Skip to main content

Advertisement

Log in

Tooth Enamel Microstructure of Living and Extinct Hyracoids Reveals Unique Enamel Types Among Mammals

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Among medium- to large-sized terrestrial ‘ungulates,’ there is often a relationship between increasing body size, correlated changes in diet, and increased complexity of the enamel microstructures [notably the development of Hunter-Schreger bands (HSB)]. An exhaustive survey of the enamel microstructures of living and extinct Hyracoidea demonstrates, however, that the Schmelzmuster within this order of mammals is generally one-layered and formed by radial enamel despite a large range of body sizes and dietary adaptations; HSB are remarkably absent. Radial enamel is characteristic of early diverging hyracoids, as well as more derived members of the extinct families Geniohyidae and Pliohyracidae, and the extant Procaviidae. Only some large ‘Saghatheriidae,’ and all members of the family Titanohyracidae, developed a more complex enamel microstructure (i.e., with prisms decussating), a unique condition among Mammalia that we name ‘bundled enamel’ (BE). This structure is reminiscent to some degree of both the ‘Pyrotherium enamel’ and the ‘3D enamel’ of proboscideans. Hyracoids with BE represented a major component of the diversity of mid- to large-sized herbivores during the Paleogene in Africa. Like HSB, which are developed by most other ‘ungulates,’ the BE is regarded as a device for resisting propagation of cracks during mastication. Hyracoids never developed however the ‘modified radial enamel’ that is characteristic of most large and hypsodont perissodactyls and artiodactyls that entered Africa during the Miocene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alloing-Séguier L, Lihoreau F, Boisserie JR, Charruault A-L, Orliac M, Tabuce R (2014) Enamel microstructure evolution in anthracotheres (Mammalia, Cetartiodactyla) and new insights on hippopotamoid phylogeny. Zool J Linn Soc 171:668–695

    Article  Google Scholar 

  • Barrow EC (2011) Systematics and functional morphology of fossil and extant Hyracoidea. Dissertation, University of Oxford

  • Barrow EC, Seiffert ER, Simons EL (2010) A primitive hyracoid (Mammalia, Paenungulata) from the early Priabonian (late Eocene) of Egypt. J Syst Palaeontol 8:213–244

    Article  Google Scholar 

  • Barrow EC, Seiffert ER, Simons EL (2012) Cranial morphology of Thyrohyrax domorictus (Mammalia, Hyracoidea) from the early Oligocene of Egypt. J Vertebr Paleontol 32:166–179

    Article  Google Scholar 

  • Benoit J, Crochet J-Y, Mahboubi M, Jaeger J-J, Bensalah M, Adaci M, Tabuce R (in press) New material of Seggeurius amourensis (Paenungulata, Hyracoidea) including a partial skull with intact basicranium. J Vertebr Paleontol

  • Bertrand P (1989) Structure de l’émail dentaire chez les téthythères. Dissertation, Université Paris 6

  • Billet G, Orliac M, Antoine P-O, Jaramillo C (2010) New observations and reinterpretation on the enigmatic taxon Colombitherium (?Pyrotheria, Mammalia) from Colombia. Palaeontology 53:319–325

    Article  Google Scholar 

  • Buckley GA (2015) Ancient collagen reveals evolutionary history of the endemic South American ‘ungulates’. Proc Roy Soc B-Biol Sci 282:20142671

  • Clemens WA (1997) Characterization of enamel microstructure terminology and application of the origins of prismatic structures in systematic analyses. In: Koenigswald Wv, Sander PM (eds) Tooth Enamel Microstructure. Balkema, Rotterdam, Brookfield, pp 85–112

  • Clemens WA, Koenigswald Wv (1991) Purgatorius, plesiadapiforms, and evolution of Hunter-Schreger bands. J Vertebr Paleontol 11:43

  • Clemens WA, Koenigswald Wv (1993) A new skeleton of Kopidodon macrognathus from the middle Eocene of Messel and the relationships of paroxyclaenids and pantolestids based on postcranial evidence. Kaupia 3:57–73

    Google Scholar 

  • Clementz M, Domning DP (2009) Evidence of Cenozoic environmental and ecological change from stable isotope analysis of sirenian remains from the Tethys-Mediterranean region. Geology 37:307–310

    Article  CAS  Google Scholar 

  • Cooper LN, Seiffert ER, Clementz M, Madar SI, Bajpai S, Hussain ST, Thewissen JGM (2014) Anthracobunids from the middle Eocene of India and Pakistan are stem perissodactyls. PLoS ONE 9:e109232

    Article  PubMed  PubMed Central  Google Scholar 

  • Court N, Mahboubi M (1993) Reassessment of lower Eocene Seggeurius amourensis: aspect of primitive dental morphology in the mammalian order Hyracoidea. J Paleontol 67:889–893

    Article  Google Scholar 

  • DeBlieux DD, Simons EL (2002) Cranial and dental anatomy of Antilohyrax pectidens: a late Eocene hyracoid (Mammalia) from the Fayum, Egypt. J Vertebr Paleontol 22:122–136

    Article  Google Scholar 

  • Domning DP (2001) Sirenians, seagrasses, and Cenozoic ecological change in the Caribbean. Palaeogeogr Palaeoclimatol Palaeoecol 166:27–50

    Article  Google Scholar 

  • Domning DP, Hayek L-AC (1984) Horizontal tooth replacement in the Amazonian manatee (Trichechus inunguis). Mammalia 48:105–127

    Article  Google Scholar 

  • Dubrovo IA (1978) New data on fossil Hyracoidea. Paleontologicheskiy Zhurnal 12:375–383

    Google Scholar 

  • Ducrocq S, Boisserie JR, Tiercelin J-J, Delmer C, Garcia G, Kyalo MF, Leakey MG, Marivaux L, Otero O, Peigné S, Tassy P, Lihoreau F (2010) New Oligocene vertebrate localities from Northern Kenya (Turkana basin). J Vertebr Paleontol 30:293–299

    Article  Google Scholar 

  • Fortelius M (1985) Ungulate cheek teeth: developmental, functional and evolutionary interrelations. Acta Zoologica Fennica 180:1–76

    Google Scholar 

  • Gabunia LK, Vekua AK (1974) On the mode of life and systematic position of the giant hyrax from Kvabebi. Bulletin of the Academy of Sciences of the Georgian Soviet Socialist Republic 73:489–492

    Google Scholar 

  • Gheerbrant E (2009) Paleocene emergence of elephant relatives and the rapid radiation of African ungulates. Proc Natl Acad Sci USA 106:10717–10721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gheerbrant E, Bouya B, Amaghzaz M (2012) Dental and cranial anatomy of Eritherium azzouzorum from the Paleocene of Morocco, earliest known proboscidean mammal. Palaeontogr Abt A 297:151–183

    Article  Google Scholar 

  • Gheerbrant E, Peigné S, Thomas E (2007) Première description du squelette d’un mammifère hyracoïde paléogène : Saghatherium antiquum de l’Oligocène inférieur de Jebel al Hasawnah, Libye. Palaeontogr Abt A 279:93–145

    Google Scholar 

  • Gheerbrant E, Sudre J, Cappetta H, Mourer-Chauviré C, Bourdon E, Iarochene M, Amaghzaz M, Bouya B (2003) Les localités à mammifères des carrières de Grand Daoui, bassin des Ouled Abdoun, Maroc, Yprésien : premier état des lieux. Bull Soc Geol Fr 174:271–278

    Article  Google Scholar 

  • Gilkeson CF, Lester KS (1989) Ultrastructural variation in enamel of Australian marsupials. Scanning Microscopy 3:177–191

    CAS  PubMed  Google Scholar 

  • Kalthoff DC (2011) Microstructure of dental hard tissues in fossil and recent xenarthrans (Mammalia: Folivora and Cingulata). J Morphol 272:641–661

    Article  PubMed  Google Scholar 

  • Kingdon J, Happold D, Hoffmann M, Butynski T, Happold M, Kalina J (2013) Mammals of Africa. Volume I: Introductory Chapters and Afrotheria. Bloomsbury Publishing, London

  • Kitching JW (1965) A new giant hyracoid from the Limeworks Quarry, Makapansgat, Potgietersrus. Palaeontol Africana 9:91–96

    Google Scholar 

  • Kocsis L, Gheerbrant E, Mouflih M, Cappetta H, Yans J, Amaghzaz M (2014) Comprehensive stable isotope investigation of marine biogenic apatite from the late Cretaceous–early Eocene phosphate series of Morocco. Palaeogeogr Palaeoclimatol Palaeoecol 394:74-88

  • Koenigswald Wv (1980) Schmelzstruktur und Morphologie in den Molaren der Arvicolidae (Rodentia). Abhandlungen Senckenbergische Naturforschende Gesellschaft 539:1–129

  • Koenigswald Wv (1988) Enamel modification in enlarged front teeth among mammals and the various possible reinforcement of the enamel. Teeth revisited: Proceedings of the VII international symposium on dental morphology. Mem Mus Natl Hist Nat 53:148–165

  • Koenigswald Wv (1994) Differenzierungen im Zahnschmelz der Marsupialia im Vergleich zu den Verhältnissen bei den Placentalia (Mammalia). Berliner Geowissenschaftliche Abhandlungen 13:45–81

  • Koenigswald Wv (1997) Evolutionary trends in the differentiation of mammalian enamel ultrastructure. In: Koenigswald Wv, Sander PM (eds) Tooth Enamel Microstructure. Balkema, Rotterdam, Brookfield, pp 203–235

  • Koenigswald Wv (2000) Two different strategies in enamel differentiation: Marsupialia versus Placentalia. In: Teaford M, Smith M, Ferguson M (eds) Development, Function, and Evolution of Teeth. Cambridge University Press, New York, pp 107–118

  • Koenigswald Wv (2012) Unique differentiation of radial enamel in Arsinoitherium (Embrithopoda, Tethytheria). Hist Biol 25:183–192

  • Koenigswald Wv, Clemens WA (1992) Levels of complexity in the microstucture of mammalian enamel and their application in the studies of systematics. Scanning Microscopy 6:195–218

  • Koenigswald Wv, Sander PM (1997) Tooth Enamel Microstructure. Balkema, Rotterdam, Brookfield

  • Koenigswald Wv, Krause DW (2014) Enamel microstructure of Vintana sertichi (Mammalia, Gondwanatheria) from the Late Cretaceous of Madagascar. J Vertebr Paleontol 34:166–181

  • Koenigswald Wv, Rensberger JM, Pfretzschner HU (1987) Changes in the tooth enamel of early Paleocene mammals allowing increased diet diversity. Nature 328:150–152

  • Koenigswald Wv, Martin T, Pfretzschner HU (1993) Phylogenetic interpretation of enamel structures in mammalian teeth: possibilities and problems. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny, Placentals. Springer-Verlag, New York, pp 303–314

  • Koenigswald Wv, Kalthoff DC, Semprebon GM (2010) The microstructure of enamel, dentine and cementum in advanced Taeniodonta (Mammalia) with comments on their dietary adaptations. J Vertebr Paleontol 30:1797–1804

  • Koenigswald Wv, Holbrook LT, Rose KD (2011) Diversity and evolution of Hunter–Schreger Band configuration in tooth enamel of perissodactyl mammals. Acta Palaeontol Pol 56:11–32

  • Koenigswald Wv, Martin T, Billet G (2015) Enamel microstructure and mastication in Pyrotherium romeroi (Pyrotheria, Mammalia). Paläontol Z 89:593–609

  • Kozawa Y (1984) On the teeth structure of the food habitude of desmostylids. Monograph - Association for the Geological Collaboration in Japan 28:119–128

    Google Scholar 

  • Kramarz AG, Bond M (2014) Reconstruction of the dentition of Propyrotherium saxeum Ameghino, 1901 (Mammalia, Pyrotheria): taxonomic and phylogenetic implications. J Vertebr Paleontol 34:434–443

    Article  Google Scholar 

  • Legendre S (1989) Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d’Europe occidentale : structures, milieux et évolution. Münchner Geowissenschaftliche Abhandlungen 16:1–110

    Google Scholar 

  • Lindenau C (2005) Zahnschmelzmikrostrukturen südamerikanischer Huftiere. Dissertation, Universität Bonn. http://hss.ulb.uni-bonn.de/2005/0557/0557.htm

  • Maas MC, Dumont ER (1999) Built to last: the structure, function, and evolution of primate dental enamel. Evol Anthropol 8:133–152

    Article  Google Scholar 

  • Maas MC, Thewissen JGM, Kappelman J (1998) Hypsamasia seni (Mammalia: Embrithopoda) and other mammals from the Eocene Kartal Formation of Turkey. Bull Carnegie Mus Nat Hist 34:286–297

    Google Scholar 

  • Mao F-Y, Wang Y-Q, Li Q, Jin X (in press) New records of archaic ungulates from the lower Eocene of Sanshui Basin, Guangdong, China. Historical Biology

  • Pfretzschner HU (1988) Structural reinforcement and crack propagation in enamel. Teeth revisited: Proceedings of the VII international symposium on dental morphology. Mém Mus Natl d’Hist Nat, Série C, Sciences de la Terre 53:133–143

    Google Scholar 

  • Pfretzschner HU (1992) Enamel microstructure and hypsodonty in large mammals. In: Smith P, Tchernov E (eds) Structure, Function and Evolution of Teeth. Freund Publishing House, London, pp 147–162

    Google Scholar 

  • Pfretzschner HU (1994) Biomechanik der Schmelzmikrostruktur in den Backenzähnen von Grossäugern. Palaeontogr Abt A 234:1–88

    Google Scholar 

  • Pickford M (1986) Première découverte d’une faune mammalienne terrestre paléogène d’Afrique sub-saharienne. CR Acad Sci II 302:1205–1210

    Google Scholar 

  • Pickford M (2005) Fossil hyraxes (Hyracoidea: Mammalia) from the late Miocene and Plio-Pleistocene of Africa, and the phylogeny of the Procaviidae. Palaeontol Africana 41:141–161

    Google Scholar 

  • Pickford M (2009) New Neogene hyracoid specimens from the Peri-Tethys Region and East Africa. Paleontol Res 13:265–278

    Article  Google Scholar 

  • Pickford M, Hlusko LL (2007) Late Miocene procaviid hyracoids (Hyracoidea: Dendrohyrax) from Lemudong’o, Kenya. Kirtlandia 56:106–111

    Google Scholar 

  • Pickford M, Senut B, Morales J, Mein P, Sanchez IM (2008) Mammalia from the Lutetian of Namibia. Memoir of the Geological Survey of Namibia 20:465–514

    Google Scholar 

  • Pickford M, Thomas H, Sen S, Roger J, Gheerbrant E, Al-Sulaimani Z (1994) Early Oligocene Hyracoidea (Mammalia) from Thaytiniti and Taqah, Dhofar Province, Sultanate of Oman. CR Acad Sci II 318:1395–1400

    Google Scholar 

  • Rasmussen DT (1989) The evolution of the Hyracoidea: a review of the fossil evidence. In: Prothero DR, Schoch RM (eds) The Evolution of Perissodactyls. Oxford University Press, New York, pp 57–78

    Google Scholar 

  • Rasmussen DT, Gutiérrez G (2009) A mammalian fauna from the late Oligocene of Northwestern Kenya. Palaeontogr Abt A 288:1–52

    Article  Google Scholar 

  • Rasmussen DT, Gutiérrez M (2010) Hyracoidea. In: Sanders WJ, Werdelin L (eds) Cenozoic Mammals of Africa. University of California Press, Berkeley, pp 123–145

    Chapter  Google Scholar 

  • Rasmussen DT, Simons EL (1991) The oldest Egyptian hyracoids (Mammalia: Pliohyracidae): new species of Saghatherium and Thyrohyrax from the Fayum. Neues Jahrb Geol P-A 182:187–209

    Google Scholar 

  • Rasmussen DT, Simons EL (2000) Ecomorphological diversity among Paleogene hyracoids (Mammalia): a new cursorial browser from the Fayum, Egypt. J Vertebr Paleontol 20:167–176

    Article  Google Scholar 

  • Rasmussen DT, Gagnon M, Simons EL (1990) Taxeopody in the carpus and tarsus of Oligocene Pliohyracidae (Mammalia: Hyracoidea) and the phyletic position of hyraxes. Proc Natl Acad Sci USA 87:4688–4691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rensberger JM (2000) Pathways to functional differentiation in mammalian enamel. In: Teaford MF, Smith MM, Ferguson MWJ (eds) Development, Function and Evolution of Teeth. Cambridge University Press, Cambridge, pp 252–268

    Chapter  Google Scholar 

  • Schwartz GT, Rasmussen DT, Smith RJ (1995) Body-size diversity and community structure of fossil hyracoids. J Mammal 76:1088–1099

    Article  Google Scholar 

  • Seiffert ER (2006) Revised age estimates for the later Paleogene mammal faunas of Egypt and Oman. Proc Natl Acad Sci USA 103:5000–5005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seiffert ER (2007) A new estimate of afrotherian phylogeny based on simultaneous analysis of genomic, morphological, and fossil evidence. BMC Evol Biol 7:1–13

    Article  Google Scholar 

  • Sen S (2013) Dispersal of African mammals in Eurasia during the Cenozoic: ways and whys. Geobios 46:159–172

    Article  Google Scholar 

  • Shoshani J, Bloomer P, Seiffert ER (2013) Family Procaviidae. In: Kingdon J, Happold D, Hoffmann M, Butynski T, Happold M, Kalina J (eds) Mammals of Africa, Volume I: Introductory Chapters and Afrotheria. Bloomsbury Publishing, London, pp 149–152

    Google Scholar 

  • Stephen C (1999) Evolution of enamel microstructure of archaic ungulates (‘Condylarthra’) and comments on some other early Tertiary mammals. Paleobios 19:15–36

    Google Scholar 

  • Stevens NJ, O’Connor PM, Roberts EM, Gottfried MD (2009) A hyracoid from the late Oligocene Red Sandstone Group of Tanzania, Rukwalorax jinokitana (gen. and sp. nov.) J Vertebr Paleontol 29:972–975

    Article  Google Scholar 

  • Sudre J (1979) Nouveaux mammifères éocènes du Sahara Occidental. Palaeovertebrata 9:83–115

    Google Scholar 

  • Tabuce R, Coiffait B, Coiffait P-E, Mahboubi M, Jaeger J-J (2000) A new species of Bunohyrax (Hyracoidea, Mammalia) from the Eocene of Bir El Ater (Algeria). CR Acad Sci II 331:61–66

    Google Scholar 

  • Tabuce R, Mahboubi M, Sudre J (2001) Reassessment of the Algerian Eocene hyracoid Microhyrax. The early diversity and basal phylogeny of the order Hyracoidea (Mammalia). Eclogae Geol Helv 94:537–545

    Google Scholar 

  • Tabuce R, Vianey-Liaud M, Garcia G (2004) A eutherian mammal in the latest Cretaceous of Vitrolles, southern France. Acta Palaeontol Pol 49:347–356

    Google Scholar 

  • Tabuce R, Delmer C, Gheerbrant E (2007) Evolution of the tooth enamel microstructure in the earliest proboscideans (Mammalia). Zool J Linn Soc 149:611–628

    Article  Google Scholar 

  • Tabuce R, Marivaux L, Adaci M, Bensalah M, Hartenberger J-L, Mahboubi M, Mebrouk F, Tafforeau P, Jaeger J-J (2007) Early Tertiary mammals from North Africa reinforce the molecular Afrotheria clade. Proc Roy Soc B-Biol Sci 274:1159–1166

    Article  Google Scholar 

  • Tabuce R, Charruault A-L, Adaci M, Bensalah M, Ben Haj Ali M, Essid EM, Marivaux L, Vianey-Liaud M, Mahboubi M (2011) The early Eocene radiation of Hyracoidea (Mammalia, Afrotheria): new fieldwork evidence from northwestern Africa. In: Lehmann T, Schaal SFK (eds) The World at the Time of Messel. Senckenberg Research Institute and Natural History Museum Frankfurt, pp 161–162

    Google Scholar 

  • Welker F, Collins MJ, Thomas JA, Wadsley M, Brace S, Cappellini E, Turvey ST, Reguero M, Gelfo JN, Kramarz AG, Burger J, Thomas-Oates J, Ashford DA, Ashton PD, Rowsell K, Porter DM, Kessler B, Fischer R, Baessmann C, Kaspar S, Olsen JV, Kiley P, Elliott JA, Kelstrup CD, Mullin V, Hofreiter M, Willerslev E, Hublin J-J, Orlando L, Barnes I, MacPhee RDE (2015) Ancient proteins resolve the evolutionary history of Darwin’s South American ungulates. Nature 522:81–84

  • Wood CB, Rougier GW (2005) Updating and recoding enamel microstructure in Mesozoic mammals: in search of discrete characters for phylogenetic reconstruction. J Mammal Evol 12:433–460

    Article  Google Scholar 

  • Yans J, Amaghzaz M, Bouya B, Cappetta H, Iacumin P, Kocsis L, Mouflih M, Selloum O, Sen S, Storme J-Y, Gheerbrant E (2014) First carbon isotope chemostratigraphy of the Ouled Abdoun phosphate Basin, Morocco; implications for dating and evolution of earliest African placental mammals. Gondwana Res 25:257–269

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank François Pujos (Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Mendoza) and Pierre-Olivier Antoine (Institut des Sciences de l’Évolution, Montpellier) who invited us to contribute to this volume. We are also very grateful to the many curators and colleagues who provided access to material in their care, or allowed us to study material for this project, particularly Gregg Gunnell (Division of Fossil Primates, Duke University Lemur Center, Durham), Joséphine Lesur, Sevket Sen, and Pascal Tassy (Muséum National d’Histoire Naturelle, Paris), Jean Remy (Institut des Sciences de l’Évolution, Montpellier), Mohammed Mahboubi (Université d’Oran), Daniel Brinkman and Christopher Norris (Yale Peabody Museum of Natural History, New Haven), Elmar Heizmann and Reinhard Ziegler (Staatliches Museum für Naturkunde Stuttgart) and (late) Karl Alban Hünermann (Paläontologisches Institut der Universität Zürich). We also thank Mikael Fortelius (Department of Geosciences and Geography, University of Helsinki) for providing several images of Titanohyrax enamel microstructure, and Chantal Cazevielle (CRIC, Montpellier) and Didier Cot (IEM, Montpellier) for SEM assistance. Finally, we would like to thank the two anonymous reviewers for their valuable comments and suggestions to improve the quality of this paper. ERS thanks the U.S. National Science Foundation (grants BCS-0416164, BCS-0819186, BCS-1231288), the Leakey Foundation, and Ann and Gordon Getty for supporting fieldwork in Egypt. RT thanks the French National Research Agency (ANR-ERC PalAsiAfrica Program/ANR-08-JCJC-0017 grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolphe Tabuce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabuce, R., Seiffert, E.R., Gheerbrant, E. et al. Tooth Enamel Microstructure of Living and Extinct Hyracoids Reveals Unique Enamel Types Among Mammals. J Mammal Evol 24, 91–110 (2017). https://doi.org/10.1007/s10914-015-9317-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-015-9317-6

Keywords

Navigation