Skip to main content

Advertisement

Log in

Evolution of the Tribosphenic Molar Pattern in Early Mammals, with Comments on the “Dual-Origin” Hypothesis

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Development of the tribosphenic molar was a fundamental event that likely influenced the rise of modern mammals. This multi-functional complex combined shearing and grinding in a single chewing stroke, and provided the base morphology for the later evolution of the myriad dental morphologies employed by mammals today. Here a series of morphotypes are presented that represent stepwise acquisition of characters of the molar crown, in an effort to clarify homologies and functional analogies among molars of tribosphenic and tribosphenic-like mammals, as well as their putative sister groups. This is accomplished by evaluation of wear features, which provide direct evidence of occlusal function, and mapping these features on molars of the various morphotypes demonstrates their utility in determining homology. The original singular lower molar talonid cusp is homologous with the hypoconid, and upper molar cusp C in early mammals is homologous with the metacone (cusp “C” is a neomorph with variable occurrence). The lingual translation of the metacone to a position more directly distal to the paracone (as in Peramus) creates an embrasure for the lower molar hypoconid, and is accompanied by the development of the hypoconulid and a new shearing surface. Lastly, the Gondwanan radiation of tribosphenic-like mammals, the Australosphenida (including monotremes), is determined to be functionally non-tribosphenic. The Tribosphenida are restricted to Laurasian taxa, with an origin at or just prior to the Jurassic-Cretaceous boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Archer M, Flannery TF, Ritchie A, Molnar R (1985) First Mesozoic mammal from Australia–an Early Cretaceous monotreme. Nature 318: 363–366

    Article  Google Scholar 

  • Averianov AO, Lopatin AV, Krasnnolutskii SA, Ivantsov SV (2010) New docodontans from the Middle Jurassic of Siberia and reanalysis of Docodonta interrelationships. Proc Zool Inst Rus Acad Sci 314: 121–148

    Google Scholar 

  • Bown TM, Kraus MJ (1979) Origin of the tribosphenic molar and metatherian and eutherian dental formulae. In: JA Lillegraven, Z Kielan-Jaworowska, WA Clemens (eds) Mesozoic Mammals: The First Two-thirds of Mammalian History. University of California Press, Berkeley, pp 172–181

    Google Scholar 

  • Broderip WJ (1828) Observations on the jaw of a fossil mammiferous animal found in the Stonesfield Slate. Zool J Lond 3: 408–412

    Google Scholar 

  • Butler PM (1939) The teeth of the Jurassic mammals. Proc Zool Soc Lond 109: 329–356

    Google Scholar 

  • Butler PM (1990) Early trends in the evolution of tribosphenic molars. Biol Rev 65: 529–552

    Article  Google Scholar 

  • Butler PM, Clemens WA Jr (2001) Dental morphology of the Jurassic holotherian mammal Amphitherium, with a discussion of the evolution of mammalian post-canine dental formulae. Palaeontology 44: 1–20

    Article  Google Scholar 

  • Chow M, Rich TH (1982) Shuotherium dongi, n. gen. and sp., a therian with pseudo-tribosphenic molars from the Jurassic of Sichuan, China. Aust Mammal 5: 127–142

    Google Scholar 

  • Cifelli RL (1999) Tribosphenic mammal from the North American Early Cretaceous. Nature 401: 363–366

    PubMed  CAS  Google Scholar 

  • Clemens WA, Mills JRE (1971) Review of Peramus tenuirostris. Bull Br Mus (Nat Hist) Geol 20: 89–113

    Google Scholar 

  • Cope ED (1884) The Tertiary Marsupialia. Am Nat 18: 686–697

    Article  Google Scholar 

  • Crompton AW (1971) The origin of the tribosphenic molar. In: DM Kermack, KA Kermack (eds) Early Mammals. Zool J Linn Soc 50, Suppl 1: 65–87

  • Crompton AW, Hiiemae KM (1970) Molar occlusion and mandibular movements during occlusion in the American opossum, Didelphis marsupialis. Zool J Linn Soc 49: 21–47

    Article  Google Scholar 

  • Crompton AW, Jenkins FA, Jr (1968) Molar occlusion in Late Triassic mammals. Biol Rev 43: 427–458

    Article  PubMed  CAS  Google Scholar 

  • Dashzeveg D (1975) New primitive therian from the Early Cretaceous of Mongolia. Nature 256: 402–403

    Article  Google Scholar 

  • Dashzeveg D (1979) Arguimus khosbajari gen. n., sp. n. (Peramuridae, Eupantotheria) from the Lower Cretaceous of Mongolia. Acta Palaeontol Pol 24: 199–204

    Google Scholar 

  • Dashzeveg D, Kielan-Jaworowska Z (1984) The lower jaw of an aegialodontid mammal from the Early Cretaceous of Mongolia. Zool J Linn Soc 82: 217–227

    Article  Google Scholar 

  • Davis BM (2011) A novel interpretation of the tribosphenidan mammal Slaughteria eruptens from the Early Cretaceous Trinity Group, and implications for dental formula in early mammals. J Vertebr Paleontol 31: 676–683

    Article  Google Scholar 

  • Davis BM, Cifelli RL (in press) Reappraisal of the tribosphenidan mammals from the Trinity Group (Aptian-Albian) of Texas and Oklahoma. Acta Palaeontol Pol 56

  • Davis BM, Cifelli RL, Kielan-Jaworowska Z (2008) Earliest evidence of Deltatheroida (Mammalia: Metatheria) from the Early Cretaceous of North America. In: EJ Sargis, M Dagosto (eds) Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay. Springer, Dordrecht, pp 3–24

    Chapter  Google Scholar 

  • Flannery TF, Archer M, Rich TH, Jones R (1995) A new family of monotremes from the Cretaceous of Australia. Nature 377: 418–420

    Article  CAS  Google Scholar 

  • Flynn JJ, Parrish JM, Rakotosamimanana B, Simpson WF, Wyss AE (1999) A Middle Jurassic mammal from Madagascar. Nature 401: 57–60

    Article  CAS  Google Scholar 

  • Fox RC (1976) Additions to the mammalian local fauna from the upper Milk River Formation (Upper Cretaceous), Alberta. Can J Earth Sci 13: 1105–1118

    Article  Google Scholar 

  • Fraser NC, Walkden GM, Stewart V (1985) The first pre-Rhaetic therian mammal. Nature 314: 161–162

    Article  Google Scholar 

  • Freeman EF (1976) Mammal teeth from the Forest Marble (Middle Jurassic) of Oxfordshire, England. Science 194: 1053–1055

    Article  PubMed  CAS  Google Scholar 

  • Freeman EF (1979) A Middle Jurassic mammal bed from Oxfordshire. Palaeontology: 135–166

  • Granger W (1915) New evidence of the affinities of the Multituberculata. Bull Geol Soc Am (Abstracts) 26: 152

    Google Scholar 

  • Gregory WK (1910) The orders of mammals. Bull Am Mus Nat Hist 27: 1–524

    Google Scholar 

  • Gregory WK, Simpson GG (1926) Cretaceous mammal skulls from Mongolia. Am Mus Novitates 225: 1–20

    Google Scholar 

  • Hopson JA (1997) Is cusp C of the upper molars of Kuehneotherium homologous with the metacone of Peramus and tribosphenic mammals? J Vertebr Paleontol 17, suppl to 3: 53A

    Google Scholar 

  • Hu Y, Meng J, Li C, Wang Y (2010) New basal eutherian mammal from the Early Cretaceous Jehol biota, Liaoning, China. Proc R Soc B 277: 229–236

    Article  PubMed  Google Scholar 

  • Hunter JP (2004) Alternative interpretation of molar morphology and wear in the Early Cretaceous mammal Ausktribosphenos. J Vertebr Paleontol 24, suppl to 3: 73A

    Google Scholar 

  • Ji Q, Luo Z, Wible JR, Zhang J-P, Georgi JA (2002) The earliest known eutherian mammal. Nature 416: 816–822

    Article  PubMed  CAS  Google Scholar 

  • Ji Q, Luo Z-X, Zhang X, Yuan C-X, Xu L (2009) Evolutionary development of the middle ear in Mesozoic therian mammals. Science 326: 278–281

    Article  PubMed  CAS  Google Scholar 

  • Kermack DM, Kermack KA, Mussett F (1968) The Welsh pantothere Kuehneotherium praecursoris. Zool J Linn Soc 47: 407–423

    Article  Google Scholar 

  • Kermack KA, Lees PM, Mussett F (1965) Aegialodon dawsoni, a new trituberculosectorial tooth from the lower Wealden. Proc R Soc B 162: 535–554

    Article  CAS  Google Scholar 

  • Kermack KA, Mussett F (1958) The jaw articulation of the Docodonta and the classification of Mesozoic mammals. Proc R Soc B 149: 204–215

    Article  CAS  Google Scholar 

  • Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (1998) Alleged Cretaceous placental from down under. Lethaia 31: 267–268

    Article  Google Scholar 

  • Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the Age of Dinosaurs: Structure, Relationships, and Paleobiology, Columbia Univeristy Press, New York

    Google Scholar 

  • Kielan-Jaworowska Z, Dashzeveg D (1989) Eutherian mammals from the Early Cretaceous of Mongolia. Zool Scr 18: 347–355

    Article  Google Scholar 

  • Krusat G (1980) Contribuçao para o conhecimento da fauna do Kimeridgiano da mina de lignito Guimarota (Leiria, Portugal). IV Parte. Haldanodon exspectatus Kuhne & Krusat 1972 (Mammalia, Docodonta). Mem Serv Geol Portugal 27: 1–79

    Google Scholar 

  • Krusat G (1991) Functional morphology of Haldanodon exspectatus (Mammalia, Docodonta) from the Upper Jurassic of Portugal. In: Z Kielan-Jaworowska, N Heintz, HA Nakrem (eds) Fifth Symposium on Mesozoic Terrestrial Ecosystems and Biota Contributions from the Paleontological Museum, University of Oslo, 363, Oslo, pp 37–38

    Google Scholar 

  • Lopatin AV, Averianov AO (2006a) Revision of a pretribosphenic mammal Arguimus from the Early Cretaceous of Mongolia. Acta Palaeontol Pol 51: 339–349

    Google Scholar 

  • Lopatin AV, Averianov AO (2006b) An aegialodontid upper molar and the evolution of mammalian dentition. Science 313: 1092

    Article  PubMed  CAS  Google Scholar 

  • Lopatin AV, Averianov AO (2007) Kielantherium, a basal tribosphenic mammal from the Early Cretaceous of Mongolia, with new data on the aegialodontian dentition. Acta Palaeontol Pol 52: 441–446

    Google Scholar 

  • Lopatin AV, Maschenko EN, Averianov AO, Reszvyi AS, Skutchas PP, Leshchinskiy SV (2005) Early Cretaceous mammals from western Siberia. 1. Tinodontidae. Paleontol Zurnal 39: 523–534

    Google Scholar 

  • Luo Z-X, Cifelli RL, Kielan-Jaworowska Z (2001) Dual origin of tribosphenic mammals. Nature 409: 53–57

    Article  PubMed  CAS  Google Scholar 

  • Luo Z-X, Ji Q, Wible JR, Yuan C (2003) An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302: 1934–40

    Article  PubMed  CAS  Google Scholar 

  • Luo Z-X, Ji Q, Yuan C-X (2007) Convergent dental adaptations in pseudo-tribosphenic and tribosphenic mammals. Nature 450: 93–97

    Article  PubMed  CAS  Google Scholar 

  • Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2002) In quest for a phylogeny of Mesozoic mammals. Acta Palaeontol Pol 47: 1–78

    Google Scholar 

  • Luo Z-X, Martin T (2007) Analysis of molar structure and phylogeny of docodont genera. Bull Carnegie Mus Nat Hist 39: 27–47

    Article  Google Scholar 

  • Marsh OC (1880) Notice on Jurassic mammals representing two new orders. Am J Sci 20: 235–239

    Google Scholar 

  • Marshall LG, Kielan-Jaworowska Z (1992) Relationships of the dog-like marsupials, deltatheroidans and early tribosphenic mammals. Lethaia 25: 361–374

    Article  Google Scholar 

  • Martin T (2002) New stem-line representatives of Zatheria (Mammalia) from the Late Jurassic of Portugal. J Vertebr Paleontol 22: 332–348

    Article  Google Scholar 

  • Martin T (2005) Postcranial anatomy of Haldanodon exspectatus (Mammalia, Docodonta) from the Late Jurassic (Kimmeridgian) of Portugal and its bearing for mammalian evolution. Zool J Linn Soc 145: 219–245

    Article  Google Scholar 

  • Martin T, Rauhut OWM (2005) Mandible and dentition of Asfaltomylos patagonicus (Australosphenida, Mammalia) and the evolution of tribosphenic teeth. J Vertebr Paleontol 25: 414–425

    Article  Google Scholar 

  • McKenna MC (1975) Toward a phylogenetic classification of the Mammalia. In: WP Luckett, FS Szalay (eds) Phylogeny of the Primates. Plenum, New York, pp 21–46

    Google Scholar 

  • McKenna MC, Bell SK (1997) Classification of Mammals Above the Species Level. Columbia University Press, New York

    Google Scholar 

  • Mills JRE (1964) The dentitions of Peramus and Amphitherium. Proc Linn Soc Lond 175: 117–133

    Article  Google Scholar 

  • Mills JRE (1966) The functional occlusion of the teeth of Insectivora. Zool J Linn Soc 47: 1–25

    Google Scholar 

  • Osborn HF (1888a) On the structure and classification of the Mesozoic Mammalia. J Nat Acad Sci 9: 186–265

    Google Scholar 

  • Osborn HF (1888b) The evolution of mammalian molars to and from the tritubercular type. Am Nat 22: 1067–1079

    Article  Google Scholar 

  • Osborn HF (1907a) Evolution of Mammalian Molar Teeth. The MacMillan Company, New York

    Google Scholar 

  • Osborn HF (1907b) Evolution of mammalian molar teeth to and from the triangular type including collected and revised research on trituberculity and new sections on the forms and homologies of the molar teeth in different orders of mammals. Biol Stud Addresses 1: 1–245

    Google Scholar 

  • Owen R (1871) Monograph of the fossil Mammalia of the Mesozoic formations. Monogr Palaeontol Soc 33: 1–115

    Google Scholar 

  • Pascual R, Archer M, Ortiz-Jaureguizar E, Prado JL, Godthelp H, Hand SJ (1992) First discovery of monotremes in South America. Nature 356: 704–705

    Article  Google Scholar 

  • Patterson B (1956) Early Cretaceous mammals and the evolution of mammalian molar teeth. Fieldiana: Geol 13: 1–105

    Google Scholar 

  • Prothero DR (1981) New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria. Bull Am Mus Nat Hist 167: 277–326

    Google Scholar 

  • Rauhut OWM, Martin T, Ortiz-Jaureguizar EO, Puerta P (2002) A Jurassic mammal from South America. Nature 416: 165–168

    Article  PubMed  CAS  Google Scholar 

  • Rich TH, Flannery TF, Vickers-Rich P (1998) Alleged Cretaceous placental from down under: reply. Lethaia 31: 346–348

    Article  Google Scholar 

  • Rich TH, Flannery TF, Trusler P, Kool L, van Klaveren N, Vickers-Rich P (2001) A second tribosphenic mammal from the Mesozoic of Australia. Records Queen Victoria Mus 110: 1–9

    Google Scholar 

  • Rich TH, Vickers-Rich P, Constantine A, Flannery TF, Kool L, van Klaveren N (1997) A tribosphenic mammal from the Mesozoic of Australia. Science 278: 1438–1442

    Article  PubMed  CAS  Google Scholar 

  • Rich TH, Vickers-Rich P, Constantine A, Flannery TF, Kool L, van Klaveren N (1999) Early Cretaceous mammals from Flat Rocks, Victoria, Australia. Records Queen Victoria Mus 106: 1–35

    Google Scholar 

  • Rougier GW, Martinelli AG, Forasiepi AM, Novacek MJ (2007) New Jurassic mammals from Patagonia, Argentina: a reappraisal of australosphenidan morphology and interrelationships. Am Mus Novitates 3566: 1–54

    Article  Google Scholar 

  • Rougier GW, Qiang J, Novacek MJ (2003a) A new symmetrodont mammal with fur impressions from the Mesozoic of China. Acta Geo Sin 77: 7–14

    Article  Google Scholar 

  • Rougier GW, Spurlin BK, Kik PK (2003b) A new specimen of Eurylambda aequicrurius and considerations on “symmetrodont” dentition and relationships. Am Mus Novitates 3394: 1–15

    Article  Google Scholar 

  • Rougier GW, Wible JR, Novacek MJ (2004) New specimen of Deltatheroides cretacicus (Metatheria, Deltatheroida) from the Late Cretaceous of Mongolia. Bull Carnegie Mus Nat Hist 36: 245–266

    Article  Google Scholar 

  • Rowe TB (1988) Definition, diagnosis, and origin of Mammalia. J Vertebr Paleontol 8: 241–264

    Article  Google Scholar 

  • Rowe TB, Rich TH, Vickers-Rich P, Springer MS, Woodburne MO (2008) The oldest platypus and its bearing on divergence timing of the platypus and echidna clades. Proc Natl Acad Sci USA 105: 1238–1242

    Article  PubMed  CAS  Google Scholar 

  • Sigogneau-Russell D (1998) Discovery of a Late Jurassic Chinese mammal in the upper Bathonian of England. CR Acad Sci III-Vie 327: 571–576

    Google Scholar 

  • Sigogneau-Russell D (1999) Réévaluation des Peramura (Mammalia, Theria) sur la base de nouveaux spécimens du Crétacé inférieur d’Angleterre et du Maroc. Geodiversitas 21: 93–127

    Google Scholar 

  • Sigogneau-Russell D (2003) Holotherian mammals from the Forest Marble (Middle Jurassic of England). Geodiversitas 25: 501–537

    Google Scholar 

  • Sigogneau-Russell D, Hooker JJ, Ensom PC (2001) The oldest tribosphenic mammal from Laurasia (Purbeck Limestone Group, Berriasian, Cretaceous, UK) and its bearing on the “dual origin” of Tribosphenida. CR Acad Sci III-Vie 333: 141–147

    Google Scholar 

  • Simpson GG (1928) A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. Trustees of the British Museum, London

    Google Scholar 

  • Simpson GG (1929) American Mesozoic Mammalia. Mem Peabody Mus 3: 1–235

    Google Scholar 

  • Simpson GG (1936) Studies of the earliest mammalian dentitions. Dental Cosmos 78: 791–800, 940–953

    Google Scholar 

  • Slaughter BH (1971) Mid-Cretaceous (Albian) therians of the Butler Farm local fauna, Texas. In: DM Kermack, KA Kermack (eds) Early Mammals. Zool J Linn Soc 50, Suppl 1: 131–143

  • Wang Y-Q, Clemens WA, Hu Y-M, Li C-K (1998) A probable pseudo-tribosphenic upper molar from the Late Jurassic of China and the early radiation of the Holotheria. J Vertebr Paleontol 18: 777–787

    Article  Google Scholar 

  • Wible JR, Rougier GW, Novacek MJ, Asher RJ (2009) The eutherian mammal Maelestes gobiensis from the Late Cretaceous of Mongolia and the phylogeny of Cretaceous Eutheria. Bull Am Mus Nat Hist 327: 1–123

    Article  Google Scholar 

  • Woodburne MO, Tedford RH (1975) The first Tertiary monotreme from Australia. Am Mus Novit 2588: 1–11

    Google Scholar 

Download references

Acknowledgments

I would like to thank my dissertation committee, Rich Cifelli, Nick Czaplewski, Cindy Gordon, Rick Lupia, Laurie Vitt, and Steve Westrop (all University of Oklahoma, Norman, USA). Access to specimens was provided by Jerry Hooker, Andy Currant, and Pip Brewer (Natural History Museum, London, UK), Guillermo Rougier (University of Louisville, Louisville, USA), Bill Simpson (Field Museum, Chicago, USA), and John Flynn (American Museum of Natural History, New York, USA). I benefited from very useful discussions with Rich Cifelli and Guillermo Rougier. Thoughtful reviews of the manuscript were provided by Guillermo Rougier and an anonymous reviewer. This project was possible through funding by a Stephen J. Gould Grant from the Geological Society of America, as well as funding from the College of Arts and Sciences, Department of Zoology, Graduate Student Senate, and a Robberson Research Grant from the Graduate College, University of Oklahoma.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, B.M. Evolution of the Tribosphenic Molar Pattern in Early Mammals, with Comments on the “Dual-Origin” Hypothesis. J Mammal Evol 18, 227–244 (2011). https://doi.org/10.1007/s10914-011-9168-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-011-9168-8

Keywords

Navigation