Journal of Mammalian Evolution

, Volume 25, Issue 1, pp 15–26 | Cite as

The Evolution of Dental Eruption Sequence in Artiodactyls

  • Tesla A. MonsonEmail author
  • Leslea J. Hlusko
Original Paper


The sequence of eruption of the second generation of teeth varies across taxa, is highly functional, and is strongly influenced by genetic effects. We assessed postcanine dental eruption sequence across artiodactyls in order to test two hypotheses: 1) dental eruption sequence is a good phylogenetic character for artiodactyls; and, 2) eruption sequence is adaptive and associated with life history variables like postnatal growth and longevity in artiodactyls (Schultz’s Rule). We examined postcanine eruption sequence in 81 genera (100 species) spanning ten families of Artiodactyla. Our ancestral state reconstruction supports the interpretation that the third molar erupted last in the ancestor of Artiodactyla, and that the fourth premolar erupted after the third molar in the ancestor of Ruminantia. Our results indicate that eruption of the third molar last evolved secondarily in the caprines, likely sometime in the Miocene. Overall, our results support the hypothesis that dental eruption sequence is phylogenetically conserved in artiodactyls. Caprines occupy high elevation habitats, and we hypothesize that evolution of their unique dental eruption sequence may be associated with limited resource availability in high elevation mountain systems and the necessity to process a wide range of vegetation types.


Caprinae Phylogenetic signal Ruminantia Schultz’s rule Life history Longevity High elevation 



The authors thank Chris Conroy (MVZ), Esther Langan (NMNH), Darrin Lunde (NMNH), and John Ososky (NMNH) for access to specimens. We would like to thank Marianne Brasil, Andrew Weitz, and the MVZ community for providing helpful feedback and discussion, and Madeleine Zuercher for assistance with the literature review. The authors would also like to thank Eva Bärmann, one anonymous reviewer, and Editor-in-Chief John R. Wible for their thoughtful comments and suggestions that greatly improved this manuscript. Funding for this study and presentation of results was generously provided by the Museum of Vertebrate Zoology, the J. Desmond Clark Human Evolution Research Center, and the Department of Integrative Biology, UC Berkeley.

Author Contributions

TAM collected the data, conducted the analyses, and wrote the manuscript. LJH supervised the project and edited the manuscript.

Supplementary material

10914_2016_9362_MOESM1_ESM.xlsx (64 kb)
ESM 1 (XLSX 64 kb)
10914_2016_9362_MOESM2_ESM.pdf (92 kb)
ESM 2 (PDF 91 kb)


  1. Arnold C, Matthews LJ, Nunn CL (2010) The 10kTrees website: a new online resource for primate phylogeny. Evol Anthropol 19:114–118CrossRefGoogle Scholar
  2. Bibi F (2013) A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evol Biol 13(1):166–171CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bibi F, Vrba E, Fack F (2012) A new African fossil caprin and a combined molecular and morphological bayesian phylogenetic analysis of caprini (Mammalia: Bovidae). J Evol Biol 25(9):1843–1854CrossRefPubMedGoogle Scholar
  4. Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57(4):717–745CrossRefPubMedGoogle Scholar
  5. Blondel C (2001) The Eocene–Oligocene ungulates from Western Europe and their environment. Palaeogeogr Palaeoclimatol Palaeoecol 168(1):125–139CrossRefGoogle Scholar
  6. Böhme M (2003) The Miocene Climatic Optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeogr Palaeoclimatol Palaeoecol 195(3):389–401Google Scholar
  7. Bover P, Alcover JA (1999) The evolution and ontogeny of the dentition of Myotragus balearicus Bate, 1909 (Artiodactyla, Caprinae): evidence from new fossil data. Biol J Linn Soc 68(3):401–428CrossRefGoogle Scholar
  8. Bowyer R (1997) The role of moose in landscape processes: effects of biogeography, population dynamics and predation. In: Bissonette J (ed) Wildlife and Landscape Ecology: Effects of Sequence and Scale. Springer-Verlag, New York, pp 265–287Google Scholar
  9. Brandborg SM (1950) The life history and ecology of the mountain goat in Idaho and Montana. Dissertation, University of IdahoGoogle Scholar
  10. Brooks DM, Tarifa T, Rojas JM, Vargas RJ, Aranibar H (2001) A preliminary assessment of the mammalian fauna of the eastern Bolivian panhandle. Mammalia 65(4):509–520CrossRefGoogle Scholar
  11. Bryant HN (1990) Implications of the dental eruption sequence in Barbourofelis (Carnivora, Nimravidae) for the function of upper canines and the duration of parental care in sabretoothed carnivores. J Zool 222(4):585–590CrossRefGoogle Scholar
  12. Buzan EV, Bryja J, Zemanová B, Kryštufek B (2013) Population genetics of chamois in the contact zone between the Alps and the Dinaric Mountains: uncovering the role of habitat fragmentation and past management. Conserv Genet 14(2):401–412CrossRefGoogle Scholar
  13. Byrd KE (1981) Sequences of dental ontogeny and callitrichid taxonomy. Primates 22(1):103–118CrossRefGoogle Scholar
  14. Coddington JA (1988) Cladistic tests of adaptational hypotheses. Cladistics 4(1):3–22CrossRefGoogle Scholar
  15. Donoghue MJ (1989) Phylogenies and the analysis of evolutionary sequences, with examples from seed plants. Evolution 43(6):1137–1156CrossRefPubMedGoogle Scholar
  16. Erfurt J, Métais G (2007) Endemic European Paleogene artiodactyls. In: Prothero DR, Foss SE (eds) The Evolution of Artiodactyls. Johns Hopkins University Press, Baltimore, pp 59–84Google Scholar
  17. Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15CrossRefGoogle Scholar
  18. Fernández MH, Vrba ES (2005) A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev 80(2):269–302CrossRefGoogle Scholar
  19. Fortelius M (1985) Ungulate cheek teeth: developmental, functional, and evolutionary interrelations. Acta Zoologica Fennica 180:1–76Google Scholar
  20. Ge RL, Cai Q, Shen YY, San A, Lan M, Zhang Y, Yi X, Chen Y, Yang L, Huang Y, He R, Hui Y, Hao M, Li Y, Wang B, Ou X, Xu J, Zhang Y, Wu K, Geng C, Zhou W, Zhou T, Irwin D, Yang Y, Ying L, Bao H, Kim J, Larkin D, Ma J, Lewin H, Xing J, Platt II R, Ray D, Auvil L, Capitanu B, Zhang X, Zhang G, Murphy R, Wang J, Zhang Y, Wang J (2013) Draft genome sequence of the Tibetan antelope. Nat Commun 4:1–7CrossRefGoogle Scholar
  21. Geisler JH, Theodor JM, Uhen MD, Foss SE (2007) Phylogenetic relationships of cetaceans to terrestrial artiodactyls. In: Prothero DR, Foss S (eds) The Evolution of Artiodactyls. John Hopkins University Press, Baltimore, pp 19–31Google Scholar
  22. Gentry AW (2000) The ruminant radiation. In: Vrba ES, Schaller GB (eds) Antelopes, Deer, and Relatives. Yale University Press, New Haven, pp 11–25Google Scholar
  23. Gentry AW, Heizmann EPJ (1996) Miocene ruminants of the central and eastern Tethys and Paratethys. In: Bernor R, Fahlbusch V, Mittmann H (eds) The Evolution of Western Eurasian Neogene Mammal Faunas. Columbia University Press, New York, pp 378–391Google Scholar
  24. Green MJB (1987) Scent-marking in the Himalayan musk deer (Moschus chrysogaster). J Zool 1:721–737CrossRefGoogle Scholar
  25. Grzimek B (1990) Grzimek’s animal Life Encyclopedia: Mammals I-IV. McGraw-Hill Publishing Company, New YorkGoogle Scholar
  26. Hassanin A, Douzery EJ (1999) The tribal radiation of the family Bovidae (Artiodactyla) and the evolution of the mitochondrial cytochrome b gene. Mol Phylogenet Evol 13(2): 227–243CrossRefPubMedGoogle Scholar
  27. Hassanin A, Pasquet E, Vigne JD (1998) Molecular systematics of the subfamily Caprinae (Artiodactyla, Bovidae) as determined from cytochrome b sequences. J Mammal Evol 5(3):217–236CrossRefGoogle Scholar
  28. Hassanin, A, Delsuc F, Ropiquet A, Hammer C, van Vuuren BJ, Matthee C, Ruiz-Garcia M, Catzeflis F, Areskoug V, Nguyen TT, Couloux A (2012) Sequence and timing of diversification of Cetartiodactyla (Mammalia, Laurasiatheria), as revealed by a comprehensive analysis of mitochondrial genomes. C R Biol 335(1):32–50CrossRefPubMedGoogle Scholar
  29. Hillson S (2005) Teeth. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  30. Hlusko LJ, Sage RD, Mahaney MC (2011) Modularity in the mammalian dentition: mice and monkeys share a common dental genetic architecture. J Exp Zool B Mol Dev Evol 316(1):21–49CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hogue AS, Ravosa MJ (2001) Transverse masticatory movements, occlusal orientation, and symphyseal fusion in selenodont artiodactyls. J Morphol 249(3):221–241CrossRefPubMedGoogle Scholar
  32. Janis CM (1989) A climatic explanation for patterns of evolutionary diversity in ungulate mammals. Palaeontology 32(3):463–481Google Scholar
  33. Janis CM (1995) Correlations between craniodental morphology and feeding behavior in ungulates: reciprocal illumination between living and fossil taxa. In: Thomason J (ed) Functional Morphology in Vertebrate Paleontology. Cambridge University Press, New York, pp 76–98Google Scholar
  34. Järvinen E, Tummers M, Thesleff I (2009) The role of the dental lamina in mammalian tooth replacement. J Exp Zool B Mol Dev Evol 312(4):281–291CrossRefGoogle Scholar
  35. Jordana X, Köhler M (2011) Enamel microstructure in the fossil bovid Myotragus balearicus (Majorca, Spain): implications for life-history evolution of dwarf mammals in insular ecosystems. Palaeogeogr Palaeoclimatol Palaeoecol 300(1):59–66Google Scholar
  36. Jordana X, Marín-Moratalla N, Moncunill-Solé B, Bover P, Alcover JA, Köhler M (2013) First fossil evidence for the advance of replacement teeth coupled with life history evolution along an anagenetic mammalian lineage. PLoS One 8(7):e70743Google Scholar
  37. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464CrossRefPubMedGoogle Scholar
  38. Kerr GR (1966) The ecology of mountain goats in west central Alberta. Dissertation, University of Alberta (Calgary)Google Scholar
  39. Khan SM, Page S, Ahmad H, Ullah Z, Shaheen H, Ahmad M, Harper DM (2013) Phyto-climatic gradient of vegetation and habitat specificity in the high elevation western Himalayas. Pak J Bot 45:223–230Google Scholar
  40. Köhler M (1987) Boviden des türkischen Miozäns (Känozoikum und Braunkohlen der Türkei). Paleontologia i Evolució 21:133–246Google Scholar
  41. Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392(6679):917–920CrossRefPubMedGoogle Scholar
  42. Lalueza-Fox C, Castresana J, Sampietro L, Marquès-Bonet T, Alcover JA, Bertranpetit J (2005) Molecular dating of caprines using ancient DNA sequences of Myotragus balearicus, an extinct endemic Balearic mammal. BMC Evol Biol 5:70–81CrossRefPubMedPubMedCentralGoogle Scholar
  43. Leigh SR, Setchell JM, Charpentier M, Knapp LA, Wickings EJ (2008) Canine tooth size and fitness in male mandrills (Mandrillus sphinx). J Hum Evol 55(1):75–85CrossRefPubMedGoogle Scholar
  44. Leslie DM Jr (2010) Przewalskium albirostre (Artiodactyla: Cervidae). Mammal Species 42(1):7–18CrossRefGoogle Scholar
  45. Macho GA, Berner ME (1993) Enamel thickness of human maxillary molars reconsidered. Am J Phys Anthropol 92(2):189–200Google Scholar
  46. Maddison WP, Maddison DR (2015) Mesquite: a modular system for evolutionary analysis (Version 3.04).
  47. Matthee CA, Burzlaff JD, Taylor JF, Davis SK (2001) Mining the mammalian genome for artiodactyl systematics. Syst Biol 50(3):367–390CrossRefPubMedGoogle Scholar
  48. McKenna MC, Bell SK (1997) Classification of Mammals above the Species Level. Columbia University Press, New YorkGoogle Scholar
  49. Meredith R, Janečka J, Gatesy J, Ryder O, Fisher C, Teeling E, Goodbla A, Eizirik E, Simão T, Stadler T, Rabosky D, Honeycutt R, Flynn J, Ingram C, Steiner C, Williams T, Robinson T, Burk-Herrick A, Westerman M, Ayoub N, Springer M, Murphy W (2011) Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334(6055):521–524Google Scholar
  50. Métais G, Vislobokova N (2007) Basal ruminants. In: Prothero DR, Foss S (eds) The Evolution of Artiodactyls. John Hopkins University Press, Baltimore, pp 189–212Google Scholar
  51. Molvar E, Bowyer R, Van Ballenberghe V (1993) Moose herbivory, browse quality and nutrient cycling in an Alaskan tree line community. Oecologia 94:472–479CrossRefPubMedGoogle Scholar
  52. Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409(6820):614–618.CrossRefPubMedGoogle Scholar
  53. Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W (2015) The caper package: comparative analysis of phylogenetics and evolution in R. R package version 5(2)Google Scholar
  54. Osborn JW, Crompton AW (1973) The evolution of mammalian from reptilian dentitions. Breviora 399:1–18Google Scholar
  55. Owen-Smith N, Fryxell JM, Merrill EH (2010) Foraging theory upscaled: the behavioural ecology of herbivore movement. Phil Trans R Soc Lond B Biol Sci 365(1550):2267–2278CrossRefGoogle Scholar
  56. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20(2):289–290CrossRefPubMedGoogle Scholar
  57. Pfretzschner HU (1992) Enamel microstructure and hypsodonty in large mammals. In: Smith P, Tchernov E (eds) Structure, function and evolution of teeth. Freund Publishing House, London, pp 147–162Google Scholar
  58. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna,
  59. Revell LJ, Harmon LJ, Collar DC (2008) Phylogenetic signal, evolutionary process, and rate. Syst Biol 57(4):591–601CrossRefPubMedGoogle Scholar
  60. Ricklefs RE, Starck JM (1996) Applications of phylogenetically independent contrasts: a mixed progress report. Oikos 77(1):167–172CrossRefGoogle Scholar
  61. Ropiquet A, Hassanin A (2005) Molecular evidence for the polyphyly of the genus Hemitragus (Mammalia, Bovidae). Mol Phylogenet Evol 36(1):154–168.CrossRefPubMedGoogle Scholar
  62. Ropiquet A, Hassanin A (2006) Hybrid origin of the Pliocene ancestor of wild goats. Mol Phylogenet Evol 41(2):395–404CrossRefPubMedGoogle Scholar
  63. Schultz AH (1935) Eruption and decay of the permanent teeth in primates. Am J Phys Anthropol 19(1):489–581CrossRefGoogle Scholar
  64. Schultz AH (1956) Postembryonic age changes. In: Hofer H, Schultz AH, Starck D (eds) Primatologia. Karger, Basel, pp 887–964Google Scholar
  65. Schultz AH (1960) Age changes in primates and their modification in man. In: Tanner JM (ed) Human Growth vol III. Pergamon Press, Oxford, pp 1–20Google Scholar
  66. Schwartz JH (1974) Dental development and eruption in the prosimians and its bearing on their evolution. Dissertation, Columbia UniversityGoogle Scholar
  67. Shafer A, Hall J (2010) Placing the mountain goat: a total evidence approach to testing alternative hypotheses. Mol Phylogenet Evol 55(1):18–25CrossRefPubMedGoogle Scholar
  68. Shaheen H, Shinwari ZK (2012) Phyto diversity and endemic richness of Karambar Lake vegetation from Chitral, Hindukush-Himalayas. Pak J Bot 44(1):17–21Google Scholar
  69. Smith BH (1994) Sequence of emergence of the permanent teeth in Macaca, Pan, Homo, and Australopithecus: its evolutionary significance. Am J Hum Biol 6:61–76CrossRefPubMedGoogle Scholar
  70. Smith BH (2000) ‘Schultz’s rule’ and the evolution of tooth emergence and replacement patterns inprimates and ungulates. In: Teaford MF, Smith MM, Ferguson MW (eds) Development, function and evolution of teeth. Cambridge University Press, Cambridge, pp 212–227Google Scholar
  71. Spaulding M, O’Leary MA, Gatesy J (2009) Relationships of Cetacea (Artiodactyla) among mammals: increased taxon sampling alters interpretations of key fossils and character evolution. PLoS One 4(9):e7062Google Scholar
  72. Strömberg CA (2011) Evolution of grasses and grassland ecosystems. Annu Rev Earth Planet Sci 39:517–544CrossRefGoogle Scholar
  73. Sudre J (1974) D’importants restes de Diplobune minor Filhol à Itardies (Quercy). Palaeovertebrata 6:47–54Google Scholar
  74. Suri L, Gagari E, Vastardis H (2004) Delayed tooth eruption: pathogenesis, diagnosis, and treatment. Am J Orthod Dentofacial Orthop 126(4):432–445CrossRefPubMedGoogle Scholar
  75. Tacutu R, Craig T, Budovsky A, Wuttke D, Lehmann G, Taranukha D, Costa J, Fraifeld VE, de Magalhaes JP (2013) Human ageing genomic resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res 41(D1):D1027-D1033CrossRefPubMedGoogle Scholar
  76. Tattersall I, Schwartz JH (1974) Craniodental morphology and the systematics of the Malagasy lemurs (Primates, Prosimii). Anthropol Pap Am Mus Nat Hist 52:139–192Google Scholar
  77. Theodor JM, Erfurt J, Métais G (2007) The earliest artiodactyls. In: Prothero DR, Foss S (eds) The Evolution of Artiodactyls. John Hopkins University Press, Baltimore, pp 32–58Google Scholar
  78. Tranquillini W (1964) The physiology of plants at high altitudes. Annu Rev Plant Biol 15(1):345–362CrossRefGoogle Scholar
  79. Tsujikawa H (2005) The updated late Miocene large mammal fauna from Samburu Hills, northern Kenya. Afr Study Monogr Suppl 32:1–50Google Scholar
  80. Vázquez GJA, Givnish TJ (1998) Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlan. J Ecol 86(6):999–1020CrossRefGoogle Scholar
  81. Veitschegger K, Sánchez-Villagra MR (2016) Tooth eruption sequences in cervids and the effect of morphology, life history, and phylogeny. J Mammal Evol 23:251–263CrossRefGoogle Scholar
  82. Vrba ES, Schaller GB (2000a) Introduction. In: Vrba ES, Schaller GB (eds) Antelopes, Deer, and Relatives. Yale University Press, New Haven, pp 1–10Google Scholar
  83. Vrba ES, Schaller GB (2000b) Phylogeny of bovidae based on behavior, glands, skulls and postcrania. In: Vrba ES, Schaller GB (eds) Antelopes, Deer, and Relatives. Yale University Press, New Haven, pp 203–222Google Scholar
  84. Wise GE, Frazier-Bowers S, D’souza RN (2002) Cellular, molecular, and genetic determinants of tooth eruption. Crit Rev Oral Biol Med 13(4):323–335CrossRefPubMedGoogle Scholar
  85. Wolfe JA (1985) Distribution of major vegetational types during the tertiary. In: Sundquist ET, Broecker WS (eds) The Carbon Cycle and Atmospheric CO: Natural Variations Archean to Present. American Geophysical Union, Washington, D.C., pp 357–375Google Scholar
  86. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517):686–693CrossRefPubMedGoogle Scholar
  87. Zhou L, Su YC, Thomas DC, Saunders RM (2012) ‘Out-of-Africa’ dispersal of tropical floras during the Miocene climatic optimum: evidence from Uvaria (Annonaceae). J Biogeogr 39(2):322–335CrossRefGoogle Scholar
  88. Zhou X, Xu S, Yang Y, Zhou K, Yang G (2011) Phylogenomic analyses and improved resolution of Cetartiodactyla. Mol Phylogenet Evol 61(2):255–264CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Integrative BiologyBerkeleyUSA

Personalised recommendations