Skip to main content

Advertisement

Log in

Systematic Studies of the Genus Aegialomys Weksler et al., 2006 (Rodentia: Cricetidae: Sigmodontinae): Geographic Variation, Species Delimitation, and Biogeography

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Aegialomys occurs in open habitats west of the Ecuadorean and Peruvian Andes, including the Galapagos Archipelago. This genus currently includes two species, A. galapagoensis and A. xanthaeolus. We studied patterns of geographic variation to characterize the morphologic and morphometric variation and recognize diagnosable clusters of samples. Employing this evidence, within a phylogenetic framework employing morphological, molecular, and concatenated matrices, we diagnose monophyletic lineages and assign the appropriate names to species–group taxa. Qualitatively, we noted geographic variation in some characters, and quantitatively there is a pronounced increase in cranial dimensions along the north–south distribution axis, revealing the existence of four distinct clusters: North, South, Extreme South, and Galapagos. These results, along with the phylogenetic relationships, allowed us to hypothesize that Aegialomys exhibits four monophyletic species that we call: Aegialomys galapagoensis, restricted to the Galapagos Archipelago; Aegialomys xanthaeolus, distributed from Ecuador to northern Peru; Aegialomys baroni, ocurring in Central Perú; and Aegialomys ica, distributed in southern Peru. Our distributional data suggest that species discontinuities are associated with some well-known barriers in the western portion of South America. Through the Andes and trans–Andean area, there are some geographic features or areas, the Huancabamba Depression, that historically played a key role as barriers to plant and animal dispersion or as a boundaries to species distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27.
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  • Allen JA (1892) On a small collection of mammals from the Galapagos Islands, collected by Dr. G. Baur. Bull Am Mus Nat Hist 4:47–50

    Google Scholar 

  • Allen JA (1897) On a small collection of mammals from Peru, with descriptions of new species. Bull Am Mus Nat Hist 9:115–119

    Google Scholar 

  • Amman BR, Hanson JD, Longhofer LK, Hoofer SR, Bradley RD (2006) Intron 2 of the alcohol dehydrogenase gene (Adh1–I2): a nuclear DNA marker for mammalian systematics. Occas Pap Mus Texas Tech Univ 256: 1–16

    Google Scholar 

  • Anderson S, Yates TL (2000) A new genus of phyllotine rodent from Bolivia. J Mammal 81:18–36

    Article  Google Scholar 

  • Cabrera A (1961) Catalogo de los mamiferos de America del Sur. Rev Mus Argen Cienc Nat Bernardino Rivadavia 4: 309–732

    Google Scholar 

  • Cadle JE (1991) Systematics of the lizards of the genus Stenocercus (Iguania: Tropiduridae) from northern Peru: new species and comments on the relationships and distribution patterns. Proc Acad Nat Sci Philadelphia 143: 1–96

    Google Scholar 

  • Carleton MD (1980) Phylogenetic relationships in neotomine–peromyscine rodents (Muroidea) and a reappraisal of the dichotomy within new world cricetinae. Misc Publ Mus Zool Univ Michigan 157:1–146

    Google Scholar 

  • Carleton MD, Musser GG (1989) Systematic studies of oryzomyine rodents (Muridae, Sigmodontinae): a synopsis of Microryzomys. Bull Am Mus Nat Hist 191: 1–83

    Google Scholar 

  • Clark D (1980) Population ecology of an endemic Neotropical island rodent: Oryzomys bauri of Santa Fe Island, Galapagos, Ecuador. J Anim Ecol 49: 185–198

    Article  Google Scholar 

  • Cosacov A, Sérsic AN, Sosa V, De–Nova, JA, Nylinder, S, Cocucci, AA (2009) New insights into the phylogenetic relationships, character evolution, and phytogeographic patterns of Calceolaria (Calceolariaceae). Am J Bot 96: 2240–2255

    Article  PubMed  Google Scholar 

  • Cracraft J (1983) Species concepts and speciation analysis. In: Johnston RF (ed) Current Ornithology. Springer, New York, pp 159–187

  • Cracraft J (1985) Historical biogeography and patterns of differentiation within the south American avifauna: areas of endemism. Ornithol Monogr 36: 49–84

    Article  Google Scholar 

  • Cracraft J (1989) Species as entities of biological theory. In: Ruse M (ed) What the Philosophy of Biology Is. Kluwer Academic Publisher, Dordrecht, pp 31–52

  • Cromwell T, Montgomery RB, Stroup ED (1954) Equatorial undercurrent in the Pacific Ocean revealed by new methods. Science 119: 648–649

    Article  CAS  PubMed  Google Scholar 

  • Cronquist A (1978) Once again, what is a species? In: Romberger JA (ed) Biosystematics in Agriculture. Allenheld, Osman & Company, Montclair, pp 3–20

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Meth 9: 772

    Article  CAS  Google Scholar 

  • Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 87: 407–415

    Article  Google Scholar 

  • de Queiroz K (1998) The general lineage concept of species, species criteria, and the process of speciation: a conceptual unification and terminological recommendations. In: Howard DJ, Berlocher SH (eds) Endless Forms. Species and Speciation. Oxford University Press, Oxford, pp 57–75

  • Duellman WE (1979) The herpetofauna of the Andes: patterns of distribution, origin, differentiation, and present communities. In: Duellman WE (ed) The South American Herpetofauna: Its Origin, Evolution, and Dispersal. University of Kansas Natural History Museum, Lawrence, pp 371–459.

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellerman JR (1941) The Families and Genera of Living Rodents, vol. 2. Printed by order of the Trustees of the British Museum, London

  • Endler JA (1977) Geographic Variation, Speciation, and Clines. Princeton University Press, Princeton

  • Eva HD, de Miranda EE, Di Bella CM, Gond V, Huber O, Sgrenzaroli M, Jones S, Coutinho A, Dorado A, Guimarães M, Elvidge C, Achard F, Belward AS, Bartholomé E, Baraldi A, De Grandi G, Vogt P, Fritz S, Hartley A (2002) A vegetation map of South America. Official Publications of the European Communities, Luxembourg

  • Gardner AL, Patton JL (1976) Karyotypic variation in oryzomyine rodents (Cricetidae) with comments on chromosomal evolution in the Neotropical cricetinae complex. Occas Pap Mus Zool Louisiana State Univ 49: 1–48

    Google Scholar 

  • Gilmore RM (1947) Cyclic behavior and economic importance of the rata–muca (Oryzomys) in Peru. J Mammal 28: 231–241

    Article  Google Scholar 

  • Global Gazetteer Version 2.2. (2010) http://www.fallingrain.com/world/index.html. Accessed 16–25 February

  • Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24: 774–786

    Article  Google Scholar 

  • Grehan J (2001) Biogeography and evolution of the Galapagos: integration of the biological and geological evidence. Biol J Linn Soc 74: 267–287

    Article  Google Scholar 

  • Guabloche A, Arana M, Ramirez OE (2002) Diet and gross gastric morphology of Oryzomys xantheolus (Sigmodontinae, Rodentia) in a Peruvian Loma. Mammalia 66: 405–411

    Article  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum–likelihood. Syst Biol 52: 696–704

    Article  PubMed  Google Scholar 

  • Gyldenstolpe N (1932) A manual of Neotropical sigmodont rodents. K Svesnka VetenskAkad Handl Tredje Ser 11: 1–164

    Google Scholar 

  • Hanson JD (2008) Molecular phylogenetics of Oryzomyini: does a multi–gene approach help resolve a systematic conundrum? DPhil Thesis, Texas Tech University

  • Hanson JD, Indorf JL, Swier VJ, Bradley RD (2010) Molecular divergence within the Oryzomys palustris Complex: evidence for multiple species. J Mammal 91:336–347

    Article  Google Scholar 

  • Heller E (1904) Mammals of the Galpagos archipelago, exclusive of the Cetacea. Proc Calif Acad Sci 3: 233–251

    Google Scholar 

  • Hensel R (1872) Beiträge zur Kenntniss der Säugethiere Süd-Brasiliens. Königlichen Akadademie der Wissenschaften, Berlin.

  • Hershkovitz P (1962) Evolution of Neotropical cricetine rodents (Muridae) with special reference to the phyllotine group. Fieldiana Zool 46: 1–524

    Google Scholar 

  • Hershkovitz P (1993) A new central Brazilian genus and species of sigmodontine rodent (Sigmodontinae) transitional between akodonts and oryzomyines, with a discussion of muroid molar morphology and evolution. Fieldiana Zool 75:1–18.

    Google Scholar 

  • Heyer WR, de Sá RO (2011) Variation, systematics, and relationships of the Leptodactylus bolivianus Complex (Amphibia: Anura: Leptodactylidae). Smithson Contr Zool 635: 1–58

    Article  Google Scholar 

  • Honacki JH, Kinman KE, Koeppl JW (1982) Mammal Species of the World: A Taxonomic and Geographic Reference, 1st ed. Allen Press, Lawrence

  • Hooper ET (1957) Dental patterns in mice of the genus Peromyscus. Misc Publ Mus Zool Univ Michigan 99: 1–59

    Google Scholar 

  • Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri FR, Hooghiemstra H, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927–931

    Article  CAS  PubMed  Google Scholar 

  • Hueck K (1972) As florestas da América do Sul. Ecologia, Composição e importancia econômica. Universidade de Brasília & Editora Polígono S. A, São Paulo

  • ICZN (1999) International Code of Zoological Nomenclature, 4th ed. International Trust for Zoological Nomenclature, London

  • Jaksic F, Lima M (2003) Myths and facts on ratadas: bamboo blooms, rainfall peaks and rodent outbreaks in South America. Austral Ecol 28: 227–236

    Article  Google Scholar 

  • Machado LF, Leite YLR, Christoff AU, Giugliano LG (2013) Phylogeny and biogeography of tetralophodont rodents of the tribe Oryzomyini (Cricetidae: Sigmodontinae). Zool Scripta 43: 119–130

    Article  Google Scholar 

  • Mahalanobis PC (1948) Historical note on the D2–statistic. Sankhya 9:237–240

    Google Scholar 

  • Manly BJF (2008) Métodos estatísticos multivariados: uma introdução, 3rd ed. Bookman, Porto Alegre

  • Mantel RM (1967) The detection of disease clustering and a general regression approach. Cancer Res 27: 209–220

    CAS  PubMed  Google Scholar 

  • Mayr E (1977) Populações, espécies e evolução. Companhia Editorial Nacional, EDUSP, São Paulo

    Google Scholar 

  • Moreira JC, Oliveira JA (2011) Evaluating diversification hypotheses in the south American cricetid Thaptomys nigrita (Lichtenstein, 1829) (Rodentia: Sigmodontinae): an appraisal of geographical variation based on different character systems. J Mammal Evol 18:201–214.

    Article  Google Scholar 

  • Morrone JJ (2014) Biogeographical regionalisation of the Neotropical region. Zootaxa 3782: 1–110.

    Article  PubMed  Google Scholar 

  • Musser GG (1968) A systematic study of the Mexican and Guatemalan gray squirrel, Sciurus aureogaster F. Cuvier (Rodentia: Sciuridae). Misc Publ Mus Zool Univ Michigan 137: 1–112

    Google Scholar 

  • Musser GG, Carleton MD (1993) Family Muridae. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference, 2nd ed. Smithsonian Institution Press, Washington, D.C., pp 501–753

  • Musser GG, Carleton MD (2005) Superfamily Muroidea. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference, v. 2., 3rd ed. The Johns Hopkins University Press, Baltimore, pp 894–1531

  • Musser GG, Carleton MD, Brothers EM, Gardner AL (1998) Systematic studies of oryzomyine rodents (Muridae, Sigmodontinae): diagnoses and distributions of species formerly assigned to Oryzomyscapito.” Bull Am Mus Nat Hist 236: 1–376

    Google Scholar 

  • Mutke J, Jacobs R, Meyers K, Henning T, Weigend M (2014) Diversity patterns of selected Andean plant groups correspond to topography and habitat dynamics, not orogeny. Front Genet 5:1–15

    Article  Google Scholar 

  • Nelson GJ, Platnick NI (1981) Systematics and Biogeography: Cladistics and Vicariance. Columbia University Press, New York

  • Nixon KC (2002) WinClada ver. 1.00.08. http://www.cladistics.com/aboutWinc.htm. Accessed 14 May 2012

  • Nixon KC, Wheeler QD (1990) An amplification of the phylogenetic species concept. Cladistics 6:211–223

    Article  Google Scholar 

  • Osgood WH (1929) A new rodent from the Galapagos Islands. Field Mus Nat Hist Publ Zool Ser 17: 21–24

    Google Scholar 

  • Osgood WH (1944) Nine new south American rodents. Field Mus Nat Hist Publ Zool Ser 29: 191–204

    Google Scholar 

  • Padial JM, Castroviejo–Fisher S, Köhler J, Vilà C, Chaparro JC, De la Riva I (2009) Deciphering the products of evolution at the species level: the need for an integrative taxonomy. Zool Scripta 38: 331–447

  • Parada A, Pardiñas UFJ, Salazar–Bravo J, D’Elıa G, Palma RE (2013) Dating an impressive Neotropical radiation: molecular time estimates for the Sigmodontinae (Rodentia) provide insights into its historical biogeography. Mol Phylogenet Evol 66: 960–968

    Article  PubMed  Google Scholar 

  • Parker TA, Schulenberg TS, Graves GR, Braun MJ (1985) The avifauna of the Huancabamba region, northern Peru. Ornithol Monogr 36:169–197

    Article  Google Scholar 

  • Patton JL, Hafner MS (1983) Biosystematics of the native rodents of the Galapagos archipelago, Ecuador. In: Bowman R I, Benson M, Leviton AE (eds) Patterns of Evolution in Galapagos Organisms. American Association for the Advancement Science, San Francisco, pp 539–568

  • Patton JL, Pardiñas UFJ, D’Elía G (2015) Mammals of South America, Vol. 2, Rodents. University of Chicago Press, Chicago

  • Paynter RA Jr (1993) Ornithological gazetteer of Ecuador. Harvard University, Bird Department, Museum of Comparative Zoology, Cambridge

  • Pearson OP (1975) An outbreak of mice in the coastal desert of Peru. Mammalia 39:375–386.

    Article  Google Scholar 

  • Percequillo AR (1998) Sistemática de Oryzomys Baird, 1858 do leste do Brasil (Muroidea, Sigmodontinae). Dissertation, Universidade de São Paulo

  • Percequillo AR (2003) Sistemática de Oryzomys Baird, 1858: definição dos grupos de espécies e revisão do grupo albigularis (Rodentia, Sigmodontinae). Ph.D. thesis, Universidade de São Paulo

  • Percequillo AR (2015) Genus Aegialomys Weksler, Percequillo, and Voss, 2006. In: Patton JL, Pardiñas UFJ, D’Elía G (eds) Mammals of South America, Vol. 2, Rodents. University of Chicago Press, Chicago, pp 926–940

    Google Scholar 

  • Percequillo AR, Hingst-Zaher E, Bonvicino CR (2008) Systematic review of genus Cerradomys Weksler, Percequillo and Voss, 2006 (Rodentia: Cricetidae: Sigmodontinae: Oryzomyini), with description of two new species from eastern Brazil. Am Mus Novitates 3622: 1–46

    Article  Google Scholar 

  • Percequillo AR, Weksler M, Costa LP (2011) A new genus and species of rodent from the Brazilian Atlantic Forest (Rodentia: Cricetidae: Sigmodontinae: Oryzomyini), with comments on oryzomyine biogeography. Zool J Linn Soc 161: 357–390

    Article  Google Scholar 

  • Peters W (1861) Über einige merkwürdige Nagethiere (Spalacomys indicus, Mus tomentosus und Mus squamipes) del Königl. Abhan-dlungen der Königlichen Preussischen Akademie der Wissenschaften zu Berlin 139–156

  • Prado JR, Brennand PGG, Godoy LP, Libardi GS, de Abreu-Júnior EF, Roth PRO, Chiquito EA, Percequillo, AR (2015). Species richness and areas of endemism of oryzomyine rodents (Cricetidae, Sigmodontinae) in South America: an NDM/VNDM approach. J Biogeogr 42: 540–551

  • Prado JR, Percequillo AR (2011) Ontogenetic and sexual variation in cranial characters of Aegialomys xanthaeolus (Thomas, 1894) (Cricetidae: Sigmodontinae) from Ecuador and Peru. Pap Avuls Zool 51:155–177

    Article  Google Scholar 

  • Prado JR, Percequillo AR (2013) On the geographic distribution of the genera of tribe Oryzomyini on South America, with some comments on the patterns of diversity and Reig’s areas of original differentiation. Arq Zool 44: 1–120

    Article  Google Scholar 

  • Prado JR, Percequillo AR (2016) Systematic studies of the genus Aegialomys Weksler, Percequillo and Voss, 2006 (Rodentia: Cricetidae: Sigmodontinae): annotated catalogue of the types of the species-group taxa. Zootaxa 4144 (4): 477–498

    Article  PubMed  Google Scholar 

  • Rambaut A (2012) FigTree v1.4. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 11 December 2014

  • Rambaut A, Drummond AJ (2007) Tracer v1.5. http://beast.bio.ed.ac.uk/Tracer. Accessed 11 December 2014

  • Reig OA (1977) A proposed unified nomenclature for the enamelled components of the molar teeth of the Cricetidae (Rodentia) (subscription only). J Zool 181: 227–241

    Article  Google Scholar 

  • Richter M, Diertl KH, Emck P, Peters T, Beck E (2009) Reasons for an outstanding plant diversity in the tropical Andes of southern Ecuador. Landscape Online 12: 1–35.

    Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61: 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi JR (2007) Parque Nacional Podocarpus. In: ECOLAP and MAE (eds) Guía del Patrimonio de Áreas Naturales Protegidas del Ecuador. ECOFUND, FAN, DarwinNet, IGM, Quito, pp 186–192

    Google Scholar 

  • Simpson BB (1979) Quaternary biogeography of the high montane regions of South America. In: Duellman WE (ed) The South American Herpetofauna: Its Origin, Evolution and Dispersal. University of Kansas Natural History Museum, Lawrence, pp 157–188

  • Simpson GG, Roe A, Lewontin RC (2003) Quantitative Zoology. Dover Publications, New York.

  • Sneath PHA, Sokal RR (1973) Numerical Taxonomy, the Principles and Practice of Numerical Classification. W.H. Freeman, San Francisco

  • Sokal RR, Sneath PHA (1963) Principles of Numerical Taxonomy. W.H. Freeman, San Francisco

  • Stamatakis A (2006) RAxML–VI–HPC: maximum likelihood–based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22: 2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stephens L, Traylor MA Jr (1983) Ornithological gazetteer of Peru. Harvard University, Bird Department, Museum of Comparative Zoology, Cambridge

  • Steppan SJ, Adkins RM, Anderson J (2004) Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol 53: 533–553.

    Article  PubMed  Google Scholar 

  • Tate GHH (1932) The taxonomic history of the south and central American cricetid rodents of the genus Oryzomys. Part 1: subgenus Oryzomys. Am Mus Novitates 579: 1–18

    Google Scholar 

  • Thomas O (1894) Descriptions of some new Neotropical Muridae. Ann Mag Nat Hist (ser 6) 14: 346–366

  • Thorpe RS (1987) Geographic variation: a synthesis of cause, data, pattern and congruence in relation to subspecies, multivariate analysis and phylogenesis. Boll Zool 54: 3–11

    Article  Google Scholar 

  • USBGN, NIMA. (2010) http://gnswww.nga.mil/geonames/GNS/index.jsp. Accessed 16–25 February

  • Vanzolini PE (1970) Zoologia sistemática, geografia e a origem das espécies. Serie Teses Monogr Inst Geogr USP 3: 1–56

    Google Scholar 

  • Vanzolini PE, Williams HH (1970) South American anoles: the geographic differentiation and evolution of the Anolis chrysolepis species group (Sauria, Iguanidae). Arq Zool 19: 1–298

    Article  Google Scholar 

  • Vidal PJ (1900) Geografía del Perú: las ocho regiones naturales del Perú. Editorial Universo, Lima

  • Vivo M, Carmignotto AP (2012) Variação ou erro na morfometria dos mamíferos? Medidas corporais externas, cranianas e o emprego do coeficiente de variação em análises estatísticas exploratórias. In: Freitas TRO, Vieira E, Pacheco S, Christoff A (eds) Mamíferos do Brasil: genética, sistemática, ecologia e conservação. Sociedade Brasileira de Mastozoologia, Porto Alegre, pp 90–95

    Google Scholar 

  • Voss RS (1988) Systematics and ecology of ichthyomyine rodents (Muroidea): patterns of morphological evolution in a small adaptive radiation. Bull Am Mus Nat Hist 188: 259–493

    Google Scholar 

  • Voss RS (1991) An introduction to the Neotropical muroid rodent genus Zygodontomys. Bull Am Mus Nat Hist 210:1–113

    Google Scholar 

  • Voss RS, Jansa SA (2003) Phylogenetic studies on didelphid marsupials II. Nonmolecular data and new IRBP sequences: separate and combined analyses of didelphine relationships with denser taxon sampling. Bull Am Mus Nat Hist 276: 1–82

    Article  Google Scholar 

  • Voss RS, Jansa SA (2009). Phylogenetic relationships and classification of didelphid marsupials, an extant radiation of new world metatherian mammals. Bull Am Mus Nat Hist 322: 1–177

    Article  Google Scholar 

  • Vuilleumier BS (1971) Pleistocene changes in the fauna and flora of South America. Science 173: 771–780

  • Vuilleumier F (1969) Pleistocene speciation in birds living in the high Andes. Nature 223: 1179–1180

    Article  Google Scholar 

  • Wahlert JH (1985) Cranial foramina of rodents. In: Luckett WP, Hartenberger JL (eds) Evolutionary Relationships among Rodents: A Multidisciplinary Analysis. Plenum Press, New York, pp 311–332

  • Waterhouse GR (1839) The Zoology of the Voyage of H.M.S. Beagle, under the Command of Captain Fitzroy, R.N., during the Years 1832 to 1836. Part II: Mammalia. Smith, Elder & Co, London

  • Weksler M (2003) Phylogeny of Neotropical oryzomyine rodents (Muridae: Sigmodontinae) based on the nuclear IRBP exon. Mol Phylogenet Evol 29: 331–349

    Article  CAS  PubMed  Google Scholar 

  • Weksler M (2006) Phylogenetic relationships of the oryzomine rodents (Muroidea: Sigmodontinae): separate and combined analyses of morphological and molecular data. Bull Am Mus Nat Hist 296: 1–149

    Article  Google Scholar 

  • Weksler M, Percequillo AR (2011) Key to the genera of the tribe Oryzomyini (Rodentia: Cricetidae: Sigmodontinae). Mastozool Neotrop 18:281–292

    Google Scholar 

  • Weksler M, Percequillo AR, Voss RS (2006) Ten new genera of oryzomyine rodents (Cricetidae: Sigmodontinae). Am Mus Novitates 3537:1–29

    Article  Google Scholar 

  • Wiens JJ (2007) Species delimitation: New approaches for discovering diversity. Syst Bio 56: 875–878

  • Wolf T (1975) Geografía y geología del Ecuador. Editorial Casa de la Cultura Ecuatoriana, Quito

  • Zapata F, Jiménez I (2012) Species delimitation: inferring gaps in morphology across geography. Syst Biol 61: 179–194

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We sincerely thank the curators that generously granted us access to the specimens (both vouchers and tissue samples) under their care: AMNH (Robert S. Voss), BMNH (Roberto P. Miguez), FMNH (Bruce Patterson), LSUMZ (Frederick H. Sheldon), MUSM (Victor Pacheco), MVZ (James L. Patton and Chris Conroy), MZUSP (Mario de Vivo), UMMZ (Philip Myers), and USNM (Michael Carleton). We also are deeply indebted to Alfredo Langguth and Yuri Leite who carefully read earlier versions of the manuscript; to Ulyses Pardiñas, John Wible, and one anonymous reviewer who also provided insightful comments on the text; to J.L. Patton who thoroughly reviewed the English language; they all consistently contributed to its improvement, and any problems that may have persisted are, of course, our own. A.R. Percequillo would like to thanks Mario de Vivo, for his dedicated and uninterested support on his earlier mammalogist carreer: Mario’s profound knowledge of mammals and their history is a continuous source of inspiration. We also would like to thanks to G.G. Musser for his remarkable papers on rodents, mainly those on the geographic variation of rodents, especially those on the Central American squirrels and oryzomyine rodents (both cited here), that are a fundamental literature for those interested in taxonomy and systematics of such a complex group; in these contributions, he transforms intractable morphologic variation and nomenclatural problems into intelligible and clear information, allowing readers to precisely identify his species and understand their history. J.L. Patton also merits special acknowledgements for his pioneering work with the species of this genus: he paved the way for us and other students interested in these taxa. J.R. Prado received financial support from Fundação de Amparo à Pesquisa do Estado de São Paulo as an MSc Scholarship (FAPESP 2009/03547–5). A.R. Percequillo’s research was sponsored by American Museum of Natural History, The Field Museum, Smithsonian Institution, and Museum of Comparative Zoology, as well as fellowships received from Conselho Nacional de Pesquisa e Desenvolvimento (CNPq), and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 09/16009–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Reis Percequillo.

Ethics declarations

Conflict of Interest

We hereby declare that there is no potential conflict of interest between authors.

Electronic supplementary material

Online Resource 1

(PDF 110 kb)

Online Resource 2

(PDF 54 kb)

Online Resource 3

(PDF 88 kb)

Online Resource 4

Tree resulting from the parsimony analysis of the morphological dataset, with 23 steps (CI= 0.91, RI=0.77). (GIF 16 kb)

High resolution image (TIFF 716 kb)

Online Resource 5

Tree resulting from Bayesian analysis of the CytB dataset. Support statistics from a parsimony bootstrap analysis, a maximum–likelihood bootstrap analysis, and a Bayesian analysis are indicated at each resolved node. For the parsimony and maximum–likelihood analyses (MP and ML, respectively), white indicates bootstrap frequencies ≤50%, gray indicates bootstrap frequencies between 50% and 75%, and black indicates bootstrap frequencies ≥75%. For the Bayesian analysis (BPP), white indicates posterior probabilities, 0.95, whereas black indicates posterior probabilities ≥0.95 (GIF 117 kb)

High resolution image (TIFF 9696 kb)

Online Resource 6

(PDF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

do Prado, J.R., Percequillo, A.R. Systematic Studies of the Genus Aegialomys Weksler et al., 2006 (Rodentia: Cricetidae: Sigmodontinae): Geographic Variation, Species Delimitation, and Biogeography. J Mammal Evol 25, 71–118 (2018). https://doi.org/10.1007/s10914-016-9360-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-016-9360-y

Keywords

Navigation