54(1): 1–9PubMedCrossRefGoogle Scholar
  186. Storch G, Sigé B, Habersetzer J (2002) Tachypteron franzeni n. Gen., n. Sp., earliest emballonurid bat from the middle Eocene of Messel (Mammalia, Chiroptera). Paläontol Z 76(2): 189–199CrossRefGoogle Scholar
  187. Suárez W, Díaz-Franco S (2003) A new fossil bat (Chiroptera: Phyllostomidae) from a quaternary cave deposit in Cuba. Caribb J Sci 39: 371–377Google Scholar
  188. Sudman PD, Barkley LJ, Hafner MS (1994) Familial affinity of Tomopeas ravus (Chiroptera) based on protein electrophoretic and cytochrome b sequence data. J Mammal 75(2): 365–377CrossRefGoogle Scholar
  189. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4): 564–577PubMedCrossRefGoogle Scholar
  190. Teeling EC (2009) Hear, hear: the convergent evolution of echolocation in bats? Trends Ecol Evol 24(7): 351–354PubMedCrossRefGoogle Scholar
  191. Teeling EC, Dool S, Springer MS (2012) Phylogenies, fossils and functional genes: the evolution of echolocation in bats. In: Gunnell GF, Simmons NB (eds) Evolutionary History of Bats. Cambridge University Press, Cambridge, pp 1–22Google Scholar
  192. Teeling EC, Scally M, Kao DJ, Romagnoli ML, Springer MS, Stanhope MJ (2000) Molecular evidence regarding the origin of echolocation and flight in bats. Nature 403(6766): 188–192PubMedCrossRefGoogle Scholar
  193. Teeling EC, Springer MS, Madsen O, Bates P, O'Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307(5709): 580–584Google Scholar
  194. Tejedor A (2011) Systematics of funnel-eared bats (Chiroptera: Natalidae). Bull Am Mus Nat Hist 353:1–140CrossRefGoogle Scholar
  195. Tejedor A, Tavares VDC, Silva-Taboada G (2005) A revision of extant greater Antillean bats of the genus Natalus. Am Mus Novitates 1–22Google Scholar
  196. Thabah A, Li G, Wang Y, Liang B, Hu K, Zhang S, Jones G (2007) Diet, echolocation calls, and phylogenetic affinities of the great evening bat (Ia io; Vespertilionidae): another carnivorous bat. J Mammal 88(3): 728–735CrossRefGoogle Scholar
  197. Thoisy BD, Pavan AC, Delaval M, Lavergne A, Luglia T, Pineau K, Catzeflis F (2014) Cryptic diversity in common mustached bats Pteronotus cf. parnellii (Mormoopidae) in French Guiana and Brazilian Amapa. Acta Chiropt 16(1): 1–13CrossRefGoogle Scholar
  198. Thong VD, Puechmaille SJ, Denzinger A, Bates PJ, Dietz C, Csorba G, Soisook P, Teeling EC, Matsumura S, Furey N, Schnitzler HU (2012a) Systematics of the Hipposideros turpis Complex and a description of a new subspecies from Vietnam. Mammal Rev 42(2): 166–192CrossRefGoogle Scholar
  199. Thong VD, Puechmaille SJ, Denzinger A, Csorba G, Dietz C, Bates PJ, Teeling EC, Schnitzler HU (2012b) A new species of Hipposideros (Chiroptera: Hipposideridae) from Vietnam. J Mammal 93(1): 1–11CrossRefGoogle Scholar
  200. Topál G (1983) New and rare fossil mouse-eared bats from the middle Pliocene of Hungary (Mammalia, Chiroptera). Fragm Mineral Palaeontol 11:43–54Google Scholar
  201. Topál G (1989a) New Tertiary plecotines from Hungary (Mammalia, Chiroptera). In: Hanák V, Horáček I, Gaisler J (eds) European Bat Research 1987. Charles University Press, Prague, pp 77–86Google Scholar
  202. Topál G (1989b) Tertiary and early Quaternary remains of Corynorhinus and Plecotus from Hungary (Mammalia, Chiroptera). Vertebr Hung 23:33–55Google Scholar
  203. Tsagkogeorga G, Parker J, Stupka E, Cotton JA, Rossiter SJ (2013) Phylogenomic analyses elucidate the evolutionary relationships of bats. Curr Biol 23(22): 2262–2267PubMedCrossRefGoogle Scholar
  204. Tu VT, Csorba G, Görföl, Arai S, Son NT, Thanh HT, Hasanin A (2015) Description of a new species of the genus Aselliscus (Chiroptera, Hipposideridae) from Vietnam. Acta Chiropt 17(2): 233–254CrossRefGoogle Scholar
  205. Vahtera V, Edgecombe GD, Giribet G (2013) Phylogenetics of scolopendromorph centipedes: can denser taxon sampling improve an artificial classification? Invertebr Syst 27(5): 578–602CrossRefGoogle Scholar
  206. Van Den Bussche RA, Hoofer SR, Simmons NB (2002) Phylogenetic relationships of mormoopid bats using mitochondrial gene sequences and morphology. J Mammal 83(1): 40–48CrossRefGoogle Scholar
  207. Van Den Bussche RA, Hudgeons JL, Baker RJ (1998) Phylogenetic accuracy, stability, and congruence: relationships within and among the New World Bat genera Artibeus, Dermanura, and Koopmania. In: Kunz TH, Racey PA (eds) Bat Biology and Conservation. Smithsonian Institution Press, Washington, D.C., pp 59–71Google Scholar
  208. Van Den Bussche RA, Weyandt SE (2003) Mitochondrial and nuclear DNA sequence data provide resolution to sister-group relationships within Pteronotus (Chiroptera: Mormoopidae). Acta Chiropt 5(1): 1–13CrossRefGoogle Scholar
  209. Velazco PM (2005) Morphological phylogeny of the bat genus Platyrrhinus Saussure, 1860 (Chiroptera: Phyllostomidae) with the description of four new species. Fieldiana Zool 1–53Google Scholar
  210. Velazco PM (2013) On the phylogenetic position of Carollia manu Pacheco et al., 2004 (Chiroptera: Phyllostomidae: Carolliinae). Zootaxa 3718: 267–276PubMedCrossRefGoogle Scholar
  211. Velazco PM, Cadenillas R, Centty O, Huamani L, Zamora H (2013) New records of Platalina genovensium Thomas, 1928 (Chiroptera, Phyllostomidae, Lonchophyllinae) and Tomopeas ravus miller, 1900 (Chiroptera, Molossidae, Tomopeatinae). Mastozool Neotrop 20: 425–434Google Scholar
  212. Velazco PM, Gregorin R, Voss RS, Simmons NB (2014) Extraordinary local diversity of disk-winged bats (Thyropteridae: Thyroptera) in northeastern Peru, with the description of a new species and comments on roosting behavior. Am Mus Novitates 3795 1–28CrossRefGoogle Scholar
  213. Velazco PM, Patterson BD (2013) Diversification of the yellow-shouldered bats, genus Sturnira (Chiroptera, Phyllostomidae), in the New World tropics. Mol Phylogenet Evol 68(3): 683–698PubMedCrossRefGoogle Scholar
  214. Volleth M (2013) Of bats and molecules: chromosomal characters for judging phylogenetic relationships. In: Adams RA, Pedersen SC (eds) Bat Evolution, Ecology, and Conservation, Springer, New York, pp 129–146CrossRefGoogle Scholar
  215. Volleth M, Loidl J, Mayer F, Yong HS, Müller S, Heller KG (2015) Surprising genetic diversity in Rhinolophus luctus (Chiroptera: Rhinolophidae) from peninsular Malaysia: description of a new species based on genetic and morphological characters. Acta Chiropt 17(1): 1–20CrossRefGoogle Scholar
  216. Wesselmann HB (1984) The Omo Micromammals. Systematics and Paleoecology of Early Man Sites from Ethiopia. Karger, New YorkGoogle Scholar
  217. Wetterer AL, Rockman MV, Simmons NB (2000) Phylogeny of phyllostomid bats (Mammalia: Chiroptera): data from diverse morphological systems, sex chromosomes, and restriction sites. Bull Am Mus Nat Hist 248:1–200CrossRefGoogle Scholar
  218. Wilkinson GS, South JM (2002) Life history, ecology, and longevity in bats. Aging cell 1: 124–131PubMedCrossRefGoogle Scholar
  219. Wilson JJ, Sing KW, Halim MRA, Ramli R, Hashim R, Sofian-Azirun M (2014) Utility of DNA barcoding for rapid and accurate assessment of bat diversity in Malaysia in the absence of formally described species. Genet Mol Res 13(1): 920–925PubMedCrossRefGoogle Scholar
  220. Zhou ZM, Guillén-Servent A, Lim BK, Eger JL, Wang YX, Jiang XL (2009) A new species from southwestern China in the afro-Palearctic lineage of the horseshoe bats (Rhinolophus). J Mammal 90(1): 57–73CrossRefGoogle Scholar
  221. Ziegler R (2003) Bats (Chiroptera, Mammalia) from middle Miocene karstic fissure fillings of Petersbuch near Eichstätt, southern Franconian Alb (Bavaria). Geobios 36(4): 447–490CrossRefGoogle Scholar
  222. Zwickl DJ, Hillis DM (2002) Increased taxon sampling greatly reduces phylogenetic error. Syst Biol 51(4): 588–598PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lucila I. Amador
    • 1
  • R. Leticia Moyers Arévalo
    • 1
  • Francisca C. Almeida
    • 2
  • Santiago A. Catalano
    • 1
    • 3
  • Norberto P. Giannini
    • 1
    • 3
    • 4
    Email author
  1. 1.Unidad Ejecutora Lillo (UEL: FML-CONICET)TucumánArgentina
  2. 2.Genética y Evolución de Buenos Aires (IEGEBA: UBA-CONICET)Instituto de EcologíaBuenos AiresArgentina
  3. 3.Facultad de Ciencias Naturales e Instituto Miguel LilloUniversidad Nacional de Tucumán (UNT)TucumánArgentina
  4. 4.American Museum of Natural History (AMNH)Division of Vertebrate Zoology, Department of MammalogyNYUSA

Personalised recommendations