Skip to main content

Advertisement

Log in

Quaternary Climate Change was Not an Engine of Diversification in New World Bats (Chiroptera)

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Quaternary climate change has been hypothesized to have played a significant role in driving diversification rates in a variety of taxa. We test the hypothesis of increased rates of diversification during the Quaternary in nine groups of New World bats (Chiroptera). The fit of six models of diversification was determined for each group. None experienced an increase in net diversification, rejecting the Quaternary hypothesis. Instead, four groups experienced constant net diversification rates, suggesting no Quaternary climate change impact. Five groups are evolving under a density-dependent model of diversification, suggesting climate cycles may have reduced rates initiated during the Pliocene or late Miocene. The distribution of divergences between sister taxa is consistent with results obtained from avian lineages experiencing declining rates of Quaternary diversification, further discrediting this often invoked hypothesis. Our results suggest that Quaternary climate change did not increase diversification rates in New World bats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Avise JC, Walker D (1999) Species realities and numbers in sexual vertebrates: perspectives from an asexually transmitted genome. Proc Natl Acad Sci USA 96:992–995

    Article  PubMed  CAS  Google Scholar 

  • Barnosky A (2005) Effects of Quaternary climatic change on speciation in mammals. J Mammal Evol 12:247–264

    Article  Google Scholar 

  • Barrowclough GF, Zink RM (2009) Funds enough, and time: mtDNA, nuDNA and the discovery of divergence. Mol Ecol 18:2934–2936

    Article  CAS  Google Scholar 

  • Bradley RD, Baker RJ (2001) A test of the genetic species concept: cytochrome-b sequences and mammals. J Mammal 82:960–973

    Article  Google Scholar 

  • Cicero C, Johnson NK, Harrison R (2006) The tempo of avian diversification: reply. Evolution 60:413–414

    Google Scholar 

  • Crisp MD, Cook LG (2009) Explosive radiation or cryptic mass extinction? Interpreting signatures in molecular phylogenies. Evolution 63:2257–2265

    Article  PubMed  Google Scholar 

  • Drummond A, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. Bmc Evol Biol 7:214

    Article  PubMed  Google Scholar 

  • Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. Plos Biol 4:e88

    Article  PubMed  Google Scholar 

  • Edwards SV, Beerli P (2000) Perspective: gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54:1839–1854

    PubMed  CAS  Google Scholar 

  • Edwards SV, Kingan SB, Calkins JD, Balakrishnan CN, Jennings WB, Swanson WJ, Sorenson MD (2005) Speciation in birds: genes, geography, and sexual selection. Proc Natl Acad Sci USA 102: 6550–6557

    Article  PubMed  CAS  Google Scholar 

  • Gissi C, Reyes A, Pesole G, Saccone C (2000) Lineage-specific evolutionary rate in mammalian mtDNA. Mol Biol Evol 17:1022–1031

    PubMed  CAS  Google Scholar 

  • Irwin D, Kocher T, Wilson A (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144

    Article  PubMed  CAS  Google Scholar 

  • Klicka J, Zink RM (1997) The importance of recent ice ages in speciation: a failed paradigm. Science 277:1666–1669

    Article  CAS  Google Scholar 

  • Klicka J, Zink RM (1999) Pleistocene effects on North American songbird evolution. Proc R Soc of Lond B Biol Sci 266:695–700

    Article  Google Scholar 

  • Levinton JS (1979) A theory of diversity equilibrium and morphological evolution. Science 204:335–336

    Article  PubMed  CAS  Google Scholar 

  • Lister AM (2004) The impact of Quaternary Ice Ages on mammalian evolution. Phil Trans R Soc Lond B Biol Sci 359:221–241

    Article  Google Scholar 

  • Lovette IJ (2005) Glacial cycles and the tempo of avian speciation. Trends Ecol Evol 20:57–59

    Article  PubMed  Google Scholar 

  • Mayr E (1970) Populations, Species, and Evolution; an Abridgment of Animal Species and Evolution. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • McPeek MA (2008) The ecological dynamics of clade diversification and community assembly. Am Nat 172:E270-284

    Article  PubMed  Google Scholar 

  • Mengel RM (1964) The probable history of species formation in some northern wood warblers (Parulidae). Living Bird 3:9–43

    Google Scholar 

  • Moritz C, Patton JL, Schneider CJ, Smith TB (2000) Diversification of rainforest faunas : an integrated molecular approach. ETATS-UNIS: Annual Reviews

  • Nee S (2006) Birth-death models in macroevolution. Annu Rev Ecol, Evol Syst 37:1–17

    Article  Google Scholar 

  • Phillimore AB, Price TD (2008) Density-dependent cladogenesis in birds. Plos Biol 6:e71

    Google Scholar 

  • Posada D (2008) jModelTest: Phylogenetic Model Averaging. Mol Biol Evol 25:1253–1256

    Article  PubMed  CAS  Google Scholar 

  • R Core Development Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rabosky DL (2006) Likelihood methods for detecting temporal shifts in diversification rates. Evolution 60:1152–1164

    PubMed  Google Scholar 

  • Rabosky DL, Lovette IJ (2008) Explosive evolutionary radiations: decreasing speciation or increasing extinction through time? Evolution 62:1866–1875

    Article  PubMed  Google Scholar 

  • Rand AL (1948) Glaciation, an isolating factor in speciation. Evolution 2:314–321

    Article  PubMed  CAS  Google Scholar 

  • Revell LJ, Harmon LJ, Glor RE (2005) Underparameterized model of sequence evolution leads to bias in the estimation of diversification rates from molecular phylogenies. Syst Biol 54:973–983

    Article  PubMed  Google Scholar 

  • Rull V (2008) Speciation timing and neotropical biodiversity: the Tertiary-Quaternary debate in the light of molecular phylogenetic evidence. Mol Ecol 17:2722–2729

    Article  PubMed  Google Scholar 

  • Stevens RD, Cox SB, Strauss RE, Willig MR (2003) Patterns of functional diversity across an extensive environmental gradient: vertebrate consumers, hidden treatments and latitudinal trends. Ecol Lett 6:1099–1108

    Article  Google Scholar 

  • Weir JT (2006) Divergent timing and patterns of species accumulation in lowlands and highland neotropical birds. Evolution 60:842–855

    PubMed  Google Scholar 

  • Weir JT, Schluter D (2004) Ice sheets promote speciation in boreal birds. Proc Biol Sci 271:1881–1887

    Article  PubMed  Google Scholar 

  • Weir JT, Schluter D (2007) The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315:1574–1576

    Article  PubMed  CAS  Google Scholar 

  • Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17:2107–2121

    Article  PubMed  CAS  Google Scholar 

  • Zink RM, Slowinski JB (1995) Evidence from molecular systematics for decreased avian diversification in the Pleistocene Epoch. Proc Natl Acad Sci USA 92:5832–5835

    Article  PubMed  CAS  Google Scholar 

  • Zink RM, Klicka J, Barber BR (2004) The tempo of avian diversification during the Quaternary. Phil Trans R Soc Lond B 359:215–219

    Article  Google Scholar 

Download references

Acknowledgments

We thank A. W. Jones, J. J. Johnson, P. B Berendzen, R. M. Zink, and two anonymous reviewers for comments. D. Rabosky provided assistance with LASER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian R. Barber.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 4.59 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barber, B.R., Jensen, G. Quaternary Climate Change was Not an Engine of Diversification in New World Bats (Chiroptera). J Mammal Evol 19, 129–133 (2012). https://doi.org/10.1007/s10914-011-9180-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-011-9180-z

Keywords

Navigation