Journal of Mammalian Evolution

, Volume 23, Issue 3, pp 265–279 | Cite as

Dental Eruption Series and Replacement Pattern in Miocene Prosantorhinus (Rhinocerotidae) as Revealed by Macroscopy and X-ray: Implications for Ontogeny and Mortality Profile

  • Christine Böhmer
  • Kurt Heissig
  • Gertrud E. Rössner
Original Paper


Fossil evidence of complete sequences of dental ontogeny in extinct mammals is rare but contains valuable information on the animal’s physiology, life history, and individual age. Here, we analyzed an exceptionally high number of juvenile dentaries at different developmental stages including highly fragile tooth germs of the extinct rhinoceros Prosantorhinus germanicus from the Miocene fossil lagerstätte Sandelzhausen in Germany. We used dental wear stages, eruption stages, and tooth germ development in order to reconstruct the tooth replacement pattern for P. germanicus. The results allow for the distinction of 11 dental eruption stages and document a tooth eruption sequence of (d2, d3), (d1, d4), m1, m2, p2, p3, p4, m3; a pattern identical to that reported for the extant African rhinoceros, Diceros bicornis. Moreover, our findings indicate that P. germanicus falls into the life history category of slow-growing, long-living mammals. The dental eruption stages of the fossil rhinoceros were correlated with data of living rhinoceroses in order to gain insight into the age-at-death distribution of P. germanicus at Sandelzhausen. The juvenile mortality profile of P. germanicus shows a trend of selective mortality at an inferred age range of about 3 months to 3 years. As this age range represents a life phase of increased natural risk of mortality, our findings indicate a gradual accumulation of corpses (attritional fossil assemblage). This result supports the interpretation of a taphocenosis found at the Sandelzhausen fossil site.


Prosantorhinus germanicus Perissodactyla Tooth wear Dental development Life history Sandelzhausen 



Our gratitude goes to the late vertebrate palaeontologist Volker Fahlbusch who devoted an essential part of his life to the recovery and exploration of the Sandelzhausen fossils and site. The city of Mainburg, especially the then mayor Josef Egger, provided substantial support during excavations. Due to the committed excavation team and Mainburg residents the huge number of exceptional fossils were saved. The German Research Foundation (DFG) (Sonderforschungsbereich 53 “Paläoökologie”und GZ-4850/88/05), Stiftung zur Förderung der Wissenschaften, Wolf Klimatechnik GmbH, Sparkasse Kelheim, Deutsche Gleis und Tiefbau GmbH, Bosch-Siemens-Hausgeräte GmbH, Bayerische Akademie der Wissenschaften, Stadtsparkasse München, Pinsker Druck und Medien, Thyssen RÖRO, Ziegelwerk Leipfinger und Bader, VW-Werk, Elektrofirma Burger, Isar-Amper-Werke München gave financial support for excavation, preparation, and taxonomic as well as paleoecological research. We thank the radiological team of the Clinic for Small Animal Surgery at the Faculty of Veterinary Medicine of the Ludwig-Maximilians-Universität in Munich for producing the radiographs and CT scans. We thank G. Janssen (then Munich) for taking photographs of the fossils. We also acknowledge M. Krings (Munich) and S. Schneider (Cambridge) as well as two anonymous reviewers, whose helpful comments enhanced the quality of the manuscript.


  1. Anders U, Koenigswald W von, Ruf I, Smith BH (2011) Generalized individual dental age stages for fossil and extant placental mammals. Paläontol Z 85:321–339Google Scholar
  2. Anderson JL (1966) Tooth replacement and dentition of the black rhinoceros (Diceros bicornis Linn.). Lammergeyer 6:41–46Google Scholar
  3. Berger J, Cunningham C (1995) Predation, sensitivity, and sex: why female black rhinoceroses outlive males. Behav Ecol 6:57–64CrossRefGoogle Scholar
  4. Bigalke R, Steyn T, de Vos D, De Waard K (1950) Observations on a juvenile female square-lipped or white rhinoceros (Ceratotherium simum simum (Burch.)) in the National Zoological Gardens of South Africa. Proc Zool Soc Lond 120:519–528CrossRefGoogle Scholar
  5. Böhme M (2010) Ectothermic vertebrates (Actinopterygii, Allocaudata, Urodela, Anura, Crocodylia, Squamata) from the Miocene of Sandelzhausen (Germany, Bavaria) and their implications for environment reconstruction and palaeoclimate. Paläontol Z 84:3–41CrossRefGoogle Scholar
  6. Brain C, Forge O, Erb P (1999) Lion predation on black rhinoceros (Diceros bicornis) in Etosha National Park. Afr J Ecol 37:107–109CrossRefGoogle Scholar
  7. Caughley G (1966) Mortality patterns in mammals. Ecology 47:906–918CrossRefGoogle Scholar
  8. Cerdeño E (1996) Prosantorhinus, the small teleoceratine rhinocerotid from the Miocene of Western Europe. Geobios 29:111–124CrossRefGoogle Scholar
  9. Dittrich L (1972) Birth and growth of a male White rhinoceros Ceratotherium simum simum at Hanover Zoo. Internatl Zoo Yearbook 12:122–125CrossRefGoogle Scholar
  10. Dittrich L (1974) Beobachtungen zum Milchzahndurchbruch beim Spitzmaul- (Diceros bicornis) und Breitmaulnashorn (Ceratotherium simum). Säugetierk Mitt 22:289–295Google Scholar
  11. Fahlbusch V (1976) Die obermiozäne Wirbeltierfundstelle Sandelzhausen. Zbl Geol Paläont Teil II 5/6:255Google Scholar
  12. Fahlbusch V (2003) Die miozäne Fossil-Lagerstätte Sandelzhausen. Zitteliana A 43:109–122Google Scholar
  13. Fahlbusch V, Gall H, Schmidt-Kittler N (1972) Die obermiozäne Fossil-Lagerstätte Sandelzhausen. 2. Sediment und Fossilinhalt - Probleme der Genese und Ökologie. N Jb Geol Paläontol Mh 6:331–343Google Scholar
  14. Fortelius M (1985) Ungulate cheek teeth: developmental, functional, and evoutionary interrelations. Acta Zool Fenn 180:1–76Google Scholar
  15. Foster JB (1965) Mortality and ageing of black rhinoceros in east Tsavo Park, Kenya. E Afr Wild J 3:118–119CrossRefGoogle Scholar
  16. Gaillard J-M, Festa-Bianchet M, Yoccoz NG (1998) Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends Ecol Evol 13:58–63CrossRefPubMedGoogle Scholar
  17. Garutt NV (1994) Dental ontogeny of the woolly rhinoceros Coelodonta antiquitatis (BLUMENBACH, 1799). Cranium 11:37–48Google Scholar
  18. Goddard J (1966) Mating and courtship of the black rhinoceros in East Tsavo Park, Kenya. E Afr Wild J 3:118–119Google Scholar
  19. Goddard J (1970) Age criteria and vital statistics of a black rhinoceros population. E Afr Wild J 8:105–121CrossRefGoogle Scholar
  20. Godfrey LR, Samonds KE, Wright PC, King SJ (2005) Schultz’s unruly rule: dental developmental sequences and schedules in small-bodied, folivorous lemurs. Folia Primatol 76:77–99CrossRefPubMedGoogle Scholar
  21. Groves C, Grubb P (2011) Ungulate Taxonomy. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  22. Harvati K, Frost SR (2007) Dental eruption sequences in fossil colobines and the evolution of primate life histories. Internatl J Primatol 28:705–728CrossRefGoogle Scholar
  23. Heissig K (1968) Die Rhinocerotidae (Mammalia) aus der oberoligozänen Spaltenfüllung von Gaimersheim bei Ingoldstadt in Bayern und ihre phylogenetische Stellung. Ludwig-Maximilians-Universität, MünchenGoogle Scholar
  24. Heissig K (1972) Die obermiozäne Fossil-Lagerstätte Sandelzhausen - 5. Rhinocerotidae (Mammalia) - Systematik und Ökologie. Mitt Bayer Staatssammlung Paläontol hist Geol 12:5781Google Scholar
  25. Hillman-Smith AKK, Groves CP (1994) Diceros bicornis. Mammal Species 455:1–8CrossRefGoogle Scholar
  26. Hillman-Smith AKK, Owen-Smith N, Anderson JL, Hall-Martin AJ, Selaladi JP (1986) Age estimation of the White rhinoceros (Ceratotherium simum). J Zool London 210:355–379CrossRefGoogle Scholar
  27. Hillson S (2005) Teeth. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. Hitchins PM (1978) Age determination of the black rhinoceros (Diceros bicornis Linn.) in Zululand. S Afr J Wildl Res 8:71–80Google Scholar
  29. Hrabar H, Du Toit JT (2005) Dynamics of a protected black rhino (Diceros bicornis) population: Pilanesberg National Park, South Africa. Anim Conserv 8:259–267CrossRefGoogle Scholar
  30. Hutchins M, Kreger MD (2006) Rhinoceros behaviour: implications for captive management and conservation. Internatl Zoo Yearbook 40:150–173CrossRefGoogle Scholar
  31. Jordana X, Marin-Moratalla N, Moncunill-Sole B, Bover P, Alcover JA, Kohler M (2013) First fossil evidence for the advance of replacement teeth coupled with life history evolution along an anagenetic mammalian lineage. PLoS ONE 8:e70743CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kindahl ME (1967) Some comparative aspects of the reduction of the premolars in the Insectivora. J Dent Res 46:805–808CrossRefPubMedGoogle Scholar
  33. Klein RG (1982) Age (mortality) profiles as a means of distinguishing hunted species from scavenged ones in Stone Age archeological sites. Paleobiology 8:151–158CrossRefGoogle Scholar
  34. Klein RG, Cruz-Uribe K (1983) The computation of ungulate age (mortality) profiles from dental crown heights. Paleobiology 9:70–78CrossRefGoogle Scholar
  35. Koenigswald W von, Smith H, Arbor A, Keller T (2007) Supernumerary teeth in a subadult rhino mandible (Stephanorhinus hundsheimensis) from the middle Pleistocene of Mosbach in Wiesbaden (Germany). Paläontol Z 81:416–428Google Scholar
  36. Kurtén B (1953) On the variation and population dynamics of fossil and recent mammal populations. Acta Zool Fenn 76:1–122Google Scholar
  37. Langer P (1988) The Mammalian Herbivore Stomach: Comparative Anatomy, Function and Evolution. Gustav Fischer Verlag, New YorkGoogle Scholar
  38. Langer P (2008) The phases of maternal investment in eutherian mammals. Zoology 111:148–162CrossRefPubMedGoogle Scholar
  39. Laurie A (1982) Behavioural ecology of the Greater one-horned rhinoceros (Rhinoceros unicornis). J Zool London 196:307–341CrossRefGoogle Scholar
  40. Laurie WA, Lang EM, Groves CP (1983) Rhinoceros unicornis. Mammal Species 211:1CrossRefGoogle Scholar
  41. Lowe VPW (1967) Teeth as indicators of age with special reference to Red Deer (Cervus elaphus) of known age from Rhum. J Zool 152:137–153CrossRefGoogle Scholar
  42. Lubinski PM (2001) Estimating age and season of death of pronghorn antelope (Antilocapra Americana Ord) by means of tooth eruption and wear. Internatl J Osteoarchaeol 11:218–230CrossRefGoogle Scholar
  43. Luckett WP (1993) Ontogenetic staging of the mammalian dentition, and its value for assessment of homology and heterochrony. J Mammal Evol 1:269–282CrossRefGoogle Scholar
  44. Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2004) Evolution of dental replacement in mammals. Bull Carnegie Mus Nat Hist 36:159–175CrossRefGoogle Scholar
  45. Lyman RL (1994) Vertebrate Taphonomy. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  46. Mihlbachler MC (2003) Demography of late Miocene rhinoceroses (Teleoceras proterum and Ahelops malacorhinus) from Florida: linking mortality and sociality in fossil assemblages. Paleobiology 29:421–428CrossRefGoogle Scholar
  47. Miller RE (2003) Rhinoceridae (Rhinoceroses). In: Fowler ME, Miller RE (eds) Zoo and Wild Animal Medicine. Elsevier, Missouri, pp 558–569Google Scholar
  48. Morris P (1978) The use of teeth for estimating the age of wild animals. In: Butler PM, Joysey KA (eds) Development, Function and Evolution of Teeth. Academic Press, London, pp 483–494Google Scholar
  49. Moser M, Rössner GE, Göhlich UB, Böhme M, Fahlbusch V (2009) The fossil lagerstatte Sandelzhausen (Miocene; southern Germany): history of investigation, geology, fauna, and age. Paläontol Z 83:7–23CrossRefGoogle Scholar
  50. Owen R (1855) The Principle Forms of the Skeleton and the Teeth. Houlston & Stoneman, LondonGoogle Scholar
  51. Peter K (2002) Odontologie der Nashornverwandten (Rhinocerotidae) aus dem Miozän (MN 5) von Sandelzhausen (Bayern). Zitteliana 22:1–168Google Scholar
  52. Peyer B (1963) Die Zähne. Ihr Ursprung, ihre Geschichte und ihre Aufgabe. Springer-Verlag, BerlinGoogle Scholar
  53. Prothero DR, Guérin C, Manning E (1989) The history of the Rhinocerotoidea. In: Prothero DR, Schoch RM (eds) The Evolution of Perissodactyls. Oxford University Press, New York, pp 321–340Google Scholar
  54. Raposo-Amaral CE, Kobayashi GS, Almeida AB, Bueno DF, Rodrigues de Souza e Freitas F, Vulcano LC, Passos-Bueno MR, Alonso N (2010) Defeito ósseo alveolar em ratos para terapia celular. Estudo preliminar (Alveolar osseous defect in rat for cell therapy. Preliminary report). Acta Cir Bras 25:313–317PubMedGoogle Scholar
  55. Ruscillo D (2006) Recent Advances in Ageing and Sexing Animal Bones. Oxbow Books, OxfordGoogle Scholar
  56. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133CrossRefPubMedGoogle Scholar
  57. Schmid W (2002) Ablagerungsmilieu, Verwitterung und Paläoböden feinklastischer Sedimente der oberen Süßwassermolasse Bayerns. Abh Bayer Akad Wiss Math-Naturw Klasse N F 172:1–247Google Scholar
  58. Schultz AH (1960) Age changes in primates and their modification in man. In: Tanner JM (ed) Human Growth. Pergamon Press, Oxford, pp 1–20Google Scholar
  59. Shpansky AV (2014) Juvenile remains of the “woolly rhinoceros” Coelodonta antiquitatis (Blumenbach 1799) (Mammalia, Rhinocerotidae) from the Tomsk Priob’e area (southeast Western Siberia). Quaternary Internatl 333:85–99CrossRefGoogle Scholar
  60. Smith BH (1994) Sequence of emergence of the permanent teeth in Macaca, Pan, Homo, and Australopithecus: its evolutionary significance. Am J Hum Biol 6:61–99CrossRefGoogle Scholar
  61. Smith BH (2000) ‘Schultz’s rule’ and the evolution of tooth emergence and replacement patterns in primates and ungulates. In: Teaford MF, Smith MM, Ferguson MWJ (eds) Development, Function and Evolution of Teeth. Cambridge University Press, Cambridge, pp 212–227CrossRefGoogle Scholar
  62. Tong H (2001) Age profiles of rhino fauna from the middle Pleistocene Nanjin Man Site, South China—explained by the rhino specimens of living species. Internatl J Osteoarchaeol 22:231–237CrossRefGoogle Scholar
  63. van Nievelt AFH, Smith KK (2005) To replace or not to replace: the significance of reduced functional tooth replacement in marsupial and placental mammals. Paleobiology 31:324–346CrossRefGoogle Scholar
  64. Van Valen L (1964) Age in two fossil horse populations. Acta Zool 45:93–106CrossRefGoogle Scholar
  65. Vera B, Cerdeño E (2014) Systematic revision of Antepithecus brachystephanus Ameghino, 1901, and dental eruption sequence in Eocene “notopithecines” (Notoungulata) from Patagonia. Geobios 47:60–74CrossRefGoogle Scholar
  66. Vigal CR, Machordom A (1985) Tooth eruption and replacement in the Spanish wild goat. Acta Theriol 19:305–320CrossRefGoogle Scholar
  67. Voorhies MR (1969) Taphonomy and population dynamics of an early Pliocene vertebrate fauna, Knox County, Nebraska. Univ Wyoming Spec Contrib Geol Spec Pap 1:1–69Google Scholar
  68. Ziegler AC (1971) A theory of the evolution of therian dental formulas and replacement patterns. Quart Rev Biol 46:226–249CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christine Böhmer
    • 1
    • 2
  • Kurt Heissig
    • 1
    • 2
  • Gertrud E. Rössner
    • 1
    • 2
    • 3
  1. 1.Department of Earth and Environmental SciencesLudwig-Maximilians-Universität MünchenMunichGermany
  2. 2.SNSB–Bayerische Staatssammlung für Paläontologie und GeologieMunichGermany
  3. 3.GeoBio-Center der Ludwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations