Skip to main content

Advertisement

Log in

Tooth Morphology in Fossil and Extant Lagomorpha (Mammalia) Reflects Different Mastication Patterns

  • Original Article
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The functional interpretation of the cheek teeth and the mastication cycle of Lagomorpha are deduced from various aspects of tooth morphology of fossil and extant species. Mastication is composed of an almost orthal shearing and transverse grinding in a lingual direction. Shearing blades are not only indicated by facets but as well by thickened enamel. A primary shearing blade (PSB) inherited from stem lagomorphs occurs in all examined species. It can be correlated with facets 1 and 5 (sensu Crompton 1971) and occurs in very few mammals; it is conspicuously absent in the sister-taxon Rodentia. A secondary shearing blade (SSB) occurs in derived Ochotonidae and two basal Leporidae (Romerolagus and Pronolagus) as a convergent pattern. In fossil ochotonids from Europe, the “lagicone structure” is gradually reduced in favor of the SSB. Thus, ochotonids strengthen the shearing ability, whereas most leporids favor the grinding function realized by the partial crenulation of the enamel band of the re-entrant folds. For the mastication cycle, the distinct phases were recognized, related to phase I of the tribosphenic model. The first movement (phase Ia) is directed almost orthally, the second (phase Ib) lingually. Only in Lepus europaeus was an additional phase detected, which might correspond to phase II.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

BSPG:

Bayerische Staatssammlung für Paläontologie und Geologie, München, Germany

KOE:

Collection of teeth and samples for enamel investigation at the Steinmann-Institut, Universität Bonn, Germany

MB:

Museum für Naturkunde, Berlin, Germany

Naturalis:

Museum Naturalis, Leiden, The Netherlands

NHMB:

Natural History Museum, Basel, Switzerland

SMNS:

Staatliches Museum für Naturkunde Stuttgart, Germany

STIPB:

Mammal collection at the Steinmann-Institut, Universität Bonn, Germany

ZFMK:

Zoologisches Forschungsinstitut und Museum Koenig, Bonn, Germany

ZMA:

Zoological Museum, Amsterdam, The Netherlands

char.:

characters listed in Appendix

EDJ:

enamel dentine junction

GS:

grinding surface

HSB:

Hunter-Schreger Bands

IRRE:

irregular enamel

LCS:

lagicone structure

OES:

outer enamel surface

P–M:

upper premolars and molars

p–m:

lower premolars and molars

PSB:

primary shearing blade

RE:

radial enamel

REF:

re-entrant fold (= internal hypsotria, hypoflexus)

SSB:

secondary shearing blade (ochotonid SSB)

(SSB):

composed secondary shearing blade

TDF:

touch down facet

References

  • Angelone C (2005) Evolutionary trends in dental morphology of the genus Prolagus (Ochotonidae, Lagomorpha) in the Mediterranean islands. In: Alcover JA, Bover P (eds) Proceedings of the International Symposium “Insular Vertebrate Evolution: the Palaeontological Approach”. Monogr Soc Hist Nat Balears 12: 17–26

  • Angelone C (2007) Messinian Prolagus (Ochotonidae, Lagomorpha) of Italy. Geobios 40:407–421

    Article  Google Scholar 

  • Angelone C (2009) Lagomorphs from the Miocene of Sandelzhausen (southern Germany). Paläontol Z 83:67–75

    Article  Google Scholar 

  • Ardran GM, Kemp FH, Ride WDL (1958) A radiographic analysis of mastication and swallowing in the domestic rabbit: Oryctolagus cuniculus (L). Proc Zool Soc London 130:257–274

    Article  Google Scholar 

  • Asher RJ, Meng J, Wible JR, McKenna MC, Rougier GW, Dashzeveg D, Novacek MJ (2005) Stem Lagomorpha and the antiquity of Glires. Science 307:1091–1094

    Article  CAS  PubMed  Google Scholar 

  • Averianov AO (1999) Phylogeny and classification of Leporidae (Mammalia, Lagomorpha). Vest zool 33:41–48

    Google Scholar 

  • Averianov AO, Abramov AV, Tikhonov AN (2000) A new species of Nesolagus (Lagomorpha, Leporidae) from Vietnam with osteological description. Contr Zool Inst St Petersburg 3:1–22

    Google Scholar 

  • Averianov AO, Tesakov AS (1997) Evolutionary trends in Mio-Pliocene Leporinae, based on Trischizolagus (Mammalia, Lagomorpha). Paläontol Z 71(1/2):145–153

    Google Scholar 

  • Bair AR (2007) A model of wear in curved mammal teeth: controls on occlusal morphology and the evolution of hypsodonty in lagomorphs. Paleobiology 33(1):53–75

    Article  Google Scholar 

  • Butler PM (1985) Homologies of molar cusps and crests, and their bearing on assessments of rodent phylogeny. In: Luckett WP, Hartenberger J-L (eds) Evolutionary Relationships among Rodents: A Multidisciplinary Analysis. Plenum Press, New York, pp 381–401

    Google Scholar 

  • Corbet GB (1983) A review of classification in the family Leporidae. Acta Zool Fenn 174:11–15

    Google Scholar 

  • Crompton AW (1971) The origin of the tribosphenic molar. In: Kermack DM, Kermack KA (eds) Early Mammals. Zool J Linn Soc 50, suppl 1: 65–87

  • Crompton AW, Barnet J, Lieberman DE, Owerkowicz T, Skinner J, Baudinette RV (2008) Control of jaw movements in two species of macropodines (Macropus eugenii and Macropus rufus). Comp Biochem Physiol—Part A: Mol & Integrat Physiol 150(2):109–123

    Article  CAS  Google Scholar 

  • Crompton AW, Hiiemae K (1970) Molar occlusion and mandibular movements during occlusion in the American opossum, Didelphis marsupialis L. Zool J Linn Soc 49:21–47

    Article  Google Scholar 

  • Dawson MR (1958) Later Tertiary Leporidae of North America. Univ Kansas Paleontol Contr Vertbr 6:1–75

    Google Scholar 

  • Dawson MR (1961) On two ochotonids (Mammalia, Lagomorpha) from the later Tertiary of Inner Mongolia. Am Mus Novitates 2061:1–15

    Google Scholar 

  • Daxner G, Fejfar O (1967) Über die Gattungen Alilepus Dice, 1931 und Pliopentalagus Gureev, 1964 (Lagomorpha, Mammalia). Ann Nat Mus Wien 71:37–55

    Google Scholar 

  • Dearing MD (1996) Disparate determinants of summer and winter diet selection of a generalist herbivore, Ochotona princeps. Oecologia 108:467–478

    Article  Google Scholar 

  • Erbajeva MA (1994) Phylogeny and evolution of Ochotonidae with emphasis on Asian ochtonids. In: Tomida Y, Li CK, Setoguchi T (eds) Rodent and Lagomorph Families of Asian Origins and Diversification. Nat Sci Mus Monogr, Tokyo, pp 1–13

    Google Scholar 

  • Erbajeva MA (2007) Lagomorpha (Mammalia): preliminary results. In: Daxner-Höck G (ed) Oligocene-Miocene Vertebrates from the Valley of Lakes (Central Mongolia): Morphology, Phylogenetic and Startigraphic Implications. Ann Nat Mus Wien 108A:165–171

    Google Scholar 

  • Erbajeva MA, Angermannn R (1983) Das Originalmaterial von Serengetilagus praecapensis Dietrich, 1941—ergänzende Beschreibung und vergleichende Diskussion. Schriftenr geol Wiss 19(20):39–60

    Google Scholar 

  • Erbajeva MA, Sen S (1998) Systematic of some Oligocene Lagomorpha (Mammalia) from China. N Jb Geol Paläont Mh 1998:95–105

    Google Scholar 

  • Erbajeva MA, Zheng S (2005) New data on late Miocene—Pleistocene ochotonids (Ochotonidae, Lagomorpha) from North China. Acta zool cracov 48A:93–117

    Article  Google Scholar 

  • Greaves WS (1973) The inference of jaw motion from tooth wear facets. J Paleontol 47:1000–1001

    Google Scholar 

  • Grippo JO, Simring M, Schreiner S (2004) Attrition, abrasion, corrosion, and abfraction revisited: a new perspective on tooth surface lesions. J Am Dent Ass 135:1109–1118

    PubMed  Google Scholar 

  • Halanych KM, Robinson TJ (1999) Multiple substitutions affect the phylogenetic utility of cytochrome b and 12 S rDNA data: examining a rapid radiation in leporid (Lagomorpha) evolution. J Mol Evo 48:369–379

    Article  CAS  Google Scholar 

  • Hamers-Casterman C, Wittouck E, van der Loo W, Hamers R (1979) Phylogeny of the rabbit γ-chain determinants: a d12-like antigenic determination in Pronolagus rupestris. J Immunogen 6:373–381

    Article  CAS  Google Scholar 

  • Hibbard CW (1963) The origin of the P3 pattern of Sylvilagus, Caprolagus, Oryctolagus and Lepus. J Mammal 44(1):1–15

    Article  Google Scholar 

  • Hibbard CW (1969) The rabbits (Hypolagus and Pratilepus) from the upper Pliocene, Hagerman Local Fauna of Idaho. Michigan Acad 1:81–97

    Google Scholar 

  • Hibbard CW, Dalquest WW (1966) Fossils from the Seymour Formation of Knox and Baylor Counties, Texas, and their bearing on the late Kansan Climate of that region. Contr Mus Paleontol Univ Michigan 21(1):1–66

    Google Scholar 

  • Hillson S (1986) Teeth. Cambridge University Press, Cambridge

    Google Scholar 

  • Huntly NJ, Smith AT, Ivins BL (1986) Foraging behavior of the pika (Ochotona princeps), with comparisons of grazing versus haying. J Mammal 67(1):139–148

    Article  Google Scholar 

  • Kaiser TM (2002) Functional significance of ontogenetic gradients in the enamel ridge pattern of the upper cheek dentition of the Miocene hipparion horse Cormohipparion occidentale (Equidae, Perissodactyla). Senckenberg lethaea 82:167–180

    Article  Google Scholar 

  • Kingdon J (1974) East African Mammals—An Atlas of Evolution in Africa, Volume II Part B (Hares and Rodents). The University of Chicago Press, Chicago

    Google Scholar 

  • Koenigswald W v (1980) Schmelzstruktur und Morphologie in den Molaren der Arvicolidae (Rodentia). Abh Senckenberg Nat Ges 539:1–129

    Google Scholar 

  • Koenigswald W v (1995) Lagomorpha versus Rodentia: the number of layers in incisor enamel. N Jb Geol Paläont Mh 1995(10):605–613

    Google Scholar 

  • Koenigswald W v (1996) Die Zahl der Schmelzschichten in den Inzisiven bei den Lagomorpha und ihre systematische Bedeutung. Bonn Zool Beiträge 46:33–57

    Google Scholar 

  • Koenigswald W v (1997) Brief survey of enamel diversity at the schmelzmuster level in Cenozoic placental mammals. In: Koenigswald W v, Sander PM (eds) Tooth Enamel Microstructure. Balkema, Rotterdam, pp 137–161

  • Koenigswald W v, Clemens WA (1992) Levels of complexity in the microstructure of mammalian enamel and their application in studies of systematics. Scan Microscopy 6(1):195–218

    CAS  Google Scholar 

  • Koenigswald W v, Sander PM (1997a) Schmelzmuster differentiation in leading and trailing edges, a specific adaptation in rodents. In: Koenigswald W v, Sander PM (eds) Tooth Enamel Microstructure. Balkema, Rotterdam, pp 259–266

  • Koenigswald W v, Sander PM (1997b) Glossary. In: Koenigswald W v, Sander PM (eds) Tooth Enamel Microstructure. Balkema, Rotterdam, pp 267–280

  • Koenigswald Wv, Sander PM, Leite MB, Mörs T, Santel W (1994) Functional symmetries in the schmelzmuster and morphology in rootless rodent molars. Zool J Linn Soc 110:141–179

    Article  Google Scholar 

  • Kullmer O, Benazzi B, Fiorenza L, Schulz D, Basco S, Winzen O (2009) Technical note: occlusal fingerprint analysis: quantification of tooth wear pattern. Am J Phys Anthropol 139(4):600–605

    Article  PubMed  Google Scholar 

  • López-Martínez N (1985) Reconstruction of the ancestral cranioskeletal features in the order Lagomorpha. In: Luckett WP, Hartenberger J-L (eds) Evolutionary Relationships among Rodents: A Multidisciplinary Analysis. Plenum Press, New York, pp 151–189

    Google Scholar 

  • López-Martínez N (2008) The lagomorph fossil record and the origin of the European rabbit. In: Alves PC, Ferrand N, Hackländer K (eds) Lagomorph Biology: Evolution, Ecology, and Conservation. Springer-Verlag, Berlin Heidelberg, pp 27–46

    Google Scholar 

  • Maglio VJ (1972) Evolution of mastication in the Elephantidae. Evolution 26:638–658

    Article  Google Scholar 

  • Martin T (2004) Evolution of incisor enamel microstructure in Lagomorpha. J Vertebr Paleontol 24(2):414–426

    Article  Google Scholar 

  • Matthee CA (2009) Pikas, hares, and rabbits (Lagomorpha). In: Hedges BS, Kumar S (eds) The Timetree of Life. Oxford University Press, Oxford, pp 487–489

    Google Scholar 

  • Mazza P (1986) Prolagus (Ochotonidae, Lagomorpha, Mammalia) from Neogene fissure fillings in Gargano (Southern Italy). Boll Soc Palaeontol Ital 25(2):159–185

    Google Scholar 

  • McKenna MC, Bell S (1997) Classification of mammals above the species level. Columbia Univ. Press, New York

  • Meng J, Bowen GJ, Ye J, Koch PL, Ting S, Li Q, Jin X (2004) Gomphos elkema (Glires, Mammalia) from the Erlian Basin: evidence for the early Tertiary Bumbanian Land Mammal Age in Nei-Mongol, China. Am Mus Novitates 3425:1–24

    Article  Google Scholar 

  • Meng J, Hu Y, Li C (2005) Gobiolagus (Lagomorpha, Mammalia) from Eocene Ula Usu, Inner Mongolia, and comments on Eocene lagomorphs of Asia. Palaeontol Electron 8(1):1–23

    Google Scholar 

  • Meng J, Li C, Hu Y (2003) The osteology of Rhombomylus (Mammalia, Glires): implications for phylogeny and evolution of Glires. Bull Am Mus Nat Hist 275:1–247

    Article  Google Scholar 

  • Mickoleit G (2004) Phylogenetische Systematik der Wirbeltiere. Verlag Dr, Friedrich Pfeil, München

    Google Scholar 

  • Mones A (1982) An equivocal nomenclature: what means hypsodonty? Paläontol Z 56:107–111

    Google Scholar 

  • Morimoto T, Inoue T, Nakamura T, Kawamura Y (1985) Characteristics of rhythmic jaw movements of the rabbit. Archs Oral Biol 30(9):673–677

    Article  CAS  Google Scholar 

  • Niethammer J, Krapp F (2003) Handbuch der Säugetiere Europas, Band 3/II: Hasentiere—Lagomorpha. Aula Verlag, Wiebelsheim

    Google Scholar 

  • Nowak RM (1999) Walker’s Mammals of the World. The Johns Hopkins University Press, Baltimore and London

    Google Scholar 

  • Patnaik R (2002) Pliocene Leporidae (Lagomorpha, Mammalia) from the Upper Siwaliks of India: implications for phylogenetic relationships. J Vertebr Paleontol 22(2):443–452

    Article  Google Scholar 

  • Pfretzschner HU (1988) Structural reinforcement and crack propagation in enamel. In: Russell DE, Santoro JP, Sigogneau-Russell D (eds) Teeth Revisited: Proceedings of the VIIth International Symposium on Dental Morphology. Mém Mus Nat Hist Nat, Paris, pp 133–143

    Google Scholar 

  • Rensberger JM (1973) An occlusion model for mastication and dental wear in herbivorous mammals. J Paleontol 47(3):515–528

    Google Scholar 

  • Rensberger JM, Koenigswald Wv (1980) Functional and phylogenetic interpretation of enamel microstructure in rhinoceroses. Paleobiology 6(4):477–495

    Google Scholar 

  • Robinson TJ, Matthee CA (2005) Phylogeny and evolutionary origins of the Leporidae: a review of cytogenetics, molecular analyses and a supermatrix analysis. Mammal Rev 35:231–247

    Article  Google Scholar 

  • Rose KD, DeLeon VB, Missiaen P, Rana SA, Sahni A, Singh L, Smith T (2008) Early Eocene lagomorph (Mammalia) from western India and the early diversification of Lagomorpha. Proc R Soc B 275:1203–1208

    Article  PubMed  Google Scholar 

  • Schwartz G, Enomoto S, Valiquette C, Lund JP (1989) Mastication in the rabbit: a description of movement and muscle activity. J Neurophysiol 62(1):273–287

    CAS  PubMed  Google Scholar 

  • Schumacher GH, Rehmer H (1960) Morphologische und funktionelle Untersuchungen an der Kaumuskulatur von Oryctolagus und Lepus. Gegenbaurs Morph Jb 100:678–705

    Google Scholar 

  • Semprebon GM, Godfrey LR, Solounias N, Sutherland MR, Jungers WL (2004) Can low-magnification stereomicroscopy reveal diet? J Human Evol 47:115–144

    Google Scholar 

  • Skinner JD, Smithers RHN (1990) The Mammals of the South African Subregion. University of Pretoria, Pretoria

    Google Scholar 

  • Sokolov VE, Ivanitskaya EYu, Gruzdev VV, Heptner VG (2009) Lagomorphs: Mammals of Russia and Adjacent Regions. Science Publishers, Enfield (NH), Jersey, Plymouth

    Google Scholar 

  • Stromer E (1923) Bemerkungen über die ersten Landwirbeltier-Reste aus dem Tertiär Deutsch-Südwestafrikas. Paläontol Z 5(3):226–229

    Google Scholar 

  • Stromer E (1926) Reste land- und süßwasser-bewohnender Wirbeltiere aus den Diamantenfeldern Deutsch-Südwestafrikas. In: Kaiser E (ed) Die Diamantenwüste Südwestafrikas Band 2. Dietrich Reimer, Berlin, pp 107–153

    Google Scholar 

  • Starck D (1995) Lehrbuch der speziellen Zoologie, Band II: Wirbeltiere, Teil 5: Säugetiere. Gustav Fischer Verlag, Jena, Stuttgart, New York

    Google Scholar 

  • Teaford MF (2000) Primate dental functional morphology revisited. In: Teaford MF, Smith MM, Ferguson MWJ (eds) Development. Function and Evolution of Teeth. Cambridge University Press, Cambridge, pp 290–304

    Google Scholar 

  • Thenius E (1989) Handbuch der Zoologie/Handbook of Zoology Band/Volume VIII Mammalia—Zähne und Gebiß der Säugetiere. Walter de Gruyter, Berlin, New York

    Google Scholar 

  • Ting S, Meng J, McKenna MC, Li C (2002) The osteology of Matutinia (Simplicidentata, Mammalia) and its relationship to Rhombomylus. Am Mus Novitates 3371:1–33

    Article  Google Scholar 

  • Tobien H (1963) Zur Gebiß-Entwicklung tertiärer Lagomorphen (Mamm.) Europas. Notizbl Hess L.-amt Bodenforsch zu Wiesbaden 91: 16–35

  • Tobien H (1974) Zur Gebißstruktur, Systematik und Evolution der Genera Amphilagus und Titanomys (Lagomorpha, Mammalia) aus einigen Vorkommen im jüngeren Tertiär Mittel- und Westeuropas. Mainzer Geowiss Mitt 3:95–214

    Google Scholar 

  • Tobien H (1975) Zur Gebißstruktur, Systematik und Evolution der Genera Piezodus, Prolagus und Ptychoprolagus (Lagomorpha, Mammalia) aus einigen Vorkommen im jüngeren Tertiär Mittel- und Westeuropas. Notizbl Hess L-amt für Bodenforsch zu Wiesbaden 103:103–186

    Google Scholar 

  • Tobien H (1976) Brachyodonty and hypsodonty in the evolution of European Tertiary lagomorphs (Mammalia). Evol Biol 1:177–191

    Google Scholar 

  • Tobien H (1978) Brachyodonty and hypsodonty in some Palaeogene Eurasian lagomorphs. Mainzer Geowiss Mitt 6:161–175

    Google Scholar 

  • Tomida Y, Otsuka H (1993) First discovery of fossil Amami rabbit (Pentalagus furnessi) from Tokunoshima, southwestern Japan. Bull Nat Sci Mus C 19(2):73–79

    Google Scholar 

  • Weijs WA, Dantuma R (1981) Functional anatomy of the masticatory apparatus in the rabbit (Oryctolagus cuniculus L.). Neth. J Zool 31(1):99–147

    Google Scholar 

  • White JA (1991) North American Leporinae (Mammalia: Lagomorpha) from late Miocene (Clarendonian) to latest Pliocene (Blancan). J Vertebr Paleontol 11(1):67–89

    Article  Google Scholar 

  • Wible JR (2007) On the cranial osteology of the Lagomorpha. Bull Carnegie Mus Nat Hist 39:213–234

    Article  Google Scholar 

  • Winkler AJ, Tomida Y (1988) New records of the small leporid Aztlanolagus agilis Russel and Harris (Leporidae: Leporinae). Southw Nat 33(4):391–396

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the “Deutsche Forschungsgemeinschaft” (DFG, German Research Foundation) and is publication no. 8 of the DFG Research Unit 771 “Function and performance enhancement in the mammalian dentition - phylogenetic and ontogenetic impact on the masticatory apparatus”. Many thanks to all people who made material available: Loїc Costeur (Basel), Rainer Hutterer (Bonn), David F. Mayhew (Leiden), Pierre Mein (Lyon), Doris Mörike (Stuttgart), Gertrud Rößner (Munich), Danilo Torre (Firenze), Wilma Wessels (Utrecht), and Reinhard Ziegler (Stuttgart). For comments and valuable hints: Renate Angermann (Berlin), Margarita Erbajeva (Uland-Ude), Mary Dawson (Pittsburgh), and John Wible (Pittsburgh). For technical support we thank Olaf Dülfer, Peter Göddertz, and Georg Oleschinski (all Bonn). We also would like to thank the anonymous reviewers for helpful comments which served to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wighart von Koenigswald.

Appendices

Appendix

Materials studied

Palaeolagidae

  1. 1.

    Palaeolagus sp. (most probably Palaeolagus temnodon Douglass, 1901)—rich material of upper and lower jaws, late Eocene/early Oligocene, Toadstool Park Area, Nebraska, USA (col. K. Hirsch; KOE 668) [CT scans of upper and lower jaw fragments each with resolution = 0.02102 mm, CT scans of 1 upper and 1 lower cheek tooth each with resolution = 0.01232 mm].

Leporidae

  1. 2.

    Bunolagus monticularis Thomas, 1929—crania and mandibles, recent, Cape Province, South Africa (ZMA 3076, 3077).

  2. 3.

    Hypolagus brachygnathus (Petényi, 1864)—several isolated teeth, Pliocene, Rembielice, Poland (KOE 120, 1062).

  3. 4.

    Lepus europaeus Pallas, 1778—several mandibles and crania, recent, Sigmaringen, SW Germany (KOE 30, STIPB M 1162, M 1167, M 1174, M 11 84). [CT scans M1dex, m1dex (M 1162), each with resolution = 0.01943 mm.]

  4. 5.

    Lepus europaeus Pallas, 1778—several mandibles and crania, recent, Bonn, Germany (STIPB M 1170–1184).

  5. 6.

    Lepus timidus Linnaeus, 1758—cranium and mandible, recent, Faulherrnalpen, Berner Oberland, Switzerland (ZFMK 1316).

  6. 7.

    Lepus timidus Linnaeus, 1758—cranium and mandible, recent, St. Petersburg, Russia (ZFMK, 24).

  7. 8.

    Lepus timidus Linnaeus, 1758—cranium and mandible, recent, Nowosibirskaja, Russia (ZFNK 87.792).

  8. 9.

    Lepus timidus varronis Miller, 1901—cranium and mandible, recent, Gurnigel, Switzerland (ZFMK, 39.124).

  9. 10.

    Nesolagus netscheri Schlegel, 1880—cranium and mandible, recent, South Sumatra, Indonesia (Naturalis 3741)

  10. 11.

    Oryctolagus cuniculus (Linnaeus, 1758)—several crania and jaws, recent, Bonn, Germany (STIPB M6248–M6255).

  11. 12.

    Oryctolagus cuniculus (Linnaeus, 1758)—crania and mandibles, recent (domesticated) Bonn, Germany (STIPB M 3274, M3275; KOE 4099).

  12. 13.

    Oryctolagus cuniculus (Linnaeus, 1758)—cranium and mandible, recent, Tübingen, Germany (STIPB M 1190).

  13. 14.

    Poelagus majorita St. Leger, 1929, skull, recent, South Sudan, (SMNS 28732) [CT scan resolution = 0.05785 mm.]

  14. 15.

    Pronolagus rupestris (Smith, 1834)—cranium and mandible, recent, Namibia (SMNS 38755)

  15. 16.

    Pronolagus cf. rupestris (Smith, 1834)—cranium and mandible, recent, Chamis, Namaland, Namibia (MB 82038) [CT scan 0.08887 mm]

  16. 17.

    Pronolagus cf. rupestris (Smith, 1834)—cranium and mandible, recent, Churutabis, Namibia (MB 82039) [P4 sin. CT scan resolution = 0.01597 mm]

  17. 18.

    Pronolagus crassicaudatus (Geoffroy, 1832)—cranium, recent, Kasama, Zambia (MB 82036)

  18. 19.

    Pronolagus crassicaudatus (Geoffroy, 1832)—crania and mandibles, recent, Cape Province, South Africa (MB 1037 and ZMA 1317, 4020)

  19. 20.

    Pronolagus randensis Jameson, 1907—cranium and mandible, recent, Birkenfeld, Namibia (ZFMK, 56.581) [CT scan of p4 sin resolution = 0.01597 mm]

  20. 21.

    Romerolagus diazi—cranium and mandible, recent, Mexico (NHMB 10977) [CT scan of upper dentition resolution = 0.03952 mm, virtual resolution = 0.01976 mm]

  21. 22.

    Sylvilagus audubonii (Baird, 1858)—several fragmented skulls, recent,Wyoming, USA (KOE 1052, STIPB M 1159)

  22. 23.

    Sylvilagus audubonii—1 upper and 1 lower cheek tooth, recent, Wyoming, USA (M 1159 and KOE 4078), [CT scans each with resolution = 0.00751 mm]

  23. 24.

    Sylvilagus bachmani (Waterhouse, 1839)—cranium and mandibles, recent, California, USA (SMNS 17673)

  24. 25.

    Sylvilagus floridanus (Allen, 1890)—cranium and mandible, recent, Noxubee, Mississippi, USA (SMNS 45545)

Ochotonidae

  1. 26.

    Amphilagus antiquus Pomel, 1853—several mandibles and maxillae, latest Oligocene MP 30, Coderet-Branssat, France, (NMB–BST 255, 259, 268, 232,233, 234, 236, Cod 377 [CT scan resolution = 0.0154 mm, virtual resolution = 0.0077 mm], 384, 4513a, 4513c [CT scan resolution = 0.0154 mm, virtual resolution = 0.0077 mm], 4514a, 4514d)

  2. 27.

    Austrolagomys unexpectatus Stromer, 1926—cranium (type), Miocene, Elisabethfeld, Namibia (BSPG 1926X14)

  3. 28.

    Lagopsis sp.—several mandibles, middle Miocene MN 5, Steinberg bei Nördlingen, SW Germany (SMNS no number and KOE 4079) [CT scans each with 0.00961 mm, virtual resolution = 0.0048 mm]

  4. 29.

    Ochotona alpina (Pallas, 1773)—cranium and mandible, recent, Kenho, Dsingan, China (MB. 100483 [CT scans each with resolution = 0.00871 mm, virtual resolution = 0.00436 mm], 100484, 104085, 100486, 100487, 100488, 100490, 100491)

  5. 30.

    Ochotona pusilla (Pallas, 1769)—isolated teeth, late Pleistocene, Ranis, Germany (KOE 1415)

  6. 31.

    Ochotona pusilla (Pallas, 1769)—isolated teeth, late Pleistocene, Southern Germany (KOE 84, KOE 2832, and KOE 4071)

  7. 32.

    Ochotona sp.—five crania with mandibles, recent, Nepal (ZMFK 84.729, 84.730, 84.732, 84.733, 84.735)

  8. 33.

    Piezodus branssatensis (Viret, 1929)—several mandibles and maxillae, latest Oligocene MP 30, Coderet-Branssat, France, (NMB–Bst 227, 9409b, 9414, 3899 [CT scan resolution = 0.02264 mm, p4 m1 virtual resolution = 0.01134 mm], 9411, Cod 366, 3368, 369, 372, 373 [CT scan resolution = 0.0147 mm], 375, 378, 382, 383, 385, 403 and, 273)

  9. 34.

    Piezodus tomerdingensis Tobien, 1975—left maxilla with P2-M1, early Miocene, Tommerdingen, SW Germany, (SMNS 26001)

  10. 35.

    Prolagus oeningensis König, 1825—several isolated teeth, Miocene MN 7–8, La Grive M, France (KOE 1410–1411 [M sup, m inf, CT scans each with resolution = 0.00788 mm]

  11. 36.

    Prolagus sardus (Wagner, 1832)—several upper and lower jaws, Pleistocene, Mte. S. Giovanni near Carbonia, Sardinia (ded. Danilo Torre, KOE 1441) [upper jaw, CT scan resolution = 0.01597 mm]

  12. 37.

    Titanomys visenoviensis (von Meyer, 1843)—left mandible with and left maxilla with P4-M2, early Miocene MN1, Tommerdingen, SW Germany (SMNS 26048)

Characters in lagomorph cheek teeth

Dentiton

  1. 1.

    Hypsodonty: 0 = brachydont, 1= hypsodont and rooted, 2 = partial hypsodonty, 3 = euhypsodont.

  2. 2.

    p3 shape: 0 = ochotonid, 1 = palaeolagine, 2 = archaeolagine, 3= leporine.

  3. 3.

    Last upper molar: 0 = unreduced, 1= M3 small, 2 = M3 missing, 3 = M3 missing, extrafold on M2.

  4. 4.

    Last lower molar: 1 = m3 persent but reduced, 2= m3 missing, 3 = m2 with extrafold.

  5. 5.

    Connection between anterolophid and posterolophid: 0 = attached lingually, 1 = separated in youth, than attached lingually, 2 = medially attached by cementum.

  6. 6.

    irregular enamel in molars: 0 = HSB still recognizable, 1 = present.

Upper cheek teeth

  1. 7.

    Enamel thickness: 0 = undifferentiated, 1 = slight, 2 = well differentiated.

  2. 8.

    PSB, length and lingual side: 0 = absent, 1 = full length, 2 = partial, 3 = open for phase II’.

  3. 9.

    PSB striation: 0 = not visible, 1 = vertical, 2 = diagonal.

  4. 10.

    Lingual REF, length: 0 = shallow, 1 = half width, 2 = deep.

  5. 11.

    Lingual REF, enamel thickness: 0 = no inner part, 1 = equal, 2 = anterior side thickened, 3 = posterior side thickened.

  6. 12.

    Lingual REF, enamel crenulation: 0 = no crenulation, 1 = both sides equal, 2 = anterior side dominant, 3 = posterior side dominant.

  7. 13.

    SSB on posteroloph: 0 = absent, 1= composed, 2 = on posterior side (ochotonid).

  8. 14.

    SSB, striation: 0 = not visible, 1 = vertical, 2 = diagonal.

  9. 15.

    lagicone structure o P4-M2: 0 = lagicone structure in P3-M2, 1 = M1 without, P4 with lagicone, 2 = P4 to M2 without lagicone structure, 3 = p3 to M2 without lagicone structure.

  10. 16.

    SSB, length and lingual side: 0 = absent, 1 = full length, 2 = partial, 3 = open for phase I.

  11. 17.

    Enamel at protocone and hypocone: 0 = undifferentiated, pointed, 1 = thickened and facet flattened, 2 = obliquely flattened.

  12. 18.

    Posteroloph, posterior side: 0 = low, 1 = rising, part of PSB of following tooth.

  13. 19.

    TDF: 0 = absent, 1 = weak, 2 = rounded towards Ib-facet, 3 = well separated.

  14. 20.

    Dentine ridge in buccal prolongation of REF: 0 = absent, 1 = present.

  15. 21.

    REF as grinding surface or facet: 0 = no distinctive feature, 1 = grinding, 2 = shearing facet on anterior side (SSB), 3 = shearing blade on posterior side (SSB).

  16. 22.

    Facet for II’ phase: 0 = absent, 1 = present.

Lower cheek teeth.

  1. 23.

    Enamel thickness: 0 = undifferentiated, 1 = slight, 2 = well differentiated.

  2. 24.

    PSB on anterolophid: 0 = absent, 1 = present.

  3. 25.

    PSB, striation: 0 = not visible, 1 = vertical, 2 = diagonal.

  4. 26.

    Anterior side of anterolophid: 0 = high, 1 = sloping anteriorly, 2= slight crest of enamel band, 3 = part of SSB of the anterior tooth.

  5. 27.

    Buccal REF, crenulated enamel: 0 = absent, 1= crenulated on posterior side.

  6. 28.

    Anterior enamel band of posterolophid: 0 = not incorporated in PSB, 1= incorporated in PSB, 2 = partially incorporated and anterobuccally excavated.

  7. 29.

    Posterolophid, posterior side: 0 = thin or lingually thinning, 1 = thickened without facet, 2 = thickened with facet (SSB), 3 = additional fold (in Amphilagus and Titanomys), when young

  8. 30.

    SSB, Striation: 0 = not visible, 1 = vertical, 2 = diagonal.

  9. 31.

    Metaconid, striation: 0 = absent, 1 = facet, 2 = vertical striation.

  10. 32.

    Enamel at protoconid and hypoconid: 0 = undifferentiated, pointed, 1 = thickened and facet flattened, 2= obliquely flattened.

  11. 33.

    Facet for phase II’: 0 = absent, 1 = present.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenigswald, W.v., Anders, U., Engels, S. et al. Tooth Morphology in Fossil and Extant Lagomorpha (Mammalia) Reflects Different Mastication Patterns. J Mammal Evol 17, 275–299 (2010). https://doi.org/10.1007/s10914-010-9140-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-010-9140-z

Keywords

Navigation