Skip to main content
Log in

Digital Reconstruction of the Otic Region and Inner Ear of the Non-Mammalian Cynodont Brasilitherium riograndensis (Late Triassic, Brazil) and Its Relevance to the Evolution of the Mammalian Ear

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The external anatomy of the petrosal, the bony labyrinth of the inner ear, and the stapes of Brasilitherium riograndensis (specimen UFRGS-PV-1043-T) were investigated by digital 3D reconstructions based on μCT scan images. Brasilitherium is the most basal taxon bearing a distinct promontorium, although less inflated than that of Morganucodon and still lacking a flat medial facet. A bony wall formed by the petrosal separates the cochlear canal and the vestibule from the brain cavity, with an internal acoustic meatus bearing distinct foramina for the facial nerve (VII) and vestibulocochlear nerve (VIII). The semicircular canals are irregular in shape, the anterior canal being the largest and the lateral one the smallest. Brasilitherium has an elongated but straight cochlear canal. The stapes resembles the morphology of derived non-mammaliaform cynodonts, such as Probainognathus and Pachygenelus, and differs from Thrinaxodon. By the allometric relationship of the cochlear canal and the estimated body mass, Brasilitherium can be grouped with Yunnanodon and Morganucodon in a regression line, which is below the line of mammals and above the line of non-avian reptiles. Brasilitherium fits in a sequence of gradual elongation of the cochlear canal associated with the enhancement in the capacity to hear higher frequencies. Among the constraints that might have triggered these transformations in small, insectivorous, and possibly nocturnal Mesozoic cynodont taxa is the improvement of detecting acoustically active insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdala F (2007) Redescription of Platycraniellus elegans (Therapsida, Cynodontia) from the Lower Triassic of South Africa, and the cladistic relationships of eutheriodonts. Palaeontology 50(3): 591–618

    Article  Google Scholar 

  • Allin EF (1975) Evolution of the mammalian middle ear. J Morphol 147: 403–438.

    Article  CAS  PubMed  Google Scholar 

  • Allin EF (1986) The auditory apparatus of advanced mammal-like reptiles and early mammals. In: Hotton N III, Maclean PD, Roth JJ, Roth EC (eds) The Ecology and Biology of Mammal-like Reptiles. Smithsonian Institution Press, Washington, DC, pp 283–294

    Google Scholar 

  • Allin EF, Hopson JA (1992) Evolution of the auditory system in synapsida ("mammal-like reptiles" and primitive mammals) as seen in the fossil record. In: Popper AN, Webster DB, Fay RR (eds) The Evolutionary Biology of Hearing. Springer-Verlag, Berlin, pp. 587–614

  • Blanks RHI, Curthoys IS, Bennett ML, Markham CH (1985) Planar relationships of the semicircular canals in rhesus and squirrel monkeys. Brain Res 340: 315–324

    Article  CAS  PubMed  Google Scholar 

  • Blanks RHI, Estes MS, Markham CH (1975) Physiologic characteristics of vestibular first order canal neurons in cat. II. Response to constant angular acceleration. J Neurophysiol 38: 1250–1268

    CAS  PubMed  Google Scholar 

  • Bonaparte JF, Martinelli AG, Schultz CL (2005) New information on Brasilodon and Brasilitherium (Cynodontia, Probainognathia) from the Late Triassic of southern Brazil. Rev Brasil Paleontol 8(1):25–46

    Google Scholar 

  • Bonaparte JF, Martinelli AG, Schultz CL, Rupert R (2003) The sister group of mammals: small cynodonts from the Late Triassic of southern Brazil. Rev Brasil Paleontol 5: 5–27

    Google Scholar 

  • Brink AS (1955) A study on the skeleton of Diademodon. Palaeontol Afr 3:3–39

    Google Scholar 

  • Calabrese DR, Hullar TE (2006) Planar relationships of the two semicircular canals in two strains of mice. J Assoc Res Otolaryngol 7: 151–159

    Article  PubMed Central  PubMed  Google Scholar 

  • Cox CB (1962) A natural cast of the inner ear of a dicynodont. Am Mus Novitates 2116: 1–6

    Google Scholar 

  • Cox CB, Jeffery N (2010) Semicircular canals and agility: the influence of size and shape measures. J Anat 216: 37–47

    Article  PubMed Central  PubMed  Google Scholar 

  • Crompton AW (1964) On the skull of Oligokyphus. Bull Brit Mus Nat Hist Geol 21: 27–71

    Google Scholar 

  • Cummins H (1925) The vestibular labyrinth of the albino rat: form and dimensions and the orientation of the semicircular canals, cristae and maculae. J Comp Neurol 38: 399–445

    Article  Google Scholar 

  • Curthoys IS, Blanks RHI, Markham CH (1977) Semicircular canal radii of curvature (R) in cat, guinea pig and man. J Morphol 151: 1–16

    Article  CAS  PubMed  Google Scholar 

  • Ekdale EG, Rowe T (2011) Morphology and variation within the bony labyrinth of zhelestids (Mammalia, Eutheria) and other therian mammals. J Vertebr Paleontol 31:658–675

    Article  Google Scholar 

  • Estes R (1961) Cranial anatomy of the cynodont reptile Thrinaxodon liorhinus. Bull Mus Comp Zool 125: 165–180

    Google Scholar 

  • Fourie J (1974) The cranial morphology of Thrinaxodon liorhinus Seeley. Ann S Afr Mus 65: 337–400

    Google Scholar 

  • Fox RC, Meng J (1997) An X-radiograph and SEM study of the osseous inner ear of multituberculates and monotremes (Mammalia): implications for mammalian phylogeny and the evolution of hearing. Zool J Linn Soc 121: 249–291

    Article  Google Scholar 

  • Gingerich PD, Smith BH (1984) Allometric scaling in the dentition of primates and insectivores. In: Jungers WL (ed) Size and Scaling in Primate Biology. Plenum, New York, pp 257–272

  • Gow CE (1985) Apomorphies of the Mammalia. S Afr Sci 81: 558–560

    Google Scholar 

  • Gow CE (1986) A new skull of Megazostrodon (Mammalia, Triconodonta) from the Elliot Formation (Lower Jurassic) of southern Africa. Palaeontol Afr 26:13–23

    Google Scholar 

  • Graybeal A, Rosowski JJ, Ketten DR, Crompton AW (1989) Inner-ear structure in Morganucodon, an Early Jurassic mammal. Zool J Linn Soc 96: 107–117

    Article  Google Scholar 

  • Gu J-J, Montealegre-Z F, Robert D, Engel MS, Qiao G-X, Ren D (2012) Wing stridulation in a Jurassic katydid (Insecta, Orthoptera) produced low-pitched musical calls to attract females. Proc Natl Acad Sci USA, doi 10.1073/pnas.1118372109

  • Hopson JA (1964) The braincase of the advanced mammal-like reptile Bienotherium. Postilla 87: 1–30

    Google Scholar 

  • Hopson JA (1966) The origin of the mammalian middle ear. Am Zool 6: 437–450

    Article  CAS  PubMed  Google Scholar 

  • Hopson JA, Barghusen H (1986) An analysis of therapsid relationships. In: Hotton N III, Maclean PD, Roth JJ, Roth EC (eds) The Ecology and Biology of Mammal-like Reptiles. Smithsonian Institution Press, Washington, DC, pp 83–106

    Google Scholar 

  • Hopson JA, Kitching JW (2001) A probainognathian cynodont from South Africa and the phylogeny of non-mammalian cynodonts. In: Jenkins FA Jr, Shapiro MD, Owerkowicz T (eds) Studies in Organismic and Evolutionary Biology in Honor of Alfred W. Crompton. Bull Mus Comp Zool 156: 5–35

  • Hurum JH (1998) The inner ear of two Late Cretaceous multituberculate mammals, and its implications for multituberculate hearing. J Mammal Evol 5: 65–93

    Article  Google Scholar 

  • Kemp TS (1980) Aspects of the structure and functional anatomy of the Middle Triassic cynodont Luangwa. J Zool 191: 193–239

    Google Scholar 

  • Kermack KA, Mussett F, Rigney HW (1981) The skull of Morganucodon. Zool J Linn Soc 53: 87–175

    Article  Google Scholar 

  • Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the Age of Dinosaurs: Origin, Evolution, and Structure. Columbia University Press, New York, 630 pp

    Google Scholar 

  • Kühne WG (1956) The Liassic Therapsid Oligokyphus. Trustees of the British Museum (Natural History), London, 149 pp

    Google Scholar 

  • Ladevèze S, Muizon C de, Colbert M, Smith T (2010) 3D computational imaging of the petrosal of a new multituberculate mammal from the Late Cretaceous of China and its paleobiologic inferences. C R Palevol 9: 319–330

    Google Scholar 

  • Lillegraven JA, Hahn G (1993) Evolutionary analysis of the middle and inner ear of Late Jurassic multituberculates. J Mammal Evol 1: 47–74

    Article  Google Scholar 

  • Lillegraven JA, Krusat G (1991) Cranio-mandibular anatomy of Haldanodon exspectatus (Docodonta, Mammalia) from the Late Jurassic of Portugal and its implications to the evolution of mammalian characters. Contrib Geol Univ of Wyoming 28: 39–138

    Google Scholar 

  • Liu J, Olsen P (2010) The phylogenetic relationships of Eucynodontia (Amniota: Synapsida). J Mammal Evol 17:151–176.

    Article  Google Scholar 

  • Lucas SG, Luo Z-X (1993) Adelobasileus from the Upper Triassic of west Texas: the oldest mammal. J Vertebr Paleontol 13: 309–334

    Article  Google Scholar 

  • Luo Z-X (1994) Sister-group relationships of mammals and transformations of diagnostic mammalian characters In: Fraser NC, Sues HD (eds) In the Shadow of the Dinosaurs: Early Mesozoic Tetrapods. Cambridge University Press, New York, pp 98–128

    Google Scholar 

  • Luo Z–X (2001) Inner ear and its bony housing in tritylodonts and implications for evolution of mammalian ear. In: Jenkins FA Jr, Shapiro MD, Owerkowicz T (eds) Studies in Organismic and Evolutionary Biology in Honor of Alfred W. Crompton. Bull Mus Comp Zool 156: 81–97

  • Luo Z-X (2007) Transformation and diversification in early mammal evolution. Nature 450: 1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Luo Z-X (2011) Developmental patterns in Mesozoic evolution of mammal ears. Annu Rev Ecol Evol Syst 42: 355–380.

    Article  Google Scholar 

  • Luo Z-X, Crompton AW (1994) Transformation of quadrate (incus) through the transition from non-mammalian cynodonts to mammals. J Vertebr Paleontol 14: 341–374

    Article  Google Scholar 

  • Luo Z-X, Crompton AW, Lucas SG (1995) Evolutionary origins of the mammalian promontorium and cochlea. J Vertebr Paleontol 15: 113–121

    Article  Google Scholar 

  • Luo Z-X, Crompton AW, Sun A-L (2001) A new mammaliaform from the Early Jurassic and evolution of mammalian characteristics. Science 292:1535–1540

    Google Scholar 

  • Luo Z-X, Ketten DR (1991) CT scanning and computerized reconstructions of the inner ear structure of multituberculate mammals. J Vertebr Paleontol 11: 220–228

    Google Scholar 

  • Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47:1–78

    Google Scholar 

  • Luo Z-X, Ruf I, Martin T (2012) The petrosal and inner ear of the Late Jurassic cladotherian mammal Dryolestes leiriensis and implications for evolution of ear in therian mammals. Zool J Linn Soc 166:433–463.

    Article  Google Scholar 

  • Luo Z-X, Ruf I, Schultz JA, Martin T (2011) Fossil evidence on evolution of inner ear cochlea in Jurassic mammals. Proc R Soc B 278: 28–34

    Article  PubMed Central  PubMed  Google Scholar 

  • Luo Z-X, Wible JR (2005) A Late Jurassic digging mammal and early mammalian diversity. Science 308:103–107

    Article  CAS  PubMed  Google Scholar 

  • Manley GA (1971) Some aspects of the evolution of hearing in vertebrates. Nature 230: 506–509

    Article  CAS  PubMed  Google Scholar 

  • Manley GA (1973) A review of some currents concepts of the functional evolution of the ear. Evolution 26: 608–621

    Article  Google Scholar 

  • Martinez RN, May CL, Forster CA (1996) A new carnivorous cynodont from the Ischigualasto Formation (Late Triassic, Argentina), with comments on eucynodont phylogeny. J Vertebr Paleontol 16(2): 271–284

    Article  Google Scholar 

  • Matano S, Kubo T, Matsunaga T, Niemitz C, Günther M, Taub DM, King FA (1986) Current Perspectives in Primate Biology. Van Nostrand Reinhold, New York

    Google Scholar 

  • Meng J, Wyss AR (1995) Monotreme affinities and low-frequency hearing suggested by multituberculate ear. Nature 377: 141–144

    Article  CAS  Google Scholar 

  • Miao D (1988) Skull morphology of Lambdopsalis bulla (Mammalia, Multituberculata) and its implications to mammalian evolution. Contrib Geol Univ Wyoming 4: 1–104

    Google Scholar 

  • Novacek MJ, Wyss AR (1986) Origin and transformation of the mammalian stapes. Contrib Geol Univ Wyoming Spec Pap 3:35–53

    Google Scholar 

  • Olson EC (1944) Origin of mammals based upon the cranial-morphology of therapsid suborders. Geol Soc Am Spec Paper 55: 1–136

    Article  Google Scholar 

  • Quiroga JC (1979) The inner ear of two cynodonts (Reptilia—Therapsida) and some comments on the evolution of the inner ear from pelycosaurs to mammals. Gegenbaurs Morphol Jb 125: 178–190

    Google Scholar 

  • Ramprashad F, Landolt JP, Money KE, Laufer J (1980) Neuromorphometric features and dimensional analysis of the vestibular end organ in the little brown bat (Myotis lucifugus). J Comp Neurol 192: 883–902

    Article  CAS  PubMed  Google Scholar 

  • Romer AS (1970) The Chañares (Argentina) Triassic reptile fauna. VI. A chiniquodontid cynodont with an incipient squamosal-dentary jaw articulation. Breviora 344: 1–18

    Google Scholar 

  • Rosowski JJ, Graybeal A (1991) What did Morganucodon hear? Zool J Linn Soc 101: 131–168

    Article  Google Scholar 

  • Rougier GW, Wible JR, Hopson JA (1992) Reconstruction of the cranial vessels in the Early Cretaceous mammal Vincelestes neuquenianus: implications for the evolution of mammalian cranial vascular system. J Vertebr Paleontol 12: 188–216

    Google Scholar 

  • Rougier GW, Wible JR, Hopson JA (1996) Basicranial anatomy of Priacodon fruitaensis (Triconodontidae, Mammalia) from the Late Jurassic of Colorado, and a reappraisal of mammaliaform interrelationships. Am Mus Novitates 3183: 1–38.

    Google Scholar 

  • Rowe T (1988) Definition, diagnosis and origin of Mammalia. J Vertebr Paleontol 8(3): 241–264

    Article  Google Scholar 

  • Rowe T, Carlson W, Bottorff W (1993) Thrinaxodon, Digital Atlas of the Skull, CD-ROM. University of Texas Press, Austin

    Google Scholar 

  • Ruf I, Luo Z-X, Martin T (in press) Re-investigation of the basicranium of Haldanodon exspectatus (Docodonta, Mammaliaformes). J Vertebr Paleontol

  • Ruf I, Luo Z-X, Wible JR, Martin T (2009) Petrosal anatomy and inner ear structures of the Late Jurassic Henkelotherium (Mammalia, Cladotheria, Dryolestoidea): insight into the early evolution of the ear region in cladotherian mammals. J Anat 214: 679–693

    Article  PubMed Central  PubMed  Google Scholar 

  • Sigogneau D (1974) The inner ear of Gorgonops (Reptilia, Therapsida, Gorgonospsia). Ann S Afr Mus 64: 53–69

    Google Scholar 

  • Spoor F, Garland T Jr, Krovitz G, Ryan TM, Silcox MT, Walker A (2007) The primate semicircular canal system and locomotion. Proc Natl Acad Sci USA 104 (26): 10808–10812

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spoor F, Zonneveld F (1995) Morphometry of the primate bony labyrinth: a new method based on high-resolution computed tomography. J Anat 186:271–86

    PubMed Central  PubMed  Google Scholar 

  • Sues H-D (1986) The skull and dentition of two tritylodontid synapsids from the Lower Jurassic of western North America. Bull Mus Comp Zool 151: 217–268

    Google Scholar 

  • Sun A-L (1984) Skull morphology of the tritylodontid genus Bienotheroides of Sichuan. Sci Sinica Ser B 27: 270–284

    Google Scholar 

  • Sun A-L, Cui G-H (1987) Otic region in tritylodont Yunnanodon. Vertebr PalAsia 25: 1–7

    Google Scholar 

  • Wible JR (1991) Origin of Mammalia: the craniodental evidence reexamined. J Vertebr Paleontol 11: 1–28

    Article  Google Scholar 

  • Wible JR, Hopson JA (1993) Basicranial evidence for early mammal phylogeny. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Early Therians, and Marsupials. Sringer-Verlag, New York, pp 45–62

    Chapter  Google Scholar 

  • Williams PL, Williams R, Dyson M, Bannister LH (1989) Gray’s Anatomy, 37th edition. Churchill Livingstone, New York, 1,598 pp

    Google Scholar 

  • Zeller U (1989) The braincase of Ornithorhynchus. Fortschr Zool 35:386–391

    Google Scholar 

  • Zerfass H, Lavina EL, Schultz CL, Garcia AJV, Faccini UF, Chemale F Jr (2003) Sequence-stratigraphy of continental strata of southernmost Brazil: a contribution to Southwestern Gondwana palaeogeography and palaeoclimate. Sedimentary Geol 161: 85–105

    Article  Google Scholar 

Download references

Acknowledgments

We thank José Fernando Bonaparte, Wolfgang Maier, Zhe-Xi Luo, John R. Wible, Téo Veiga de Oliveira, Marina Bento Soares, Daniel Fortier, and Alessandra Boos. Irmgard Pfeifer-Schäller made the μCT scan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Gusmão Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, P.G., Ruf, I. & Schultz, C.L. Digital Reconstruction of the Otic Region and Inner Ear of the Non-Mammalian Cynodont Brasilitherium riograndensis (Late Triassic, Brazil) and Its Relevance to the Evolution of the Mammalian Ear. J Mammal Evol 20, 291–307 (2013). https://doi.org/10.1007/s10914-012-9221-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-012-9221-2

Keywords

Navigation