Skip to main content

Global Completeness of the Bat Fossil Record

Abstract

Bats are unique among mammals in their use of powered flight and their widespread capacity for laryngeal echolocation. Understanding how and when these and other abilities evolved could be improved by examining the bat fossil record. However, the fossil record of bats is commonly believed to be very poor. Quantitative analyses of this record have rarely been attempted, so it has been difficult to gauge just how depauperate the bat fossil record really is. A crucial step in analyzing the quality of the fossil record is to be able to accurately estimate completeness. Measures of completeness of the fossil record have important consequences for our understanding of evolutionary rates and patterns among bats. In this study, we applied previously developed statistical methods of analyzing completeness to the bat fossil record. The main utility of these methods over others used to study completeness is their independence from phylogeny. This phylogenetic-independence is desirable, given the recent state of flux in the higher-level phylogenetic relationships of bats. All known fossil bat genera were tabulated at the geologic stage or sub-epoch level. This binning strategy allowed an estimate of the extinction rate for each bat genus per bin. Extinction rate—together with per-genus estimates of preservation probability and original temporal distributions—was used to calculate completeness. At the genus level, the bat fossil record is estimated to be 12% complete. Within the order, Pteropodidae is missing most of its fossil history, while Rhinolophoidea and Vespertilionoidea are missing the least. These results suggest that 88% of bats that existed never left a fossil record, and that the fossil record of bats is indeed poor. Much of the taxonomic and evolutionary history of bats has yet to be uncovered.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Aguilar J-P, Brandy LD, Thaler L (1984) Les rongeurs de Salobreña (sud de l’Espagne) et le probleme de la migration Messinienne. Paléobiol Cont 14:3–17

    Google Scholar 

  • Agustí J, Cabrera L, Garcés M, Krijgsman W, Oms O, Parés JM (2001) A calibrated mammal scale for the Neogene of Western Europe. State of the Art. Earth-Sci Rev 52:247–260

    Google Scholar 

  • Alba DM, Agustí J, Moyà-Solà S (2001) Completeness of the mammalian fossil record in the Iberian Neogene. Paleobiology 27:79–83

    Google Scholar 

  • Alroy J (2000) New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26:707–733

    Google Scholar 

  • Archer M (1978) Australia’s oldest bat, a possible rhinolophid. Proc Roy Soc Queensl 89:23–24

    Google Scholar 

  • Arroyo-Cabrales J, Gregorin R, Schlitter DA, Walker A (2002) The oldest African molossid bat cranium (Chiroptera: Molossidae). J Vertebr Paleontol 22:380–387

    Google Scholar 

  • Avery DM (1998) An assessment of the lower Pleistocene micromammalian fauna from Swartkrans Members 1–3, Gauteng, South Africa. Géobios 31:393–414

    Google Scholar 

  • Avery DM (2003) Early and middle Pleistocene environments and hominid biogeography; micromammalian evidence from Kabwe, Twin Rivers and Mumbwa Caves in central Zambia. Palaeogeogr Palaeoclimatol Palaeoecol 189:55–69

    Google Scholar 

  • Bailey BE (2004) Biostratigraphy and biochronology of early Arikareean through late Hemingfordian small mammal faunas from the Nebraska panhandle and adjacent areas. Paludicola 4:81–113

    Google Scholar 

  • Barghoorn SF (1977) New material of Vespertiliavus Schlosser (Mammalia, Chiroptera) and suggested relationships of emballonurid bats based on cranial morphology. Am Mus Novitates 2618:1–29

    Google Scholar 

  • Beard KC, Sigé B, Krishtalka L (1992) A primitive vespertilionoid bat from the early Eocene of central Wyoming. C R Acad Sci Paris, sér. 2a 314:735–741

    CAS  Google Scholar 

  • Benton MJ (1998) The quality of the fossil record of the vertebrates. In: Donovan SK, Paul CRC (eds) The Adequacy of the Fossil Record. John Wiley & Sons, Chichester, pp 269–303

    Google Scholar 

  • BiochroM’97 (1997) Biochronologie mammalienne du Cénozoïque en Europe at domaines reliés. Synthèses et tableaux de corrélations. In: Aguilar JP, Legendre S, and Michaux J (eds) Actes du Congrès BiochroM’97. Mém Trav E P H E Inst, Montpellier, France, vol. 21:769–805

  • Black CC, Krishtalka L (1986) Rodents, bats, and insectivores from the Plio-Pleistocene sediment to the East of Lake Turkana, Kenya. Nat Hist Mus LA Co, Contrib Sci 372:1–15

    Google Scholar 

  • Butler PM (1978) Insectivora and Chiroptera. In: Maglio VJ, Cooke HBS (eds) Evolution of African Mammals. Harvard University Press, Cambridge, pp 56–68

    Google Scholar 

  • Butler PM (1984) Macroscelidea, Insectivora and Chiroptera from the Miocene of East Africa. Palaeovertebrata 14:117–200

    Google Scholar 

  • Butler PM, Greenwood M (1965) Insectivora and Chiroptera. In: Leakey LSB (ed) Olduvai Gorge 1951–1961. Vol. 1. Fauna and Background. Cambridge University Press, Cambridge, pp 13–15

  • Butler PM, Hopwood AT (1957) Insectivora and Chiroptera from the Miocene rocks of Kenya colony. Fossil Mammals Afr 13:1–35

    Google Scholar 

  • Cahn AR (1939) Pleistocene fossils from a cave in Anderson County, Tennessee. J Mammal 20:248–250

    Google Scholar 

  • Cassiliano ML (1999) Biostratigraphy of Blancan and Irvingtonian mammals in the Fish Creek-Vallecito Creek section, southern California, and a review of the Blancan-Irvingtonian boundary. J Vertebr Paleontol 19:169–186

    Google Scholar 

  • Čermák S, Wagner J, Fejfar O, Horáček I (2007) New Pliocene localities with micromammals from the Czech Republic: a preliminary report. Fossil Rec 10:60–68

    Google Scholar 

  • Cheetham AJ, Jackson JBC (1998) The fossil record of cheilostome Bryozoa in the Neogene and Quaternary of tropical America: adequacy for phylogenetic and evolutionary studies. In: Donovan SK, Paul CRC (eds) The Adequacy of the Fossil Record. John Wiley & Sons, Chichester, pp 227–242

    Google Scholar 

  • Choate JR, Hall ER (1967) Two new species of bats, genus Myotis, from a Pleistocene deposit in Texas. Am Mid Nat 78:531–534

    Google Scholar 

  • Clyde WC, Gingerich PD (1994) Rates of evolution in the dentition of early Eocene Cantius: comparison of size and shape. Paleobiology 20:506–522

    Google Scholar 

  • Cozzuol MA (2006) The Acre vertebrate fauna: age, diversity, and geography. J So Amer Earth Sci 21:185–203

    Google Scholar 

  • Czaplewski NJ (1987) Middle Blancan vertebrate assemblage from the Verde Formation, Arizona. Contrib Geol, Univ Wyoming 25:133–155

    Google Scholar 

  • Czaplewksi NJ (1991) Miocene bats from the lower Valentine Formation of northeastern Nebraska. J Mammal 72:715–722

    Google Scholar 

  • Czaplewski NJ (1993) Late Tertiary bats (Mammalia, Chiroptera) from the southwestern United States. Southwest Nat 38:111–118

    Google Scholar 

  • Czaplewski NJ (1996) Opossums (Didelphidae) and bats (Noctilionidae and Molossidae) from the late Miocene of the Amazon basin. J Mammal 77:84–94

    Google Scholar 

  • Czaplewski NJ (1997) Chiroptera. In: Kay RF, Madden RH, Cifelli RL, Flynn JJ (eds) Vertebrate Paleontology in the Neotropics: The Miocene fauna of La Venta, Colombia. Smithsonian Institution Press, Washington, pp 410–431

  • Czaplewski NJ, Bailey BE, Corner RG (1999) Tertiary bats (Mammalia: Chiroptera) from northern Nebraska. Trans Nebr Acad Sci 25:83–93

    Google Scholar 

  • Czaplewksi NJ, Cartelle C (1998) Pleistocene bats from cave deposits in Bahia, Brazil. J Mammal 79:784–803

    Google Scholar 

  • Czaplewski NJ, Morgan GS (2000) A new vespertilionid bat (Mammalia: Chiroptera) from the early Miocene (Hemingfordian) of Florida, USA. J Vertebr Paleontol 20:736–742

    Google Scholar 

  • Czaplewski NJ, Morgan GS, McLeod SA (2008) Chiroptera. In: Janis CM, Gunnell GF, Uhen MD (eds) Evolution of Tertiary mammals of North America. Volume 2. Small mammals, xenarthrans, and marine mammals. Cambridge University Press, Cambridge, pp 174–197

    Google Scholar 

  • Czaplewski NJ, Morgan GS, Naeher T (2003a) Molossid bats from the late Tertiary of Florida with a review of the Tertiary Molossidae of North America. Acta Chiropterolog 5:61–74

    Google Scholar 

  • Czaplewski NJ, Takai M, Naeher TM, Shigehara N, Setoguchi T (2003b) Additional bats from the Middle Miocene La Venta Fauna of Colombia. Rev Acad Colomb Cienc 27:263–282

    Google Scholar 

  • Czaplewski NJ, Peachey WD (2003) Late Pleistocene bats from Arkenstone Cave, Arizona. Southwest Nat 48:597–609

    Google Scholar 

  • Czaplewski NJ, Rincón AD, Morgan GS (2005) Fossil bat (Mammalia: Chiroptera) remains from Inciarte Tar Pit, Sierra de Perijá, Venezuela. Caribb J Sci 41:768–781

    Google Scholar 

  • Dalquest WW (1978) Early Blancan mammals of the Beck Ranch Local Fauna of Texas. J Mammal 59:269–298

    Google Scholar 

  • Dalquest WW (1983) Mammals of the Coffee Ranch Local Fauna Hemphillian of Texas. Tex Mem Mus, Pearce-Sellards Ser 38:1–41

    Google Scholar 

  • Dalquest WW, Roth E (1970) Late Pleistocene mammals from a cave in Tamaulipas, Mexico. Southwest Nat 15:217–230

    Google Scholar 

  • de Bonis L, Crochet J-Y, Rage J-C, Sigé B, Sudre J, Vianey-Liaud M (1973) Nouvelles faunes de vertébrés oligocènes des phosphorites du Quercy Bull Mus Natn Hist Nat, Paris, 3e série 174:105–113

  • Ducrocq S, Jaeger J-J, Sigé B (1993) Un mégachiroptère dans l’eocène supérieur de Thaïlande—incidence dans la discussion phylogénique du groupe. N Jb Geol Paläont Mh 9:561–575

    Google Scholar 

  • Eick GN, Jacobs DS, Matthee CA (2005) A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (Chiroptera). Mol Biol Evol 22:1869–1886

    PubMed  CAS  Google Scholar 

  • Engesser B (1972) Die obermiozäne Säugetier Fauna von Anwil (Baselland). Tätigkeitsberichte Naturforsch Gesellsch, Baselland 28:37–363

    Google Scholar 

  • Engesser B, Ziegler R (1996) Didelphids, insectivores, and chiropterans from the later Miocene of France, Cental Europe, Greece, and Turkey. In: Bernor RL, Fahlbusch V, Mittman H-W (eds) The Evolution of Western Eurasian Neogene Mammal Faunas. Columbia University Press, New York, pp 157–167

    Google Scholar 

  • Foote M, Raup DM (1996) Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22:121–140

    PubMed  CAS  Google Scholar 

  • Fox DL, Fisher DC, Leighton LR (1999) Reconstructing phylogeny with and without temporal data. Science 284:1816–1819

    PubMed  CAS  Google Scholar 

  • Galbreath EC (1962) A new myotid bat from the middle Oligocene of northeastern Colorado. Trans Kansas Acad Sci 65:448–451

    Google Scholar 

  • Gauthier JA, Kluge AG, Rowe T (1988) Amniote phylogeny and the importance of fossils. Cladistics 4:105–209

    Google Scholar 

  • Ginsburg L (1963) Les mammifères fossiles récoltés à Sansan au cours du XIXe siècle. Bull Soc Geol France, 7e série 5:3–15

    Google Scholar 

  • Godawa J (1993) Pliocene bats of the genus Myotis (Mammalia: Chiroptera) from Podlesice (Poland) and Osztramos 9 and 13 (Hungary). Acta Zool Cracov 36:241–250

    Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG (eds) (2004) A Geologic Timescale 2004. Cambridge University Press, Cambridge

    Google Scholar 

  • Grady FV, Olson SL (2006) Fossil bats from Quaternary deposits on Bermuda (Chiroptera: Vespertilionidae). J Mammal 87:148–152

    Google Scholar 

  • Gunnell GF, Jacobs BF, Herendeen PS, Head JJ, Kowalski E, Msuya C, Mizambwa FA, Harrison T, Habersetzer J, Storch G (2003) Oldest placental mammal from sub-Saharan Africa: Eocene microbat from Tanzania—evidence for early evolution of sophisticated echolocation. Palaeontol Electron 5(3):10

    Google Scholar 

  • Gunnell GF, Simmons NB (2005) Fossil evidence and the origin of bats. J Mammal Evol 12:209–246

    Google Scholar 

  • Gunnell GF, Simons EL, Seiffert ER (2008) New bats (Mammalia: Chiroptera) from the late Eocene and early Oligocene, Fayum Depression, Egypt. J Vertebr Paleontol 28:1–11

    Google Scholar 

  • Habersetzer J, Storch G (1987) Klassifikation und funktionelle Flügelmorphologie paläogener Fledermäuse (Mammalia, Chiroptera). Cour Forschung Senckenberg 91:11–150

    Google Scholar 

  • Hand SJ (1985) New Miocene megadermatids (Chiroptera: Megadermatidae) from Australia with comments on megadermatid phylogenetics. Aust Mammal 8:5–43

    Google Scholar 

  • Hand SJ (1990) First Tertiary molossid (Microchiroptera: Molossidae) from Australia: its phylogenetic and biogeographic implications. Mem Queensl Mus 28:175–192

    Google Scholar 

  • Hand SJ (1993) First skull of a species of Hipposideros (Brachipposideros) (Microchiroptera: Hipposideridae), from Australian Miocene sediments. Mem Queensl Mus 33:179–192

    Google Scholar 

  • Hand SJ (1996) New Miocene and Pliocene megadermatids (Mammalia, Microchiroptera) from Australia, with comments on broader aspects of megadermatid evolution. Géobios 29:365–377

    Google Scholar 

  • Hand S (1997a) Hipposideros bernardsigei, a new hipposiderid (Mammalia: Microchiroptera) from the Australian Miocene and a reconsideration of the monophyly of related species groups. Münchner Geowiss Abh 34:73–92

    Google Scholar 

  • Hand SJ (1997b) Miophyllorhina riversleighensis gen. et sp. nov., a Miocene leaf-nosed bat (Microchiroptera: Hipposideridae) from Riversleigh, Queensland. Mem Queensl Mus 41:351–354

    Google Scholar 

  • Hand SJ (1997c) New Miocene leaf-nosed bats (Microchiroptera: Hipposideridae) from Riversleigh, northwestern Queensland. Mem Queensl Mus 41:335–349

    Google Scholar 

  • Hand SJ (1998a) Riversleigha williamsi gen. et sp. nov., a large Miocene hipposiderid (Microchiroptera) from Riversleigh, Queensland. Alcheringa 22:259–276

    Google Scholar 

  • Hand SJ (1998b) Xenorhinos, a new genus of Old World leaf-nosed bats (Microchiroptera: Hipposideridae) from the Australian Miocene. J Vertebr Paleontol 18:430–439

    Google Scholar 

  • Hand SJ, Archer M (2005) A new hipposiderid genus (Microchiroptera) from an early Miocene bat community in Australia. Palaeontology 48:371–383

    Google Scholar 

  • Hand SJ, Kirsch JAW (2003) Archerops, a new annectent hipposiderid genus (Mammalia: Microchiroptera) from the Australian Miocene. J Paleontol 77:1139–1151

    Google Scholar 

  • Hand SJ, Murray P, Megirian D, Archer M, Godthelp H (1998) Mystacinid bats (Microchiroptera) from the Australian Tertiary. J Paleontol 72:538–545

    Google Scholar 

  • Hand S, Novacek M, Godthelp H, Archer M (1994) First Eocene bat from Australia. J Vertebr Paleontol 14:375–381

    Google Scholar 

  • Handley CO (1959) A Revision of Bats of the Genera Euderma and Plecotus. Smithsonian Institution Press, Washington

    Google Scholar 

  • Heller F (1935) Fledermäuse aus der Eozänen Braunkohle des Geisel tales bei Halle a. S. Nov Acta Leopold Neue Folge 2:301–314

    Google Scholar 

  • Heller F (1936) Eine oberplicäne Wirbeltierfauna aus Rheinhessen. N Jb Mineral, Geol, Paläont B 76:99–160

    Google Scholar 

  • Hendey QB (1981) Paleoecology of the late Tertiary fossil occurrences in “E” Quarry, Langebaanweg, South Africa, and a reinterpretation of their geological context. Ann S Afr Mus 84:1–104

    Google Scholar 

  • Hermsen EJ, Hendricks JR (2008) W(h)ither fossils? Studying morphological character evolution in the age of molecular sequences. Ann Mo Bot Gard 95:72–100

    Google Scholar 

  • Hibbard CW (1950) Mammals from the Rexroad Formation from Fox Canyon, Kansas. Contr Mus Paleont, Univ Mich 8:113–192

    Google Scholar 

  • Hoofer SR, van den Bussche RA, Horáček I (2006) Generic status of the American pipistrelles (Vespertilionidae) with description of a new genus. J Mammal 87:981–992

    Google Scholar 

  • Hooker JJ (1996) A primitive emballonurid bat (Chiroptera, Mammalia) from the earliest Eocene of England. Palaeovertebrata 25:287–300

    Google Scholar 

  • Horáček I (1986) Kerivoula (Mammalia, Chiroptera), fossil in Europe? Acta Univ Carolinae-Geol, Špinar 2:213–222

    Google Scholar 

  • Horáček I (2001) On the early history of vespertilionid bats in Europe: the lower Miocene record from the Bohemian Massif. Lynx 32:123–154

    Google Scholar 

  • Horáček I, Fejfar O, Hulva P (2006) A new genus of vespertilionid bat from early Miocene of Jebel Zelten, Libya, with comments on Scotophilus and early history of vespertilionid bats (Chiroptera). Lynx 37:131–150

    Google Scholar 

  • Hulva P, Horáček I, Benda P (2007) Molecules, morphometrics and new fossils provide an integrated view of the evolutionary history of Rhinopomatidae (Mammalia: Chiroptera). BMC Evol Biol 7:165, 15 pp

    Google Scholar 

  • Jepsen GL (1966) Early Eocene bat from Wyoming. Science 154:1333–1339

    PubMed  Google Scholar 

  • Jin C-Z, Dong W, Liu J-Y, Wei G-B, Xu Q-Q, Zheng J-J, Zheng L-T, Han L-G, Wang F-Z (2000) A preliminary study on the early Pleistocene deposits and the mammalian fauna from the Renzi Cave, Fanchang, Anhui, China. Acta Anthropol Sinica 19(supp):235–245

    Google Scholar 

  • Jones KE, Bininda-Emonds ORP, Gittleman JL (2005) Bats, clocks, and rocks: diversification patterns in Chiroptera. Evolution 59:2243–2255

    PubMed  Google Scholar 

  • Jones KE, Purvis A, MacLarnon A, Bininda-Emonds ORP, Simmons NB (2002) A phylogenetic supertree of the bats (Mammalia: Chiroptera). Biol Rev 77:223–259

    PubMed  Google Scholar 

  • Kormos T (1930) Diagnosen neuer Säugetiere aus der oberpliozänen Fauna des Somlyóberges bei Püspökkfürdő. Ann Mus National Hungarici 27:237–246

    Google Scholar 

  • Kowalski K (1956) Insectivores, bats and rodents from the early Pleistocene bone breccia of Podlesice near Kroczyce (Poland). Acta Palaeontol Pol 1:331–393

    Google Scholar 

  • Kowalski K (1962a) Bats of the early Pleistocene from Koneprusy (Czechoslovakia). Acta Zool Cracov 7:145–156

    Google Scholar 

  • Kowalski K (1962b) Fauna of bats from the Pliocene of Węże in Poland. Acta Zool Cracov 7:39–51

    Google Scholar 

  • Kowalski K (1995) Taphonomy of bats (Chiroptera). Géobios 18:251–256

    Google Scholar 

  • Lavocat R (1961) Le gisement de vertébrés Miocènes de Beni Mellal (Maroc): étude systematique de la faune de mammiféres. Notes Mém Serv Mines Carte Géol Maroc 155:29–144

    Google Scholar 

  • Lawrence B (1943) Miocene bat remains from Florida, with notes on the generic characters of the humerus of bats. J Mammal 24:356–369

    Google Scholar 

  • Legendre S (1980) Un chiroptère emballonuridé dans le néogène d’Europe occidentale; considerations paléobiogéographiques. Géobios 13:839–847

    Google Scholar 

  • Legendre S (1982) Hipposideridae (Mammalia: Chiroptera) from the Mediterranean middle and late Neogene, and evolution of the genera Hipposideros and Asellia. J Vertebr Paleontol 2:372–385

    Google Scholar 

  • Legendre S (1985) Molossidés (Mammalia, Chiroptera) cénozoïques de l’Ancien et du Nouveau Monde; statut systématique; integration phylogénique des données. N Jb Geol Paläont Abh 170:205–227

    Google Scholar 

  • Lemon RRH, Churcher CS (1961) Pleistocene geology and paleontology of the Talara Region, northwest Peru. Am J Sci 259:410–429

    Google Scholar 

  • Lindsay EH, Jacobs LL (1985) Pliocene small mammals from Chihuahua. Paleontol Mex 51:1–45

    Google Scholar 

  • MacFadden BJ (1985) Patterns of phylogeny and rates of evolution in fossil horses: hipparions from the Miocene and Pliocene of North America. Paleobiology 11:245–257

    Google Scholar 

  • Maitre E, Sigé B, Escarguel G (2008) A new family of bats in the Paleogene of Europe: systematics and implications for the origin of emballonurids and rhinolophoids. N Jb Geol Paläont Abh 250:199–216

    Google Scholar 

  • Marandat B, Crochet J-Y, Godinot M, Hartenberger J-L, Legendre S, Rémy JA, Sigé B, Sudre J, Vianey-Liaud M (1993) Une nouvelle faune à mammifères d’âge éocène (Lutétien supérieur) dans les phosphorites du Quercy. Géobios 26:617–623

    Google Scholar 

  • Meschinelli L (1903) Un nuovo chirottero fossile (Archaeopteropus transiens Mesch.) delle Ligniti di Monteviale. Atti Reale Ist Veneto Sci, Lett, Arti 62:1329–1344

    Google Scholar 

  • Miller-Butterworth CM, Murphy WJ, O’Brien SJ, Jacobs DS, Springer MS, Teeling EC (2007) A family matter: conclusive resolution of the taxonomic position of the long-fingered bats, Miniopterus. Mol Biol Evol 24:1553–1561

    PubMed  CAS  Google Scholar 

  • Morgan GS (1989) Fossil Chiroptera and Rodentia from the Bahamas, and the historical biogeography of the Bahamian mammal fauna. In: Woods CA (ed) Biogeography of the West Indies. Sandhill Crane, Gainesville, pp 685–740

    Google Scholar 

  • Morgan GS (1991) Neotropical Chiroptera from the Pliocene and Pleistocene of Florida. Bull Am Mus Nat Hist 206:176–213

    Google Scholar 

  • Morgan GS, Czaplewski NJ (1999) First fossil record of Amorphochilus schnablii (Chiroptera: Furipteridae), from the late Quaternary of Peru. Acta Chiropterolog 1:75–79

    Google Scholar 

  • Morgan GS, Czaplewski NJ (2003) A new bat (Chiroptera: Natalidae) from the early Miocene of Florida, with comments on natalid phylogeny. J Mammal 84:729–752

    Google Scholar 

  • Morgan GS, Linares OJ, Ray CE (1988) New species of fossil vampire bats (Mammalia: Chiroptera: Desmodontidae) from Florida and Venezuela. Proc Biol Soc Wash 101:912–928

    Google Scholar 

  • Morgan GS, Ridgeway RB (1987) Late Pliocene (late Blancan) vertebrates from the St. Petersburg Times site, Pinellas County, Florida, with a brief review of Florida Blancan faunas. Papers Florida Paleontol 1:1–22

    Google Scholar 

  • Myers T, Crosby K, Archer M, Tyler M (2001) The Encore Local Fauna, a late Miocene assemblage from Riversleigh, northwestern Queensland. Mem Assoc Austr Palaeontol 25:147–154

    Google Scholar 

  • Norell MA, Novacek MJ (1992) The fossil record and evolution: comparing cladistic and paleontologic evidence for vertebrate history. Science 255:1690–1693

    PubMed  Google Scholar 

  • Ostrander GE (1983) New early Oligocene (Chadronian) mammals from the Raben Ranch Local Fauna, northwest Nebraska. J Paleontol 57:128–139

    Google Scholar 

  • Paul CRC (1998) Adequacy, completeness and the fossil record. In: Donovan SK, Paul CRC (eds) The Adequacy of the Fossil Record. John Wiley & Sons, Chichester, pp 1–22

    Google Scholar 

  • Pocock TN (1987) Plio-Pleistocene fossil mammalian microfauna of southern Africa—a preliminary report including description of two new fossil muroid genera (Mammalia: Rodentia). Paleontol Afr 26:69–91

    Google Scholar 

  • Popov VV (2004) Pliocene small mammals (Mammalia, Lipotyphla, Chiroptera, Lagomorpha, Rodentia) from Muselievo (north Bulgaria). Geodiversitas 26:403–491

    Google Scholar 

  • Qiu Z, Storch G (2000) The early Pliocene micromammalian fauna of Bilike, Inner Mongolia, China (Mammalia: Lipotyphla, Chiroptera, Rodentia, Lagomorpha). Senckenberg Leth 80:173–229

    Google Scholar 

  • Qiu Z, Han D, Qi G, Yufen L (1985) A preliminary report on a micromammalian assemblage from the hominoid locality of Lufeng Co. Yunnan Province. Acta Anthropol Sinica 4:13–32

    Google Scholar 

  • Quinet G (1965) Myotis misonnei n. sp. chiroptere de l’Oligocene de Hoogbutsel. Bull Inst R Sci Nat Belg 41:1–11

    Google Scholar 

  • Rana RS, Singh H, Sahni A, Rose KD, Saraswati PK (2005) Early Eocene chiropterans from a new mammalian assemblage (Vastan Lignite Mine, Gujarat, Western Peninsular Margin): oldest known bats from Asia. J Palaeontol Soc India 50:93–100

    Google Scholar 

  • Ray CE (1967) Pleistocene mammals from Ladds, Bartow County, Georgia. Bull Georgia Acad Sci 25:120–150

    Google Scholar 

  • Revilliod P (1917) Fledermäuse aus der Braunkohle von Messel bei Darmstadt. Abh Grossherz-hess Geol Landesanst 7:161–201

    Google Scholar 

  • Revilliod P (1919) L’état actuel de nos connaissances sur les chiroptères fossiles (note préliminaire). C R Soc Sci Phys Nat Genève 36:93–96

    Google Scholar 

  • Revilliod P (1922) Contribution a l’étude des chiropters des terrains tertiares. Troisième partie et fin. Mém Soc Paléont Suisse 45:133–195

    Google Scholar 

  • Rossina VV, Kruskop SV, Tesakov AS, Titov VV (2006) The first record of Late Miocene Bat from European Russia. Acta Zool Cracov 49A:125–133

    Google Scholar 

  • Russell DE, Louis P, Savage DE (1973) Chiroptera and Dermoptera of the French early Eocene. Univ Cal Pub Geol Sci 95:1–57

    Google Scholar 

  • Samonds KE (2007) Late Pleistocene bat fossils from Anjohibe Cave, northwestern Madagascar. Acta Chiropterolog 9:39–65

    Google Scholar 

  • Savage DE (1951) A Miocene phyllostomatid bat from Colombia, South America. Univ Cal Bull Dep Geol Sci 28:357–366

    Google Scholar 

  • Savage DE, Russell DE (1983) Mammalian Paleofaunas of the World. Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  • Sevilla P (1989) Quaternary fauna of bats in Spain: paleoecologic and biogeographic interest. In: Hanák V, Horáček I, Gaisler J (eds) European Bat Research 1987. Charles University Press, Prague, pp 349–355

    Google Scholar 

  • Sevilla P (1990) Rhinolophoidea (Chiroptera, Mammalia) from the upper Oligocene of Carrascosa del Campo (Central Spain). Géobios 23:173–188

    Google Scholar 

  • Sevilla P (1991) Murcielagos fosiles de España. In: Benzal J, de Paz O (eds) Los Murciélagos de España y Portugal. Icona, Madrid, pp 21–36

    Google Scholar 

  • Sigé B (1968) Les chiroptères du miocène inférieur de Bouzigues. I.-Étude Systématique. Palaeovertebrata 1:65–133

    Google Scholar 

  • Sigé B (1974) Données nouvelles sur le genre Stehlinia (Vespertilionoidea, Chiroptera) du Paléogène d’Europe. Palaeovertebrata 6:253–272

    Google Scholar 

  • Sigé B (1976) Les Megadermatidae (Chiroptera, Mammalia) Miocènes de Béni Mellal, Maroc. Géol Médit 3:71–86

    Google Scholar 

  • Sigé B (1985) Les chiroptères oligocènes du Fayum, Egypte. Geol Palaeontol 19:161–189

    Google Scholar 

  • Sigé B (1990) Nouveaux chiroptères de l’oligocène moyen des phosphorites du Quercy, France. C R Acad Sci Paris 310:1131–1137

    Google Scholar 

  • Sigé B (1991) Rhinolophoidea et Vespertilionoidea (Chiroptera) du Chambi (eocène inférieur de Tunisie). Aspects biostratigraphique, biogéographique et paléoécologique de l’origine des chiroptères modernes. N Jb Geol Paläont Abh 182:355–376

    Google Scholar 

  • Sigé B, Hand S, Archer M (1982) An Australian Miocene Brachipposideros (Mammalia, Chiroptera) related to Miocene representatives from France. Palaeovertebrata 12:149–172

    Google Scholar 

  • Sigé B, Legendre S (1983) L’historie des peuplements de chiroptères du bassin Méditerranéen: l’apport comparé des remplissages karstiques et des dépôts fluvio-lacustres. Mém Biospéol 10:209–225

    Google Scholar 

  • Sigé B, Russell DE (1980) Compléments sur les chiroptères de l’Eocène moyen d’Europe. Les genres Palaeochiropteryx and Cecilionycteris. Palaeovertebrata, Mém Jubil R Lavocat, pp 91–126

    Google Scholar 

  • Sigé B, Thomas H, Sen S, Gheerbrant E, Roger J, Al-Sulaimani Z (1994) Les chiropters de Taqah (oligocène inférieur, Sultanat d’Oman). Premier inventaire systématique. Münchner Geowiss Abh 26:35–48

    Google Scholar 

  • Silva-Taboada G (1974) Fossil Chiroptera from cave deposits in central Cuba, with descriptions of two new species (genera Pteronotus and Mormoops) and the first West Indian record of Mormoops megalophylla. Acta Zool Cracov 19:33–73

    Google Scholar 

  • Simmons NB (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: a Taxonomic and Geographic Reference, 3rd edn. The Johns Hopkins University Press, Baltimore, pp 312–529

    Google Scholar 

  • Simmons NB, Geisler JH (1998) Phylogenetic relationships of Icaronycteris, Archaeonycteris, Hassianycteris, and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull Am Mus Nat Hist 235:1–182

    Google Scholar 

  • Simmons NB, Seymour KL, Habersetzer J, Gunnell GF (2008) Primitive early Eocene bat from Wyoming and the evolution of flight and echolocation. Nature 451:818–822

    PubMed  CAS  Google Scholar 

  • Smith JD, Storch G (1981) New middle Eocene bats from “Grube Messel” near Darmstadt, W-Germany (Mammalia: Chiroptera). Senckenberg Biol 61:153–167

    Google Scholar 

  • Smith R, Russell DE (1992) Mammifères (Marsupialia, Chiroptera) de l’Yprésien de la Belgique. Bull Inst Roy Sci Nat Belg, Sci Terre 62:223–227

    Google Scholar 

  • Smith T, Rana RS, Missiaen P, Rose KD, Sahni A, Singh H, Singh L (2007) High bat (Chiroptera) diversity in the early Eocene of India. Naturwissenschaften 94:1003–1009

    PubMed  CAS  Google Scholar 

  • Springer MS, Teeling EC, Madsen O, Stanhope MJ, de Jong WW (2001) Integrated fossil and molecular data reconstruct bat echolocation. Proc Natl Acad Sci USA 98:6241–6246

    PubMed  CAS  Google Scholar 

  • Stirton RA (1931) A new genus of the family Vespertilionidae from the San Pedro Pliocene of Arizona. Univ California, Bull Dep Geol Sci 20:27–30

    Google Scholar 

  • Storch G (1999) Order Chiroptera. In: Rossner GE, Heissig K (eds) The Miocene Land Mammals of Europe. Verlag Dr Friedrich Pfeil, Munich, Germany, pp 81–90

  • Storch G, Sigé B, Habersetzer J (2002) Tachypteron franzeni n. gen., n. sp., earliest emaballonurid bat from the middle Eocene of Messel (Mammalia, Chiroptera). Paläontol Zeit 76:189–199

    Google Scholar 

  • Storer JE (1984) Mammals of the Swift Current Creek Local Fauna (Eocene; Uintan), Saskatchewan. Nat Hist Contrib, Mus Nat Hist, Regina 7:1–158

    Google Scholar 

  • Strand E (1928) Miscellanea nomenclatorica zoologica et palaeontologica. Arch Naturgesch 92:30–75

    Google Scholar 

  • Suárez W, Díaz-Franco S (2003) A new fossil bat (Chiroptera: Phyllostomidae) from a Quaternary cave deposit in Cuba. Caribb J Sci 39:371–377

    Google Scholar 

  • Sutton JF, Genoways HH (1974) A new vespertilionine bat from the Barstovian deposits of Montana. Occ Papers, Mus Tx Tech Univ 20:1–8

    Google Scholar 

  • Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ, Murphy WJ (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584

    PubMed  CAS  Google Scholar 

  • Tejedor MF, Czaplewski NJ, Goin FJ, Aragón E (2005) The oldest record of South American bats. J Vertebr Paleontol 25:990–993

    Google Scholar 

  • Thewissen JGM, Smith GR (1987) Vespertilionid bats (Chiroptera, Mammalia) from the Pliocene of Idaho. Contrib Mus Paleont, Univ Mich 27:237–245

    Google Scholar 

  • Tong Y-S (1997) Middle Eocene small mammals from Liguanqiao Basin of Henan Province and Yuanqu Basin of Shanxi Province, central China. Paleontol Sinica C 26:1–256

    Google Scholar 

  • Topál G (1963) Description of a new bat, Rhinolophus macrorhinus sp. n. from the lower Pleistocene of Hungary. Vertebr Hung 5:219–227

    Google Scholar 

  • Topál G (1974) The first record of Megaderma in Hungary (Pliocene sediments of Osztramos, Locality 10). Vertebr Hung 15:95–104

    Google Scholar 

  • Topál G (1983) New and rare fossil mouse-eared bats from the middle Pliocene of Hungary (Mammalia, Chiroptera). Fragm Mineral Palaeontol 11:43–54

    Google Scholar 

  • Topál G (1985) Bats from the lowermost Pleistocene locality 15 at Beremend, Hungary (Mammalia, Chiroptera). Fragm Mineral Palaeontol 12:51–57

    Google Scholar 

  • Topál G (1989a) New Tertiary plecotines from Hungary (Mammalia, Chiroptera). In: Hanák V, Horáček I, Gaisler J (eds) European Bat Research 1987. Charles University Press, Prague, pp 77–86

    Google Scholar 

  • Topál G (1989b) Tertiary and early Quaternary remains of Corynorhinus and Plecotus from Hungary (Mammalia, Chiroptera). Vertebr Hung 23:33–55

    Google Scholar 

  • Valentine JW (1989) How good was the fossil record? Clues from the California Pleistocene. Paleobiology 15:83–94

    Google Scholar 

  • Walker A (1969) True affinities of Propotto leakeyi Simpson 1967. Nature 223:647–648

    Google Scholar 

  • Wesselmann HB (1984) The Omo Micromammals. Systematics and Paleoecology of Early Man Sites from Ethiopia. Karger, New York

    Google Scholar 

  • Wessels W, Fejfar O, Peláez-Campomanes P, van der Meulen A, de Bruijn H (2003) Miocene small mammals from Jebel Zelten, Libya. Coloq Paleont 1(suppl):699–715

    Google Scholar 

  • White JA (1969) Late Cenozoic bats (subfamily Nyctophylinae) from the Anza-Borrego Desert of California. Misc Publ, Univ Kansas Mus Nat Hist 51:275–282

    Google Scholar 

  • Wilson RL (1968) Systematics and faunal analysis of a lower Pliocene vertebrate assemblage from Trego County, Kansas. Contrib Mus Paleontol, Univ Mich 22:75–126

    Google Scholar 

  • Wołoszyn BW (1986) A new species of long-winged bat Miniopterus tao sp. n. (Mammalia: Chiroptera) from Locality 1 at Choukoutien, China. Acta Universit Carolin- Geol, Spinar 2:205–211

    Google Scholar 

  • Wood AR, Zelditch ML, Rountrey AN, Eiting TP, Sheets HD, Gingerich PD (2007) Multivariate stasis in the dental morphology of the Paleocene-Eocene condylarth Ectocion. Paleobiology 33:248–260

    Google Scholar 

  • Worthy TH, Holdaway RN (1994) Quaternary fossil faunas from caves in Takaka valley and on Takaka Hill, northwest Nelson, South Island, New Zealand. J Roy Soc New Zealand 24:297–391

    Google Scholar 

  • Yang J (1977) On some Salientia and Chiroptera from Shanwang, Linqu, Shandong Vertebr Palasiatica 15:76–80

  • Yoon MH, Kuramoto T, Uchida TA (1984) Studies of middle Pleistocene bats including Pleistomyotis gen. et sp. nov. and two new extinct Myotis species from the Akiyoshi-dai Plateau. Bull Akiyoshi-dai Mus Nat Hist 19:15–26

    Google Scholar 

  • Zapfe H (1950) Die fauna der Mioznäen Spaltenflülung von Neudorf an der March (ČSSR). Chiroptera. Sitzungberichte Akad Wissenschaft Wien, Abt 1 159:51–64

    Google Scholar 

  • Zapfe H (1970) Paleptesicus nom. nov. fur. “Paraptesicus” (Chiroptera) aus der Mioznäen Spaltenflülung von Neudorf an der March (ČSSR). Sitzungsberichte Math-Naturwissenschaft Klasse, Österreich Akad Wissenschaft 6:93–94

    Google Scholar 

  • Ziegler R (1994) Die Chiroptera (Mammalia) aus dem Untermiozän von Stubersheim 3 (Baden-Württemberg). Münchner Geowiss Abh 26:97–116

    Google Scholar 

  • Ziegler R (2003) Bats (Chiroptera, Mammalia) from middle Miocene karstic fissure fillings of Petersbuch near Eichstätt, Southern Franconian Alb (Bavaria). Géobios 36:447–490

    Google Scholar 

Download references

Acknowledgements

We thank N. Czaplewski, I. Horáček, J. Hutcheon, G. Morgan, K. Samonds, and N. Simmons for discussions or providing reprints. We appreciate comments from J. Wible and from an anonymous reviewer that greatly improved the quality of this manuscript. TE thanks G. Smith and D. Nelson, University of Michigan, for logistical support and the Society of Vertebrate Paleontology for funds to attend the 2007 annual meeting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas P. Eiting.

Appendices

Appendix 1

Table 2 Compilation of bat fossil genera used in this study. Temporal records of bat genera were tabulated as present (1) or absent (0) in each discrete time interval. Sources, shown below the table, record the first and last occurrences of each genus (excluding Recent), plus additional intervening occurrences when available (non-exhaustive). Secondary sources were used in cases where primary sources were unavailable. Stratigraphic bin abbreviations as follows: Eo = Eocene, Oligo = Oligocene, Mio = Miocene, P-P = Pliocene through Pleistocene, Rec = Recent; Ypr = Ypresian, Lut = Lutetian, Bart = Bartonian, Pria = Priabonian, Rup = Rupelian, Chat = Chattian, Aqui = Aquitanian, Burd = Burdigalian, M Mio = Middle Miocene, L Mio = Late Miocene. Ma = Millions of Years Ago. Records for Recent bats were not used in statistical calculations

Appendix 2

Statistical calculations for Vespertilionoidea, following the method of Foote and Raup (1996).

Using the data for all vespertilionoid bats (Appendix 1), we first computed the total number of temporal bins in which each genus occurs. There are 11 stratigraphic bins (excluding the Recent), beginning with the Ypresian (early Eocene) and ending with the Plio-Pleistocene. Of the 56 vespertilionoid genera that occur as fossils, 38 occur in only one bin, five range through two bins, eight occur in three bins, one occurs in four bins, two occur in five bins, and one each occurs in six (Myotis) and eight (Tadarida) bins. No vespertilionoid bats lasted exactly seven bins, or in any more than eight bins.

To estimate preservation probability, R, we calculate the FreqRat (which estimates R) following the formula:

$$ R \approx FreqRat = {{f(2)^2 } \mathord{\left/ {\vphantom {{f(2)^2 } {\left[ {f(1)f(3)} \right]}}} \right. } {\left[ {f(1)f(3)} \right]}} $$

where f(x) is the frequency of genera with observed range-durations of x bins. For Vespertilionoidea, \( R \approx {{FreqRat = 5^2 } \mathord{\left/ {\vphantom {{FreqRat = 5^2 } {\left[ {\left( {38} \right)(8)} \right] = 0.082}}} \right. } {\left[ {\left( {38} \right)(8)} \right] = 0.082}} \).

To account for differential original temporal distributions of bat genera, R must be scaled according to original durations. Estimated preservation probability is used to calculate an estimate of the probability P 1 (T) that a taxon is preserved at least once given a true original duration T. The probability that a genus with original duration T is not at all preserved equals (1-R) T. Thus, the probability that it is preserved at least once equals:

$$ P_1 (T) = 1 - \left( {1 - R} \right)^T $$

For example, to calculate the probability that a genus is preserved given a true original duration of three bins, the equation became \( P_1 (3) = 1 - \left( {1 - 0.082} \right)^3 = 0.0227 \). This same procedure was used for all possible values of T (i.e., T = 1-∞, though in this and subsequent calculations it is usually sufficient to take out to just several hundred).

We next estimated extinction rate, q, which was to be used to compute original genus durations. We used linear regression on the ln-transformed frequencies of genera with a range of two or more bins. The slope of the linear regression line equals q (the extinction rate) with the sign reversed. Next, original durations were calculated, assuming a constant extinction rate, q, and an exponential distribution of original durations. q was calculated from the ln-slope of range-frequencies (omitting taxa that occur in only one bin) as the slope with the sign reversed. For Vespertilionoidea, the ln-slope of range-frequency distributions is −0.3226, so the extinction rate q equals 0.3226.

Using our estimate for q, we calculated the probability, h(T), that the original distribution equaled T as:

$$ h(T) = e^{{ - q\left( {T - 1} \right)}} - e^{- qT} $$

Using T of 3 again, we see that \( h(3) = e^{{ - \left( {0.3226} \right)\left( {3 - 1} \right)}} - e^{{ - \left( {.3226} \right)(3)}} = 0.145 \). Again, this procedure was calculated for all values of T.

Finally, to calculate completeness, we computed the sum, for all original durations, T, of the product between h(T) (probability of having original duration T) and P 1 (T) (probability of being preserved at least once during an interval given an original duration T) as:

$$ P_p = \sum\limits_{T = 1}^{\infty } {h(T)P_1 (T)} $$

As T increased, the completeness for that number of bins decreases rapidly, so this summation was to only be taken to several hundred rows in a spreadsheet. Doing this for Vespertilionoidea to 900 rows gave a completeness of 24.5% (rounded and included in Table 1). Summing the completeness calculations up to only 50 rows produced the same overall completeness value (to eight digits), indicating that it is sufficient to compute the summation using a finite set of values for T that is substantially less than 1000.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eiting, T.P., Gunnell, G.F. Global Completeness of the Bat Fossil Record. J Mammal Evol 16, 151–173 (2009). https://doi.org/10.1007/s10914-009-9118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-009-9118-x

Keywords

  • Chiroptera
  • Completeness
  • Fossil record
  • Phylogeny-independent