Advertisement

Journal of Mammalian Evolution

, Volume 24, Issue 2, pp 127–146 | Cite as

The Kuehneotheriidae (Mammaliaformes) from Saint-Nicolas-de-Port (Upper Triassic, France): a Systematic Review

  • Maxime DebuysschereEmail author
Original Paper

Abstract

The origin and first diversification of mammals in the Upper Triassic remain poorly understood, in part because many fossil discoveries are not fully studied, and in part because the material remains poor. The Saint-Nicolas-de-Port quarry (Rhaetian, France) is the second most important locality that yielded remains of Kuehneotherium, after the fissure-fillings of the Glamorganshire (Lower Jurassic, Wales). This study identifies one new species of Kuehneotherium, K. stanislavi, sp. nov., and a new genus of Kuehneotheriidae, Fluctuodon necmergor, gen. et sp. nov. For these two new species, lower and upper molars are described and the first reconstructions of the postcanine row are proposed. Comparisons with material of Kuehneotherium from other Upper Triassic sites (Syren in Luxembourg, Emborough in England, and Jameson Land in Greenland) suggest two distinct Upper Triassic specific kuehneotheriid assemblages, respectively, west and east of the London Brabant Massif. They also suggest that the extinction event during the Triassic/Jurassic transition did not have a great impact on Kuehneotherium.

Keywords

Teeth Rhaetian Lower Jurassic Europe Triassic/Jurassic transition Paleobiogeography 

Notes

Acknowledgments

This study is based on the author’s PhD thesis work at the MNHN (doctoral school ‘ED 227, Sciences de la Nature et de l’Homme’), supervised by Emmanuel Gheerbrant and Ronan Allain. The author thanks the following persons: Pamela Gill for sharing her knowledge and her raw data on material of Kuehneotherium from Wales; Jerry Hooker and Pip Brewer for their help during a visit to the NHMUK; Pascal Godefroit for his help during a visit to the RBINS; Jocelyn Falconnet for sharing his knowledge of the ICZN; Sophie Fernandez for helping in the preparation of the drawings; Miguel Garcia Sanz for his work on the AST-RX platform ‘Plate-forme d‘accès scientifique à la tomographie à rayons X’ supervised by the UMS 2700 ‘outils et méthodes de la systématique intégrative CNRS-MNHN,’ as well as Florent Goussard and Damien Germain for their help in the processing of 3D images; and Ronan Allain, Emmanuel Gheerbrant, Pamela Gill, Alexander Averianov, John Wible, and an anonymous reviewer for their help in the revision of the manuscript. This study has been supported by the ATM ‘Biodiversité actuelle et fossile. Crises, stress, restaurations et panchronisme: le message systématique,’ the ATM ‘Emergences,’ and by the UMR 7207 ‘Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements.’

Supplementary material

10914_2016_9335_MOESM1_ESM.pdf (111 kb)
ESM 1 (PDF 111 kb)

References

  1. Averianov AO (2002) Early Cretaceous “symmetrodont” mammal Gobiotheriodon from Mongolia and the classification of “Symmetrodonta.” Acta Palaeontol Pol 47: 705–716Google Scholar
  2. Butler PM (1997) An alternative hypothesis on the origin of docodont molar teeth. J Vertebr Paleontol 17: 435–439CrossRefGoogle Scholar
  3. Clemens WA (2011) New morganucodontans from an Early Jurassic fissure filling in Wales (United Kingdom). Palaeontology 54: 1139–1156CrossRefGoogle Scholar
  4. Clemens WA, Mills JRE (1971) Review of Peramus tenuirostris Owen (Eupantotheria, Mammalia). Bull Brit Mus (Nat Hist) Geol 20: 89–113Google Scholar
  5. Crompton AW (1971) The origin of the tribosphenic molar. In: Kermack DM, Kermack KA (eds) Early Mammals. Zool J Linn Soc 50 (Suppl 1): 65–87Google Scholar
  6. Crompton AW (1974) The dentitions and relationships of the southern African mammals, Erythrotherium parringtoni and Megazostrodon rudnerae. Bull Brit Mus (Nat Hist) Geol 24: 397–437Google Scholar
  7. Crompton AW, Jenkins FA Jr (1967) American Jurassic symmetrodonts and Rhaetic "pantotheres." Science 155: 1006–1009CrossRefPubMedGoogle Scholar
  8. Crompton AW, Jenkins FA Jr (1968) Molar occlusion in Late Triassic mammals. Biol Rev 43: 427–458CrossRefPubMedGoogle Scholar
  9. Cuny G (1993) Discovery of mammals in the Upper Triassic of the Jura (France). In: Lucas SG, Morales M (eds) The Nonmarine Triassic. New Mex Mus Nat Hist Sci Bull 3: 95–99Google Scholar
  10. Datta PM (1981) The first Jurassic Mammal from India. Zool J Linn Soc 73: 307–312CrossRefGoogle Scholar
  11. Debuysschere M, Gheerbrant E, Allain R (2015) Earliest known European mammals: a review of the Morganucodonta from Saint-Nicolas-de-Port (Upper Triassic, France). J Syst Palaeontol 13:825–855CrossRefGoogle Scholar
  12. Delsate D (1995) Une nouvelle dent d’Haramiyidae (Thomasia woutersi Butler & MacIntyre 1994, Mammalia, Allotheria) du rhétien d’Habay-la-Vieille (Lorraine belge). Bull Soc Belg Géol 104: 23–34Google Scholar
  13. Fox RC (1985) Upper molar structure in the Late Cretaceous symmetrodont Symmetrodontoides Fox, and a classification of the Symmetrodonta (Mammalia). J Paleontol 59: 21–26Google Scholar
  14. Fraser NC, Walkden GM, Stewart V (1985) The first pre-Rhaetic therian mammal. Nature 314: 161–163CrossRefGoogle Scholar
  15. Freeman E (1979) A Middle Jurassic mammal bed from Oxfordshire. Palaeontology 22: 135–166Google Scholar
  16. Gill PG (1974) Resorption of premolars in the early mammal Kuehneotherium praecursoris. Arch Oral Biol 19: 327–328CrossRefPubMedGoogle Scholar
  17. Gill PG (2004) Kuehneotherium from the Mesozoic fissure fillings of South Wales. PhD thesis, University of Bristol, BristolGoogle Scholar
  18. Gill PG, Purnell MA, Crumpton N, Brown KR, Gostling NJ, Stampanoni M, Rayfield EJ (2014) Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature 512: 303–305CrossRefPubMedGoogle Scholar
  19. Godefroit P, Battail B (1997) Late Triassic cynodonts from Saint-Nicolas-de-Port. Geodiversistas 19: 567–631Google Scholar
  20. Godefroit P, Sigogneau-Russell D (1999) Kuehneotheriids from Saint-Nicolas-de-Port (Late Triassic of France). Geol Belg 2: 181–196Google Scholar
  21. Godefroit P, Cuny G, Delsate D, Roche M (1998) Late Triassic vertebrates from Syren (Luxembourg). N Jahrb Geol Paläontol Abh 210: 305–343Google Scholar
  22. Hahn G, Sigogneau-Russell D, Wouters G (1989) New data on Theroteinidae: their relations with Paulchoffatiidae and Haramiyidae. Geol Palaeontol 23: 205–215Google Scholar
  23. Hopson JA (1997) Is cusp C of the upper molars of Kuehneotherium homologous with the metacone of Peramus and tribosphenic mammals? J Vertebr Paleontol 17: 53AGoogle Scholar
  24. Hopson JA, Crompton AW (1969) Origin of mammals. In: Dobzhansky T, Hecht MK, Steere WC (eds) Evolutionary Biology, Vol 3. Appleton-Century-Crofts, New York, pp 15–72Google Scholar
  25. Hu Y-M, Wang Y-Q, Luo Z-X, Li C-K (1997) A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390: 137–142CrossRefPubMedGoogle Scholar
  26. Jenkins FA Jr, Crompton AW, Downs WR (1983) Mesozoic mammals from Arizona: new evidence on mammalian evolution. Science 222: 1233–1235CrossRefPubMedGoogle Scholar
  27. Jenkins FA Jr, Shubin NH, Amaral WW, Gatesy SM, Schaff CR, Clemmensen LB, Downs WR, Davidson AR, Bonde N, Osbæck F (1994) Late Triassic continental vertebrates and depositional environments of the Fleming Fjord Formation, Jameson Land, East Greenland. Medd Grønl Geosci 32: 3–25Google Scholar
  28. Kermack DM, Kermack KA, Mussett F (1968) The Welsh pantothere Kuehneotherium praecursoris. J Linn Soc (Zool) 47: 407–423Google Scholar
  29. Kermack KA (1967) Molar evolution in Mesozoic mammals. J Dent Res 46: 792–795CrossRefPubMedGoogle Scholar
  30. Kermack KA, Lee AJ, Lees PM, Mussett F (1987) A new docodont from the Forest Marble. Zool J Linn Soc 89: 1–39Google Scholar
  31. Kermack KA, Lees PM, Mussett F (1965) Aegialodon dawsoni, a new trituberculosectorial tooth from the Lower Wealden. Proc R Soc Biol Sci 162: 535–554Google Scholar
  32. Kermack KA, Kermack DM, Mussett F (1956) New Mesozoic mammals from South Wales. Proc Geol Soc Lond 1533: 31–32Google Scholar
  33. Kermack KA, Mussett F (1959a) The first mammals. Discovery 20: 144–151Google Scholar
  34. Kermack KA, Mussett F (1959b) The jaw articulation in Mesozoic mammals. XVth Int Congr Zool, Sect. V: 442–443Google Scholar
  35. Kielan-Jaworowska Z (1992) Interrelationships of Mesozoic mammals. Hist Biol 6: 185–202CrossRefGoogle Scholar
  36. Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the Age of Dinosaurs. Columbia University Press, New YorkCrossRefGoogle Scholar
  37. Koenigswald W von, Anders U, Engels S, Schultz JA, Kullmer O (2013) Jaw movement in fossil mammals: analysis, description and visualization. Paläontol Z 87: 141–159Google Scholar
  38. Kretzoi M (1960) Zur Benennung des ältesten Symmetrodonten. Vertebr Hung 2: 307–309Google Scholar
  39. Kühne WG (1949) On a triconodont tooth of a new pattern from a fissure-filling in South Glamorgan. Proc Zool Soc Lond 119: 345–350CrossRefGoogle Scholar
  40. Kühne WG (1950) A symmetrodont tooth from the Rhaeto-Liassic. Nature 166: 696–697CrossRefPubMedGoogle Scholar
  41. Lopatin AV, Maschenko EN, Averianov AO, Rezvyi AS, Schutschas PP, Leshchinskiy SV (2005) Early Cretaceous mammals from western Siberia: 1. Tinodontidae. Paleontol J 39: 523–534Google Scholar
  42. Luo Z-X, Martin T (2007) Analysis of molar structure and phylogeny of docodont genera. Bull Carnegie Mus Nat Hist 39: 27–47CrossRefGoogle Scholar
  43. Luo Z-X, Chen P, Li G, Chen M (2007) A new eutriconodont mammal and evolutionary development in early mammals. Nature 446:288–293Google Scholar
  44. Luo Z-X, Crompton AW, Sun AL (2001) A new mammaliaform from the Early Jurassic and evolution of mammalian characteristics. Science 292: 1535–1540CrossRefPubMedGoogle Scholar
  45. Marsh OC (1879) Additional remains of Jurassic mammals. Am J Sci Ser 3 18: 215–216CrossRefGoogle Scholar
  46. Meng Q-J, Ji Q, Zhang Y-G, Lui D, Grossnickle DM, Luo Z-X (2015) An arboreal docodont from the Jurassic and mammaliaform ecological diversification. Science 347:764–768CrossRefPubMedGoogle Scholar
  47. Mills JRE (1971) The dentition of Morganucodon. In: Kermack DM, Kermack KA (eds) Early Mammals. Zool J Linn Soc 50 (Suppl 1): 29–63Google Scholar
  48. Mills JRE (1984) The molar dentition of a Welsh pantothere. Zool J Linn Soc 82: 189–205CrossRefGoogle Scholar
  49. Moss ML, Kermack KA (1967) Enamel structure of two Triassic mammals. J Dent Res 46: 745–747CrossRefPubMedGoogle Scholar
  50. Pacey D (1978) On a tetrapod assemblage from a Mesozoic fissure fill, South Wales. PhD thesis, University College, LondonGoogle Scholar
  51. Parrington FR (1967) The origins of mammals. Adv in Sci 24: 165–173Google Scholar
  52. Parrington FR (1971) On the Upper Triassic mammals. Phil Trans R Soc Lond 261: 231–272CrossRefGoogle Scholar
  53. Parrington FR (1973) The dentitions of the earliest mammals. Zool J Linn Soc 52: 85–95CrossRefGoogle Scholar
  54. Poinsot D (2005) R pour les statophobes. http://www.info.univ-angers.fr/~gh/tuteurs/r_pour_les_statophobes.pdf. Accessed 15 October 2012
  55. Prasad GVR, Manhas BK (1997) A new symmetrodont mammal from the Lower Jurassic Kota Formation, Pranhita-Godavari Valley, India. Geobios 30: 563–572CrossRefGoogle Scholar
  56. Prothero DR (1981) New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria. Bull Am Mus Nat Hist 167: 277–326Google Scholar
  57. R Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org Google Scholar
  58. Rowe T (1988) Definition, diagnosis and origin of Mammalia. J Vertebr Paleontol 8: 241–264CrossRefGoogle Scholar
  59. Schultz JA, Martin T (2011) Wear pattern and functional morphology of dryolestoid molars (Mammalia, Cladotheria). Paläontol Z 85: 269–285CrossRefGoogle Scholar
  60. Schultz JA, Martin T (2014) Function of pretribosphenic and tribosphenic mammalian molars inferred from 3D animation. Paläontol Z 101: 771–781Google Scholar
  61. Sigogneau-Russell D (1978) Découverte de Mammifères rhétiens (Trias supérieur) dans l’est de la France. C R Hebd Séances Acad Sci, Sér D 287: 991–993Google Scholar
  62. Sigogneau-Russell D (1983) A new therian mammal from the Rhaetic locality of Saint-Nicolas-de-Port (France). Zool J Linn Soc 78: 175–186CrossRefGoogle Scholar
  63. Sigogneau-Russell D (1989a) Découverte du premier Symmétrodonte (Mammalia) du continent africain. C R Hebd Séances Acad Sci, Sér II 309: 921–926Google Scholar
  64. Sigogneau-Russell D (1989b) Haramiyidae (Mammalia, Allotheria) en provenance du Trias supérieur de Lorraine (France). Palaeontogr, Abt A 206: 137–198Google Scholar
  65. Sigogneau-Russell D (1990) Reconnaissance formelle d'une nouvelle espèce d'Haramiya dans l'hypodigme français des Haramiyidae (Mammalia, Allotheria). Bull Mus Nat Hist Nat, 4° Sér, Sect C 12: 85–88Google Scholar
  66. Sigogneau-Russell D (2001) Docodont nature of Cyrtlatherium, an upper Bathonian mammal from England. Acta Palaeontol Pol 46: 427–430Google Scholar
  67. Sigogneau-Russell D, Godefroit P (1997) A primitive docodont (Mammalia) from the Upper Triassic of France and the possible Therian affinities of the order. C R Acad Sci, Sér IIa 324: 135–140Google Scholar
  68. Sigogneau-Russell D, Hahn G (1994) Late Triassic microvertebrates from central Europe. In: Fraser NC, Sues HD (eds) In the Shadow of the Dinosaurs-Early Mesozoic Tetrapods. Cambridge University Press, Cambridge, pp 197–213Google Scholar
  69. Sigogneau-Russell D, Hahn R (1995) Reassessment of the Late Triassic symmetrodont mammal Woutersia. Acta Palaeontol Pol 40: 245–260Google Scholar
  70. Sigogneau-Russell D, Frank RM, Hemmerlé J (1984) Enamel and dentine ultrastructure in the Early Jurassic therian Kuehneotherium. Zool J Linn Soc 82: 207–215CrossRefGoogle Scholar
  71. Sigogneau-Russell D, Frank RM, Hemmerlé J (1986) A new family of mammals from the lower part of the French Rhaetic. In: Padian K (ed) The Beginning of the Age of Dinosaurs. Cambridge University Press, Cambridge, pp 99–108Google Scholar
  72. Trofimov BA (1980) Multituberculata and Symmetrodonta from the Lower Cretaceous of Mongolia. Dokl Akad Nauk SSSR 251: 209–212Google Scholar
  73. Whiteside DI, Marshall JEA (2008) The age, fauna and palaeoenvironment of the Late Triassic fissure deposits of Tytherington, South Gloucestershire, UK. Geol Mag 145: 105–147CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Centre de Recherches sur la Paléobiodiversité et les Paléoenvironnements (CR2P)UMR 7207 CNRS-MNHN-UPMC (SU)ParisFrance

Personalised recommendations