Skip to main content

Life on the Half-Shell: Consequences of a Carapace in the Evolution of Armadillos (Xenarthra: Cingulata)

Abstract

Without doubt, the possession of an armored carapace represents one of the most conspicuous morphological features of all cingulates. Here, we review some of the many ways in which the carapace may have influenced the evolution of other features of extant armadillos (Xenarthra: Cingulata). Effects range from physiological impacts on respiration and thermoregulation, to mechanical and other constraints on reproduction. Additionally, in mammals, armor has been linked with relatively slow plantigrade locomotion, which in turn may have promoted the low metabolic rate and exploitation of a low quality diet typically observed in armadillos. Finally, this network of relationships may help to explain the lack of any obvious kin-selected altruism in the polyembryonic armadillos, such as the nine-banded armadillo (Dasypus novemcinctus), because of time and energy constraints associated with a short active period devoted almost exclusively to feeding. In mammals, there has been growing interest in describing an ecological “lifestyle” as the particular way in which each species makes its living, and how this lifestyle constrains the evolution of other phenotypic traits. Based on our review, it appears the carapace has been a major determinant of the lifestyle of armadillos and has played a central role in shaping the evolution of many other features of these animals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Abba AM, Cassini GH, Cassini MH, Vizcaíno SF (2011) Historia natural del piche llorón Chaetophractus vellerosus (Mammalia: Xenarthra: Dasypodidae). Rev Chil Hist Nat 84:51–64

    Article  Google Scholar 

  • Ancona KA, Loughry WJ (2009) Time budgets of wild nine-banded armadillos. Southeast Nat 8:587–598

    Article  Google Scholar 

  • Ancona KA, Loughry WJ (2010) Sources of variation in the time budgets of wild nine-banded armadillos. Mammalia 74:127–134

    Article  Google Scholar 

  • Anderson JM, Benirschke K (1966) The armadillo, Dasypus novemcinctus, in experimental biology. Lab Anim Care 16:202–216

    PubMed  Article  CAS  Google Scholar 

  • Baliña LM, Valdez RP, de Herrera M, Cordova HC, Bellocq J, García N (1985) Experimental reproduction of leprosy in seven-banded armadillos, Dasypus hybridus. Int J Lepr 53:595–599

    Google Scholar 

  • Barclay RMR (1994) Constraints on reproduction by flying vertebrates: energy and calcium. Am Nat 144:1021–1031

    Article  Google Scholar 

  • Beck U (1972) Ueber die künstliche Aufzucht von Borstengürteltieren (Euphractus villosus). Zool Garten 41:215–222

    Google Scholar 

  • Bennett AF, Ruben JA (1979) Endothermy and activity in vertebrates. Science 206:649–654

    PubMed  Article  CAS  Google Scholar 

  • Binford CH (1956) Comprehensive program for inoculation of human leprosy into laboratory animals. US Public Health Service, Report 71:995–996

    Google Scholar 

  • Blanco R, Jones W, Rinderknecht A (2009) The sweet spot of a biological hammer: the centre of percussion of glyptodont (Mammalia: Xenarthra) tail clubs. Proc R Soc Lond B Biol Sci 276:3971–3978

    Article  Google Scholar 

  • Boggs DF, Frappell PB, Kilgore DL Jr (1998) Ventilatory, cardiovascular and metabolic responses to hypoxia and hypercapnia in the armadillo. Respir Physiol 113:101–109

    PubMed  Article  CAS  Google Scholar 

  • Brand PW (1959) Temperature variation and leprosy deformity. Int J Lepr 27:1–7

    PubMed  CAS  Google Scholar 

  • Capanna E (2009) South American mammal diversity and Hernandez’s Novae Hispaniae Thesaurus. Rendiconti Lincei 20:39–60

    Article  Google Scholar 

  • Charnov E, Berrigan D (1993) Why do female primates have such long lifespans and so few babies? Evol Anthropol 1:191–194

    Article  Google Scholar 

  • Convit J, Pinardi ME (1974) Inoculación del M. leprae en dos especies de armadillo: D. sabanicola y D. novemcinctus. Acta Cient Venezol 25:51–54

    Google Scholar 

  • Dawkins R (1976) The Selfish Gene. Oxford University Press, Oxford

    Google Scholar 

  • Deem SL, Noss AJ, Fiorello CV, Manharth AL, Robbins RG, Karesh WB (2009) Health assessment of free-ranging three-banded (Tolypeutes matacus) and nine-banded (Dasypus novemcinctus) armadillos in the Gran Chaco, Bolivia. J Zoo Wildl Med 40:245–256

    PubMed  Article  Google Scholar 

  • Dhindsa DS, Hoversland AS, Metcalfe J (1971) Comparative studies of the respiratory functions of mammalian blood VII: armadillo. Respir Physiol 13:198–208

    PubMed  Article  CAS  Google Scholar 

  • Dobson FS (2007) A lifestyle view of life-history evolution. Proc Natl Acad Sci USA 104:17565–17566

    PubMed  Article  CAS  Google Scholar 

  • Dunbar RIM (1992) Time: a hidden constraint on the behavioural ecology of baboons. Behav Ecol Sociobiol 31:35–49

    Article  Google Scholar 

  • Fitness J, Floyd S, Warndorff DK, Sichali L, Mwaungulu L, Crampin AC, Fine PE, Hill AV (2004) Large-scale candidate gene study of leprosy susceptibility in the Karonga district of northern Malawi. Am J Trop Med Hyg 71:330–340

    PubMed  CAS  Google Scholar 

  • Forrester DJ (1992) Parasites and Diseases of Wild Mammals in Florida. University Press of Florida, Gainesville

    Google Scholar 

  • Frappell PB, Boggs DF, Kilgore DL (1998) How stiff is the armadillo? A comparison with the allometrics of mammalian respiratory mechanics. Respir Physiol 113:111–122

    PubMed  Article  CAS  Google Scholar 

  • Gardner AL (2005) Order Cingulata. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference. The Johns Hopkins University Press, Baltimore, pp 94–99

    Google Scholar 

  • Gaudin TJ, McDonald HG (2008) Morphology-based investigations of the phylogenetic relationships among extant and fossil xenarthrans. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 24–36

    Google Scholar 

  • Gause GE (1980) Physiological and morphometric responses of the nine-banded armadillo to environmental factors. PhD Dissertation. Department of Biology, University of Florida, Gainesville, 124 pp

  • Gittleman JL, Thompson SD (1988) Energy allocation in mammalian reproduction. Am Zool 28:863–875

    Google Scholar 

  • Gould SJ (2002) The Structure of Evolutionary Theory. Belknap Harvard University Press, Cambridge

    Google Scholar 

  • Grigg GC, Beard LA, Augee ML (2004) The evolution of endothermy and its diversity in mammals and birds. Physiol Biochem Zool 77:982–997

    PubMed  Article  Google Scholar 

  • Herrick JR, Campbell MK, Swanson WF (2002) Electroejaculation and semen analysis in the La Plata three-banded armadillo (Tolypeutes matacus). Zoo Biol 21:481–487

    Article  Google Scholar 

  • Hill RV (2006) Comparative anatomy and histology of xenarthran osteoderms. J Morphol 267:1441–1460

    PubMed  Article  Google Scholar 

  • Humphrey SR (1974) Zoogeography of the nine-banded armadillo (Dasypus novemcinctus) in the United States. BioScience 24:457–462

    Article  Google Scholar 

  • Jones KE, Bielby J, Cardillo M, Fritz SA, O’Dell J, Orme DL, Safi K, Sechrest W, Boakes EH, Carbone C, Connolly C, Cutts MJ, Foster JK, Grenyer R, Habib M, Plaster CA, Price SA, Rigby EA, Rist J, Teacher A, Bininda-Emonds ORP, Gittleman JL, Mace GM, Purvis A (2009) PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90:2648

    Article  Google Scholar 

  • Kelly DA (1997) Axial orthogonal fiber reinforcement in the penis of the nine-banded armadillo (Dasypus novemcinctus). J Morphol 233:249–255

    PubMed  Article  CAS  Google Scholar 

  • Kelly DA (1999) Expansion of the tunica albuginea during penile inflation in the nine-banded armadillo (Dasypus novemcinctus). J Exp Biol:253–265

  • Kühn E (1953) Zum Wachstum männlicher Borstengürteltiere (Chaetophractus villosus). Zool Garten 20:82–85

    Google Scholar 

  • Loughry WJ, McDonough CM (2012) The Nine-Banded Armadillo. University of Oklahoma Press, Norman

    Google Scholar 

  • Loughry WJ, Prodöhl PA, McDonough CM (2005) The inadequacy of observation: understanding armadillo biology with molecular markers. In: Pandalai SG (ed) Recent Research Developments in Ecology. Transworld Research Network, Kerala, India, pp 55–73

    Google Scholar 

  • Loughry WJ, Robertson EG, McDonough CM (2002) Patterns of anatomical damage in a population of nine-banded armadillos Dasypus novemcinctus (Xenarthra, Dasypodidae). Mammalia 66:111–122

    Article  Google Scholar 

  • Lovegrove B (2000) The zoogeography of mammalian basal metabolic rate. Am Nat 156:201–219

    PubMed  Article  Google Scholar 

  • Lovegrove B (2001) The evolution of body armor in mammals: plantigrade constraints of large body size. Evolution 55:1464–1473

    PubMed  CAS  Google Scholar 

  • McDonough CM (1994) Determinants of aggression in nine-banded armadillos. J Mammal 75:189–198

    Article  Google Scholar 

  • McDonough CM, Loughry WJ (1997) Patterns of mortality in a population of nine-banded armadillos, Dasypus novemcinctus. Am Midl Nat 138:299–305

    Article  Google Scholar 

  • McDonough CM, Loughry WJ (2008) Behavioral ecology of armadillos. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 281–293

    Google Scholar 

  • McNab BK (1980) Energetics and the limits to a temperate distribution in armadillos. J Mammal 61: 606–627

    Article  Google Scholar 

  • McNab BK (1984) Physiological convergence among ant-eating and termite-eating mammals. J Zool 203:485–510

    Article  Google Scholar 

  • McNab BK (1985) Energetics, population biology, and distribution of Xenarthrans, living and extinct. In: Montgomery GG (ed) The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas. Smithsonian Institution Press, Washington and London, pp 219–232

    Google Scholar 

  • Medri IM (2008) Ecologia e história natural do tatu-peba, Euphractus sexcinctus (Linnaeus, 1758), no Pantanal da Nhecolândia, Mato Grosso do Sul. Master’s thesis. Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, pp 167

  • Meritt DA Jr (1971) The development of the La Plata three banded armadillo, Tolypeutes matacus at Lincoln Park Zoo, Chicago. Int Zoo Yb 11:195–196

    Article  Google Scholar 

  • Meritt DA Jr (2008) Xenarthrans of the Paraguayan Chaco. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 294–299

    Google Scholar 

  • Millar JS (1977) Adaptive features of mammalian reproduction. Evolution 31:370–386

    Article  Google Scholar 

  • Mira MT (2006) Genetic host resistance and susceptibility to leprosy. Microbes Infect 8:1124–1131

    PubMed  Article  CAS  Google Scholar 

  • Molecular Ecology Resources Primer Development Consortium (MERPDC) et al. (2010) Permanent genetic resources added to Molecular Ecology Resources database 1 April 2010–31 May 2010. Mol Ecol Res 10:1098–1105

    Article  Google Scholar 

  • Prodöhl P, Loughry WJ, McDonough CM, Nelson WS, Avise J (1996) Molecular documentation of polyembryony and the micro-spatial dispersion of clonal sibships in the nine-banded armadillo, Dasypus novemcinctus. Proc R Soc Lond B Biol Sci 263:1643–1649

    Article  Google Scholar 

  • Prudom AE, Klemm WR (1973) Electrographic correlates of sleep behavior in a primitive mammal, the armadillo, Dasypus novemcinctus. Physiol Behav 10:275–282

    PubMed  Article  CAS  Google Scholar 

  • Redford KH (1985) Food habits of armadillos (Xenarthra: Dasypodidae). In: Montgomery GG (ed) The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas. Smithsonian Institution Press, Washington and London, pp 429–437

    Google Scholar 

  • Roberts M, Newman L, Peterson G (1982) The management and reproduction on the large hairy armadillo Chaetophractus villosus at the National Zoological Park. Int Zoo Yb 22:185–194

    Article  Google Scholar 

  • Rossetto L (2009) Tatu com obesidade mórbida faz tratamento no Ibama. In: Globo. http://g1.globo.com/Noticias/Brasil/0,,MUL1399246-5598,00-TATU+COM+OBESIDADE+MORBIDA+FAZ+TRATAMENTO+NO+IBAMA.html Accessed: December 1 2009

  • Scholander PF, Irving L, Grinnell SW (1943) Respiration of the armadillo with possible implications as to its burrowing. J Cell Comp Physiol 21:53–63

    Article  Google Scholar 

  • Scillato-Yané GJ (1976) Sobre un Dasypodidae de edad Riochiquense (Paleoceno superior) de Itaboraí (Brasil). An Acad Bras Cienc 48:527–530

    Google Scholar 

  • Sibly RM, Brown JH (2007) Effects of body size and lifestyle on evolution of mammal life histories. Proc Natl Acad Sci USA 104:17707–17712

    PubMed  Article  CAS  Google Scholar 

  • Sibly RM, Brown JH (2009) Mammal reproductive strategies driven by offspring mortality-size relationships. Am Nat 173:E185–E199

    PubMed  Article  Google Scholar 

  • Studier EH, Sevick SH (1992) Live mass, water content, nitrogen and mineral levels in some insects from south-central lower Michigan. Comp Biochem Physiol A Comp Physiol 103:579–595

    Article  Google Scholar 

  • Superina M (2000) Biologie und Haltung von Gürteltieren (Dasypodidae). Doctoral thesis. Institut für Zoo-, Heim- und Wildtiere, Universität Zürich, Zürich, 250 pp

  • Superina M (2008) The ecology of the pichi Zaedyus pichiy in western Argentina. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 313–318

    Google Scholar 

  • Superina M, Boily P (2007) Hibernation and daily torpor in an armadillo, the pichi (Zaedyus pichiy). Comp Biochem Physiol A Comp Physiol 148:893–898

    Google Scholar 

  • Superina M, Carreño N, Jahn G (2009a) Characterization of seasonal reproduction patterns in female pichis, Zaedyus pichiy (Xenarthra: Dasypodidae) estimated by fecal sex steroid metabolites and ovarian histology. Anim Reprod Sci 116:358–369

    PubMed  Article  CAS  Google Scholar 

  • Superina M, Garner MM, Aguilar RF (2009b) Health evaluation of free-ranging and captive pichis, Zaedyus pichiy (Mammalia, Dasypodidae) in Mendoza Province, Argentina. J Wildl Dis 45:174–183

    PubMed  Google Scholar 

  • Superina M, Miranda F, Plese T (2008) Maintenance of Xenarthra in captivity. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 232–243

    Google Scholar 

  • Tattersall GJ, Cadena V (2010) Insights into animal temperature adaptations revealed through thermal imaging. Imaging Sci J 58:261–268

    Article  Google Scholar 

  • Taulman JF, Robbins LW (1996) Recent range expansion and distributional limits of the nine-banded armadillo (Dasypus novemcinctus) in the United States. J Biogeogr 23:635–648

    Article  Google Scholar 

  • Truman RW (2005) Leprosy in wild armadillos. Lepr Rev 76:198–208

    PubMed  Google Scholar 

  • Truman RW (2008) Leprosy. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. University Press of Florida, Gainesville, pp 111–119

    Google Scholar 

  • Truman RW, Kumaresan JA, McDonough CM, Job CK, Hastings RC (1991) Seasonal and spatial trends in the detectability of leprosy in wild armadillos. Epidemiol Infect 106:549–560

    PubMed  Article  CAS  Google Scholar 

  • Turner AK (1982) Timing of laying by swallows (Hirundo rustica) and sand martins (Riparia riparia). J Anim Ecol 51:29–46

    Article  Google Scholar 

  • Twyver JV, Allison T (1974) Sleep in the armadillo Dasypus novemcinctus at moderate and low ambient temperatures. Brain Behav Evol 9:107–120

    PubMed  Article  Google Scholar 

  • Velarde-Félix JS, Cázarez Salazar SG, Castro Velázquez R, Rendón Maldonado JG, Rangel Villalobos J (2009) Association between the TaqI polymorphism of vitamin D receptor gene and lepromatous leprosy in a Mexican population sample. Salud Publica Mex 51:59–61

    PubMed  Article  Google Scholar 

  • Vickaryous MK, Hall BK (2006) Osteoderm morphology and development in the nine-banded armadillo, Dasypus novemcinctus (Mammalia, Xenarthra, Cingulata). J Morphol 267:1273–1283

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

The ideas in this paper were first developed and presented during the symposium “Form and function in the Xenarthra” as part of the 9th International Congress of Vertebrate Morphology, held at Punta del Este, Uruguay in 2010. We thank François Pujos and Tim Gaudin for inviting us to participate in the symposium and for encouraging us to write this paper. We also thank them and all the symposium participants for very constructive feedback. This manuscript further benefited from comments provided by Colleen McDonough, Bruce Patterson, and Agustín Abba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariella Superina.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Superina, M., Loughry, W.J. Life on the Half-Shell: Consequences of a Carapace in the Evolution of Armadillos (Xenarthra: Cingulata). J Mammal Evol 19, 217–224 (2012). https://doi.org/10.1007/s10914-011-9166-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-011-9166-x

Keywords

  • Cingulata
  • Hypoxia
  • Kin selection
  • Reproduction
  • Thermoregulation