Journal of Mammalian Evolution

, Volume 21, Issue 3, pp 271–284 | Cite as

Were There Miocene Meridiolestidans? Assessing the Phylogenetic Placement of Necrolestes patagonensis and the Presence of a 40 Million Year Meridiolestidan Ghost Lineage

  • Rachel N. O’Meara
  • Richard S. Thompson
Original Paper


The enigmatic mammal Necrolestes patagonensis from the Miocene of Patagonia possesses a highly apomorphic osteological form that has confounded phylogenetic interpretation for over a century. In this time it has been affiliated with both eutherians and metatherians; however, a recent study by Rougier et al. (Proc Natl Acad Sci USA 109:19871–19872, 2012) raises the intriguing possibility that Necrolestes is a relictual member of a clade of South American non-therian dryolestoids, the Meridiolestida. This group is known chiefly from the Cretaceous of South America and assignment of Necrolestes to Meridiolestida implies a ghost lineage of about 40 million years. Such a lengthy ghost lineage requires strong evidence, which minimizes potentially circular assumptions of anatomical homology. Here, we vary the coding of cusp homologies in Necrolestes, previously assumed to diverge from the metatherian pattern, and add zalambdodont and incipiently zalambdodont metatherian taxa to the analyses, in order to assess the effects of non-independent characters and taxon sampling on the original topology. The results of both maximum parsimony and Bayesian analysis using the Mk model show that these possible sources of bias have little effect on the topology and ultimately increase confidence in the placement of Necrolestes in Meridiolestida and its concomitant 40 million year ghost lineage. Additionally, our Bayesian analysis resolves Australosphenida in a trichotomy with Peramus and Vincelestes + Boreosphenida. This contrasts with the majority of existing topologies, and raises interesting questions regarding both the evolution of tribospheny and the use of the Mk model with paleontological datasets.


Necrolestes Meridiolestida Zalambdodonty Australosphenida Bayesian analysis Homology 



We would like to thank Robin Beck and one anonymous reviewer for their detailed comments and critique, which greatly improved both the analyses and content of our study. Thanks go to Dr. Robert Asher for providing the premise for this study, his many useful comments on the manuscript, as well as his support and encouragement throughout the project. Matt Lowe and the staff at the University Museum of Zoology, Cambridge provided support and access to specimens of Notoryctes. We also thank Nicola Heckeberg for support and assistance during data analyses, as well as Martin R. Smith for inspiring and assisting with the Bayes Factor analyses. RO’s work is funded by the Cambridge Home and EU Scholarship Scheme (CHESS).

Supplementary material

10914_2013_9252_MOESM1_ESM.docx (89 kb)
ESM 1 (DOCX 88 kb)
10914_2013_9252_MOESM2_ESM.txt (27 kb)
OMeara_and_Thompson_matrix (TXT 26 kb)


  1. Ameghino F (1891) Nuevos restos de mamíferos fósiles descubiertos por Carlos Ameghino en el Eoceno inferior de la Patagonia austral. Especies nuevas adiciones y correcciones. Rev Arg Hist Nat 1:289–328Google Scholar
  2. Archer M, Beck R, Gott M, Hand S, Godthelp H, Black K (2011) Australia’s first fossil marsupial mole (Notoryctemorphia) resolves controversies about their evolution and palaeoenvironmental origins. Proc R Soc B 278:1498–1506Google Scholar
  3. Archer M, Hand S, Godthelp H (1988) A new order of Tertiary zalambdodont marsupials. Science 239:1528–1531CrossRefPubMedGoogle Scholar
  4. Asher RJ, Horovitz I, Martin T, Sánchez-Villagra M (2007) Neither a rodent nor a platypus: a reexamination of Necrolestes patagonensis Ameghino. Am Mus Novitates 3546:1–40CrossRefGoogle Scholar
  5. Asher RJ, Maree S, Bronner G, Bennett NC, Bloomer P, Czechowski P, Meyer M, Hofreiter M (2010) A phylogenetic estimate for golden moles (Mammalia, Afrotheria, Chrysochloridae). BMC Evol Biol 10:69PubMedCentralCrossRefPubMedGoogle Scholar
  6. Asher RJ, Sánchez-Villagra M (2005) Locking yourself out: diversity among dentally zalambdodont therian mammals. J Mammal Evol 12:265–282Google Scholar
  7. Averianov A, Lopatin A (2008) ‘Protocone’ in a pretribosphenic mammal and upper dentition of tinodontid ‘symmetrodontans’. J Vertebr Palaeontol 28:548–552Google Scholar
  8. Averianov AO, Martin T, Lopatin AV (2013) A new phylogeny for basal Trechnotheria and Cladotheria and affinities of South American endemic Late Cretaceous mammals. Naturwissenschaften 100:311–326CrossRefPubMedGoogle Scholar
  9. Baele G, Lemey P, Bedford T, Rambaut A, Suchard MA, Alekseyenko AV (2012) Improving the accuracy of demographic and molecular clock comparison while accommodating phylogenetic uncertainty. Mol Biol Evol 29:2157–2167PubMedCentralCrossRefPubMedGoogle Scholar
  10. Beck RMD (2009) Was the Oligo-Miocene Australian metatherian Yalkaparidon a ‘mammalian woodpecker’? Biol J Linn Soc 97:1–17CrossRefGoogle Scholar
  11. Beck RMD, Travouillon KJ, Aplin KP, Godthelp H, Archer M (2013) The osteology and systematics of the enigmatic Australian Oligo-Miocene metatherian Yalkaparidon (Yalkaparidontidae; Yalkaparidontia; ?Australidelphia; Marsupialia). J Mammal Evol DOI  10.1007/s10914-013-9236-3 Google Scholar
  12. Bown TM, Kraus MJ (1979) Origin of the tribosphenic molar and metatherian and eutherian dental formulae. In: Lillegraven JA, Kielan-Jaworowska Z, Clemens WA (eds) Mesozoic Mammals: The First Two-thirds of Mammalian History. University of California Press, Berkeley, pp 172–181Google Scholar
  13. Brandley MC, Schmitz A, Reeder TW (2005) Partitioned Bayesian analyses, partition choice and the phylogenetic relationships of scincid lizards. Syst Biol 54:373–390CrossRefPubMedGoogle Scholar
  14. Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803CrossRefGoogle Scholar
  15. Bremer K (1994) Branch support and tree stability. Cladistics 10:295–304CrossRefGoogle Scholar
  16. Chimento NR, Agnolin FL, Novas FE (2012) The patagonian fossil mammal Necrolestes: a Neogene survivor of Dryolestoidea. Rev Mus Argent Cienc Nat 14:1–47Google Scholar
  17. Chow M, Rich THV (1982) Shuotherium dongi, n. gen . and sp., a therian with pseudo-tribosphenic molars from the Jurassic of Sichuan, China. Aust Mammal 5:127–142Google Scholar
  18. Clemens WA, Mills JRE (1971) Review of Peramus tenuirostris. Bull Brit Mus (Nat Hist) Geol 20: 89–113Google Scholar
  19. Crompton AW (1971) The origin of the tribosphenic molar. In: DM Kermack, KA Kermack (eds) Early Mammals. Zool J Linn Soc 50, Suppl 1: 65–87Google Scholar
  20. Davis BM (2011) Evolution of the tribosphenic molar pattern in early mammals, with comments on the “dual-origin” hypothesis. J Mammal Evol 18:227–244CrossRefGoogle Scholar
  21. de Pinna MGG (1991) Concepts and tests of homology in the cladistics paradigm. Cladistics 7:367–394CrossRefGoogle Scholar
  22. Fan Y, Wu R, Chen M-H, Kuo L, Lewis PO (2011) Choosing among partition models in Bayesian phylogenetics. Mol Biol Evol 28:523–532PubMedCentralCrossRefPubMedGoogle Scholar
  23. Felsenstein J (1978) The number of evolutionary trees. Syst Zool 27:27–33CrossRefGoogle Scholar
  24. Flynn JJ, Parrish JM, Rakotosamimanana B, Simpson WF, Wyss AE (1999) A Middle Jurassic mammal from Madagascar. Nature 401:57–60CrossRefGoogle Scholar
  25. Gelfo JN, Goin FJ, Woodburne MO, Muizon C de (2009) Biochronological relationships of the earliest South American Paleogene mammalian faunas. Palaeontology 52:251–269Google Scholar
  26. Gelfo JN, Pascual R (2001) Peligrotherium tropicalis (Mammalia, Dryolestida) from the early Paleocene of Patagonia, a survival from a Mesozoic Gondwanan radiation. Geodiversitas 23: 369–379Google Scholar
  27. Goin FJ, Abello A, Bellosi E, Kay R, Madden R, Carlini A (2007) Los Metatheria sudamericanos de comienzos del Neógeno (Mioceno temprano, edad-mamífero Colhuehuapense). Part I: Introducción, Didelphimorphia y Sparassodonta [The South American early Neogene Metatheria (early Miocene, Colhuehuapian mammal age). Part I: Introduction, Didelphimorphia and Sparassodonta]. Ameghiniana 44:29–71Google Scholar
  28. Gurovich Y, Beck RMD (2009) The phylogenetic affinities of the enigmatic mammaliam clade Gondwanatheria. J Mammal Evol 16:25–49CrossRefGoogle Scholar
  29. Hennig W (1966) Phylogenetic Systematics. University of Illinois Press, UrbanaGoogle Scholar
  30. Kangas AT, Evans AR, Thesleff I, Jernvall J (2004) Nonindependence of mammalian dental characters. Nature 432:211–214CrossRefPubMedGoogle Scholar
  31. Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90:773–795CrossRefGoogle Scholar
  32. Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the Age of Dinosaurs: Origins, Evolution and Structure. Columbia University Press, New YorkGoogle Scholar
  33. Ladevéze S, Asher RJ, Sánchez-Villagra MR (2008) Petrosal anatomy in the fossil mammal Necrolestes: evidence for metatherian affinities and comparisons with the extant marsupial mole. J Anat 213:686–697PubMedCentralCrossRefPubMedGoogle Scholar
  34. Lee MSY, Worthy TH (2012) Likelihood reinstates Archaeopteryx as a primitive bird. Biol Lett 8:299–303PubMedCentralCrossRefPubMedGoogle Scholar
  35. Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Syst Biol 50:913–925CrossRefPubMedGoogle Scholar
  36. Lillegraven JA (1974) Biogeographical considerations of the marsupial-placental dichotomy. Annu Rev Ecol Syst 5:263–283CrossRefGoogle Scholar
  37. Luo Z-X, Cifelli RL, Kielan-Jaworowska Z (2001) Dual origin of tribosphenic mammals. Nature 409:53–57CrossRefPubMedGoogle Scholar
  38. Luo Z-X, Ji Q, Yuan C-X (2007) Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature 450:93–97CrossRefPubMedGoogle Scholar
  39. Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47:1–78Google Scholar
  40. Luo Z-X, Martin T (2007) Analysis of molar structure and phylogeny of docodont genera. Bull Carnegie Mus Nat Hist 39:27–47Google Scholar
  41. Maddison WP (1993) Missing data versus missing characters in phylogenetic analysis. Syst Biol 42:576–581CrossRefGoogle Scholar
  42. Maddison WP, Maddison DR (2010) Mesquite: a modular system for evolutionary analysis. Version 2.75
  43. Martin T, Rauhut OWM (2005) Mandible and dentition of Asfaltomylos patagonicus (Australosphenida, Mammalia) and the evolution of tribosphenic teeth. J Vertebr Paleontol 25:414–425CrossRefGoogle Scholar
  44. McKenna MC (1975) Toward a phylogenetic classification of the Mammalia. In: Luckett WP, Szalay FS (eds) Phylogeny of the Primates. Plenum Press, New York, pp 21–46CrossRefGoogle Scholar
  45. Murray PF, Megirian D (2006) The Pwerte Marnte Marnte local fauna: a new vertebrate assemblage of presumed Oligocene age from the Northern Territory of Australia. Alcheringa Sp1:211–228Google Scholar
  46. Nixon KC (1999–2002) WinClada ver. 1.0000. Published by the author, Ithaca, NY, USAGoogle Scholar
  47. Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67CrossRefPubMedGoogle Scholar
  48. Patterson B (1958) Affinities of the patagonian fossil mammal Necrolestes. Breviora Mus Comp Zool 94:1–14Google Scholar
  49. Rambaut A, Drummond AJ (2007) Tracer v1.4, Available from
  50. Rauhut OWM, Martin T, Ortiz-Jaureguizar E, Puerta P (2002) A Jurassic mammal from South America. Nature 416:165–168CrossRefPubMedGoogle Scholar
  51. Rich TH, Flannery TF, Trusler P, Kool L, Klaveren NA, Vickers-Rich P (2002) Evidence that monotremes and ausktribosphenids are not sister groups. J Vertebr Paleontol 22:466–479Google Scholar
  52. Rich TH, Vickers-Rich P (2010) Pseudotribosphenic: the history of a concept. Vertebr PalAsiatic 48:336–347Google Scholar
  53. Rodgers J (2008) Notoryctes typhlops Digital Morphology
  54. Ronquist F, Teslenko M, Mark P, van der Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542Google Scholar
  55. Ronquist F, van der Mark P, Huelsenbeck JP (2009) Bayesian phylogenetic analysis using MrBayes, Theory. In: Lemey P, Salemi M, Vandamme A-M (eds) The Phylogenetic Handbook, a Practical Approach to Phylogenetic Analysis and Hypothesis Testing, 2nd edn. Cambridge University Press, Cambridge, pp 210–236CrossRefGoogle Scholar
  56. Rougier GW, Apesteguia S, Gaetano LC (2011) Highly specialized mammalian skulls from the Late Cretaceous of South America. Nature 479:98–102CrossRefPubMedGoogle Scholar
  57. Rougier GW, Martinelli AG, Forasiepi AM, Novacek MJ (2007) New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationships. Am Mus Novitates 3566:1–54Google Scholar
  58. Rougier GW, Wible JR, Beck RMD, Apesteguia S (2012) The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic nontherian lineage into the late Cenozoic of South America. Proc Natl Acad Sci USA 109:19871–19872CrossRefGoogle Scholar
  59. Rowe T, Rich TH, Vickers-Rich P, Springer M, Woodburne MO (2008) The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proc Natl Acad Sci USA 105:1238–1242PubMedCentralCrossRefPubMedGoogle Scholar
  60. Scott WB (1905) Insectivora and Glires. Reports of the Princeton University Expedition to Patagonia 1896–1899 5:365–499Google Scholar
  61. Sigogneau-Russell D (2003) Docodonts from the British Mesozoic. Acta Palaeontol Polonica 48:357–374Google Scholar
  62. Sigogneau-Russell D, Hooker JJ, Ensom PC (2001) The oldest tribosphenic mammal from Laurasia (Purbeck Limestone Group, Berriasian, Cretaceous, U.K.) and its bearing on the ‘dual origin’ of Tribosphenida. C R Acad Sci Paris, Earth Planet Sci 333:141–147Google Scholar
  63. Simmons MP (2012a) Radical instability and supurious branch support by likelihood when applied to matrices with non-random distributions of missing data. Mol Phylogenet Evol 62:472–484CrossRefPubMedGoogle Scholar
  64. Simmons MP (2012b) Misleading results of likelihood-based phylogenetic analyses in the presence of missing data. Cladistics 28:208–222CrossRefGoogle Scholar
  65. Spencer MR, Wilberg EW (2013) Efficacy or convenience? Model-based approaches to phylogeny estimation using morphological data. Cladistics DOI:  10.1111/cla.12018 Google Scholar
  66. Suzuki Y, Glazko GV, Nei M (2002) Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proc Natl Acad Sci USA 99:16138–16143PubMedCentralCrossRefPubMedGoogle Scholar
  67. Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods), Version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  68. Templeton AR (1983) Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37:221–244CrossRefGoogle Scholar
  69. Thompson RS, Bärmann EV, Asher RJ (2012) The interpretation of hidden support in combined data phylogenetics. J Zool Syst Evol Res 50:251–263CrossRefGoogle Scholar
  70. Van Valen L (1988) Faunas of a southern world. Nature 333:113CrossRefGoogle Scholar
  71. Wiens J, Morrill MC (2011) Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Syst Biol 60:719–731CrossRefPubMedGoogle Scholar
  72. Woodburne MO (2003) Monotremes as pretribosphenic mammals. J Mammal Evol 10:195–248CrossRefGoogle Scholar
  73. Woodburne MO, Goin FJ, Bond M, Carlini AA, Gelfo JN, López GM, Iglesias A, Zimicz AN (2013) Paleogene land mammal faunas of South America; a response to global climatic changes and indigenous floral diversity. J Mammal Evol doi:  10.1007/s10914-012-9222-1 Google Scholar
  74. Woodburne MO, Rich TH, Springer MS (2003) The evolution of tribospheny and the antiquity of mammalian clades. Mol Phylogenet Evol 28:360–385Google Scholar
  75. Xie W, Lewis PO, Fan Y, Kuo L, Chen M-H (2011) Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Syst Biol 60:150–160PubMedCentralCrossRefPubMedGoogle Scholar
  76. Xu X, Pol D (2013) Archaeopteryx, paravian phylogenetic analyses, and the use of probability-based methods for palaeontological datasets. J Syst Palaeontol DOI:  10.1080/14772019.2013.764357 Google Scholar
  77. Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov chain Monte Carlo method. Mol Biol Evol 14:717–724CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.The University Museum of ZoologyCambridgeUK

Personalised recommendations