Skip to main content

Advertisement

Log in

Life in Burrows Channelled the Morphological Evolution of the Skull in Rodents: the Case of African Mole-Rats (Bathyergidae, Rodentia)

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

African mole-rats are fossorial rodents that consist of five chisel-tooth digging genera (Heterocephalus, Heliophobius, Georychus, Fukomys, and Cryptomys) and one scratch digger (Bathyergus). They are characterized by striking physiological, morphological, and behavioral adaptations intimately related to their subterranean life. The influence of their mode of life in shaping the cranial morphology has yet to be evaluated in comparison to other Ctenohystrica, especially fossorial genera, which include the subterranean genera Spalacopus and Ctenomys. In our study, we seek to determine to what extent subterranean life affects the morpho-functional properties of the skull among fossorial ctenohystricans. 3D geometric morphometric analyses were performed on 277 skulls, encompassing 63 genera of Ctenohystrica, and complemented by biomechanical studies. African mole-rats and other subterranean Ctenohystrica, especially chisel-tooth diggers, have a short snout, a wide cranium with enlarged zygomatic arches, and a strongly hystricognathous mandible. Even if convergences are also manifest between most fossorial Ctenohystrica, subterranean rodents departed from the main ctenohystrican allometric trends in having a skull shape less size-dependent, but under stronger directional selection with intense digging activity as a major constraint. African mole-rats, notably chisel-tooth diggers, show important mechanical advantage for the temporalis muscles favoring higher forces at the bite point, while mechanical advantage of the superficial masseter muscles is lower compared to other Ctenohystrica. If subterranean species can be clearly discriminated based on their skull morphology, the intrinsic mosaic of anatomical characters of each genus (e.g., skull, teeth, and muscles) can be understood only in the light of their ecology and evolutionary history.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Barčiová L, Šumbera R, Burda H (2009) Variation in the digging apparatus of the subterranean silvery mole-rat, Heliophobius argenteocinereus (Rodentia, Bathyergidae): the role of ecology and geography. Biol J Linn Soc 97:822–831

    Article  Google Scholar 

  • Baverstock H, Jeffery NS, Cobb SN (2013) The morphology of the mouse masticatory musculature. J Anat 223:46–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Becerra F, Echeverri AI, Casinos A, Vassallo AI (2014) Another one bites the dust: bite force and ecology in three caviomorph rodents (Rodentia, Hystricognathi). J Exp Zool 9999:1–13

    Google Scholar 

  • Begall S, Burda H, Schleich CE (2007) Subterranean Rodents: News from Underground. Springer, Berlin, Heidelberg, New York

    Book  Google Scholar 

  • Bennett NC, Faulkes CG (2000) African Mole-rats: Ecology and Eusociality. Cambridge University Press, Cambridge

    Google Scholar 

  • Bennett NC, Faulkes CG, Hart L, Jarvis JUM (2009) Bathyergus suillus (Rodentia: Bathyergidae). Mammal Species 828:1–7

    Article  Google Scholar 

  • Bookstein FL (1991) Morphometric Tools for Landmark Data Geometry and Biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Bookstein FL, Gunz P, Mitteroecker P, Prossinger H, Schaefer K, Seidler H (2003) Cranial integration in Homo: singular warps analysis of the midsagittal plane in ontogeny and evolution. J Hum Evol 44:167–187

    Article  PubMed  Google Scholar 

  • Bryant JD, McKenna MC (1995) Cranial anatomy and phylogenetic position of Tsaganomys altaicus (Mammalia: Rodentia) from the Hsanda Gol Formation (Oligocene), Mongolia. Am Mus Novitates 3156:1–42

    Google Scholar 

  • Casanovas-Vilar I, Van Dam J (2013) Conservatism and adaptability during squirrel radiation: what is mandible shape telling us? PLoS ONE 8:e61298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chimimba CT, Sichilima AM, Faulkes CG, Bennett NC (2010) Ontogenetic variation and craniometric sexual dimorphism in the social Giant mole-rat, Fukomys mechowii (Rodentia: Bathyergidae), from Zambia. Afr Zool 45:160–176

    Article  Google Scholar 

  • Cook JA, Lessa EP, Hadly EA (2000) Paleontology, phylogenetic patterns, and macroevolutionary processes in subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life Underground: The Biology of Subterranean Rodents. University of Chicago Press, Chicago, pp 332–369

    Google Scholar 

  • Cox PG, Faulkes CG (2014) Digital dissection of the masticatory muscles of the naked mole-rat, Heterocephalus glaber (Mammalia, Rodentia). PeerJ 2:e448

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox PG, Jeffery N (2011) Reviewing the morphology of the jaw-closing musculature in squirrels, rats, and guinea pigs with contrast-enhanced microCT. Anat Rec 294:915–928

  • de Graaff G (1979) Molerats (Bathyergidae, Rodentia) in South African national parks: notes on the taxonomic “isolation” and hystricomorph affinities of the family. Koedoe 22:89–107

    Article  Google Scholar 

  • Druzinsky RE (2010) Functional anatomy of incisal biting in Aplodontia rufa and sciuromorph rodents. Part 1: masticatory muscles, skull shape and digging. Cells Tissues Organs 191:510–522

    Article  PubMed  PubMed Central  Google Scholar 

  • Dryden IL, Mardia KV (1998) Statistical Shape Analysis. Wiley, Chichester

    Google Scholar 

  • Ellerman JR (1940) The Families and Genera of Living Rodents. Vol. 1: Rodents Other than Muridae. British Museum (Natural History), London

    Google Scholar 

  • Fabre P-H, Hautier L, Dimitrov D, Douzery E (2012) A glimpse on the pattern of rodent diversification: a phylogenetic approach. BMC Evol Biol 12:1–19

    Article  Google Scholar 

  • Faulkes CG, Verheyen E, Verheyen W, Jarvis JUM, Bennett NC (2004) Phylogeographical patterns of genetic divergence and speciation in African mole-rats (Family: Bathyergidae). Mol Ecol 13:613–629

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Gomes Rodrigues H, Marangoni P, Šumbera R, Tafforeau P, Wendelen W, Viriot L (2011) Continuous dental replacement in a hyper-chisel tooth digging rodent. Proc Natl Acad Sci USA 108:17355–17359

    Article  PubMed Central  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  • Hart L, Chimimba CT, Jarvis JUM, O’Riain Justin, Bennett NC (2007). Craniometric sexual dimorphism and age variation in the South African Cape dune mole-rat (Bathyergus suillus). J Mammal 88:657–666

  • Hautier L, Lebrun R, Cox PG (2012) Patterns of covariation in the masticatory apparatus of hystricognathous rodents: implications for evolution and diversification. J Morphol 273:1319–1337

  • Hautier L, Lebrun R, Saksiri S, Michaux J, Vianey-Liaud M, Marivaux L (2011) Hystricognathy vs sciurognathy in the rodent jaw: a new morphometric assessment of hystricognathy applied to living fossil Laonastes (Rodentia, Diatomyidae). PLoS ONE 6:e18698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiiemae K (1971) The structure and function of the jaw muscles in the rat (Rattus norvegicus L.) III. The mechanics of the muscles. Zool J Linn Soc 50:111–132

    Article  Google Scholar 

  • Jardine PE, Janis CM, Sahney S, Benton MJ (2012) Grit not grass: concordant patterns of early origin of hypsodonty in Great Plains ungulates and Glires. Palaeogeogr Palaeoclim Palaeoecol 365–366:1–10

    Article  Google Scholar 

  • Kardong K (2006) Vertebrates - Comparative Anatomy, Function, Evolution, Fourth edition. McGraw-Hill, New York

    Google Scholar 

  • Kock D, Ingram CM, Frabotta LJ, Honeycutt RL, Burda H (2006) On the nomenclature of Bathyergidae and Fukomys N. Gen. (Mammalia: Rodentia). Zootaxa 1142:51–55

    Google Scholar 

  • Lacey EA, Patton JL, Cameron GN (2000) Life Underground: The Biology of Subterranean Rodents. University of Chicago Press, Chicago

    Google Scholar 

  • Landry SC (1957) The interrelationships of the New and Old World hystricomorph rodents. Univ Calif Pub Zool 56:1–118

    Google Scholar 

  • Lavocat R (1973) Les rongeurs du Miocène d’Afrique Orientale I. Miocène inférieur. Mém Trav EPHE, Inst Montpellier 1:1–284

    Google Scholar 

  • Lebrun R, Ponce de León MS, Tafforeau P, Zollikofer CPE (2010) Deep evolutionary roots of strepsirrhine primate labyrinthine morphology. J Anat 216:368–380

    Article  PubMed  PubMed Central  Google Scholar 

  • Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. http://mesquiteproject.org

  • Matthew WD, Granger W (1923) New Bathyergidae from the Oligocene of Mongolia. Am Mus Novitates 101:1–5

    Google Scholar 

  • Mein P, Pickford M (2008) Early Miocene Rodentia from the northern Sperrgebiet, Namibia. Mem Geol Sur Namibia 20:235–290

    Google Scholar 

  • Michaux J, Hautier L, Simonin T, Vianey-Liaud M (2008) Phylogeny, adaptation and mandible shape in Sciuridae (Rodentia, Mammalia). Mammalia 72:286–296

    Article  Google Scholar 

  • Midford PE, Garland T Jr, Maddison WP (2008) PDAP-PDTREE Package for Mesquite. http://mesquiteproject.org/pdap_mesquite/

  • Mora M, Olivares AI, Vassallo AI (2003) Size, shape and structural versatility of the skull of the subterranean rodent Ctenomys (Rodentia, Caviomorpha): functional and morphological analysis. Biol J Linn Soc 78:85–96

    Article  Google Scholar 

  • Morlok WF (1983) Vergleichend und funktionell-anatomische Untersuchungen an Kopf, Hals und Vorderextremität subterraner Nagetiere (Mammalia, Rodentia). Cour Forsch Senckenb 64:1–237

    Google Scholar 

  • Nevo E (1979) Adaptive convergence and divergence of subterranean mammals. Annu Rev Ecol Evol Syst 10:269–308

    Article  Google Scholar 

  • Nevo E (1999) Mosaic Evolution of Subterranean Mammals: Regression, Progression and Global Convergence. Oxford University Press, Oxford

    Google Scholar 

  • Nowak RM (1999) Walker’s Mammals of the World, Vol. II, 6th ed. Johns Hopkins University Press, Baltimore

  • Patterson BD, Upham NS (2014) A newly recognized family from the Horn of Africa, the Heterocephalidae (Rodentia: Ctenohystrica). Zool J Linn Soc 172:942–963

    Article  Google Scholar 

  • Renaud S, Gomes Rodrigues H, Ledevin R, Pisanu B, Chapuis J-L, Hardouin E (2015) Fast evolutionary response of house mice to anthropogenic disturbances on a sub-Antarctic island. Biol J Linn Soc 114:513–526

    Article  Google Scholar 

  • Rohlf FJ (1999) Shape statistics: Procrustes superimpositions and tangent spaces. J Classif 16:197–223

    Article  Google Scholar 

  • Specht M, Lebrun R, Zollikofer CPE (2007) Visualizing shape transformation between chimpanzee and human braincases. Visual Comput 23:743–751

    Article  Google Scholar 

  • Stein BR (2000) Morphology of subterranean rodents. In: Lacey EA, Patton JL, Cameron GN (eds) Life Underground: The Biology of Subterranean Rodents. University of Chicago Press, Chicago, pp 19–61

    Google Scholar 

  • Šumbera R, Mazoch V, Patzenhauerová H, Lövy M, Šklíba J, Bryja J, Burda H (2012) Burrow architecture, family composition and habitat characteristics of the largest social African mole-rat: the giant mole-rat constructs really giant burrow systems. Acta Theriol 57:121–130

    Article  Google Scholar 

  • Tullberg T (1899) Über das System der Nagethiere, eine phylogenetische Studie. Nova Acta Reg Soc Sci Upsala Ser 3 18:1–514

    Google Scholar 

  • Van Daele PAAG, Faulkes CG, Verheyen E, Adriaens D (2007) African mole-rats (Bathyergidae): a complex radiation in tropical soils. In: Begall S, Šumbera R, Schleich CE (eds) Subterranean Rodents: News from Underground. Springer-Verlag, Berlin, Heidelberg, New York, pp 358–373

  • Van Daele PAAG, Herrel A, Adriaens D (2009) Biting performance in teeth-digging African mole-rats (Fukomys, Bathyergidae, Rodentia). Physiol Biochem Zool 82:40–50

    Article  PubMed  Google Scholar 

  • Vassallo AI (1998) Functional morphology, comparative behaviour, and adaptation in two sympatric subterranean rodents, genus Ctenomys (Caviomorpha: Octodontidae). J Zool 244:415–427

    Article  Google Scholar 

  • Vleck D (1981) Burrow structure and foraging costs in the fossorial rodents, Thomomys bottae. Oecologia 49:391–396

    Article  Google Scholar 

  • Zelová J, Šumbera R, Sedláček F, Burda H (2007) Energetics in a solitary subterranean rodent, the silvery mole-rat, Heliophobius argenteocinereus, and allometry of RMR in African mole-rats (Bathyergidae). Comp Biochem Physiol Part A 147:412–419

    Article  Google Scholar 

  • Zelová J, Šumbera R, Okrouhlík J, Škliba J, Lövy M, Burda H (2011) A seasonal difference of daily energy expenditure in a free-living subterranean rodent, the silvery mole-rat (Heliophobius argenteocinereus; Bathyergidae). Comp Biochem Physiol Part A 158:17–21

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to R. Portela Miguez from the National History Museum of London, and to P. Mein from the Université Lyon 1 for providing access to their collections of rodents. We thank R. Lebrun (Institut des Sciences de l’Evolution de Montpellier) who kindly gave us access to MeshTools and Morphotools, and for his help during analyses, and to P.-H. Fabre (Institut des Sciences de l’Evolution de Montpellier) who allowed us to use his phylogenetic data on Ctenohystrica for PIC analyses. We also acknowledge P. Cox and A. McIntosh (Hull York Medical School) for fruitful discussions on African mole-rats and associated musculatures. Thanks to C. Charles (Institut de Génomique Fonctionnelle de Lyon, Structure Fédératrice de Recherche BioSciences UMS3444/US8, Gerland - Lyon Sud) for giving access to facilities associated with X-ray microtomography. The manuscript benefited from the constructive comments of two anonymous reviewers, and of the editor-in-chief, John Wible. This work was supported by La Fondation des Treilles (www.les-treilles.com, grant to H.G.R.), and by the Grant Agency of Czech Republic, n. 41-14-36098G (R.S.).

Compliance with Ethical Standards

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helder Gomes Rodrigues.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(DOC 56 kb)

Online Resource 2

(DOC 58 kb)

Online Resource 3

(DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes Rodrigues, H., Šumbera, R. & Hautier, L. Life in Burrows Channelled the Morphological Evolution of the Skull in Rodents: the Case of African Mole-Rats (Bathyergidae, Rodentia). J Mammal Evol 23, 175–189 (2016). https://doi.org/10.1007/s10914-015-9305-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-015-9305-x

Keywords

Navigation