Skip to main content
Log in

Convergences in Scapula Morphology among Small Cursorial Mammals: An Osteological Correlate for Locomotory Specialization

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Small cursorial mammals, such as lagomorphs, elephant shrews, and the more cursorial caviomorph rodents, share both the similar locomotor gait of rapid half-bounding and a similar scapula anatomy of a long, slender, caudally projecting metacromion process. This scapular morphology is also present in some notoungulates (extinct endemic South American ungulates), in rabbit-like taxa such as Propachyruchos. In the rabbit Oryctolagus this elongated metacromion process serves to increase the moment arm of the acromiotrapezius and levator scapulae ventralis muscles, which we propose may aid in scapula stabilization and resisting ground reaction forces during the landing phase onto a single forelimb in half-bounding. A long, slender metacromion process is thus an osteological correlate of locomotor specialization, that of rapid half-bounding in small to medium-sized mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alexander RM (1977) Terrestrial locomotion. In: Alexander RM, Goldspink G (eds) Mechanics and Energetics of Animal Locomotion. Chapman and Hall, London, pp 168–203

    Google Scholar 

  • Bennett MB, Garden JG (2004) Locomotion and gaits of the northern brown bandicoot, Isoodon macrourus, (Marsupialia, Peramelidae). J Mammal 85:296–301

    Article  Google Scholar 

  • Bensley BA (1931) Practical Anatomy of the Rabbit. P. Blakiston’s Son & Co., Philadelphia

    Google Scholar 

  • Biewener AA (1989) Scaling body support in mammals: limb posture and muscle mechanics. Science 245:45–48

    Article  PubMed  CAS  Google Scholar 

  • Biewener AA (1998) Muscle-tendon stresses and elastic energy storage during locomotion in the horse. Comp Biochem Physiol B120:73–87

    Google Scholar 

  • Biknevicius AR (1993) Biomechanical scaling of limb bones and differential limb use in caviomorph rodents. J Mammal 74:95–107

    Article  Google Scholar 

  • Bramble DM (1989) Cranial specialization and locomotor habit in the Lagomorpha. Am Zool 29:303–317

    Google Scholar 

  • Bullimore SR, Burn JF (2005) Scaling of elastic energy storage in mammalian limb tendons: do small mammals really lose out? Biol Lett 1:57–59

    Article  PubMed  Google Scholar 

  • Cifelli RL (1985) South American ungulate evolution and extinction. In: Stehli F, Webb SD (eds) The Great American Biotic Interchange. Plenum, New York, pp 254–257

    Google Scholar 

  • Elissamburu A (2004) Analisis morfometrico y morfofuncional del esqueleto apendicular de Paedotherium (Mammalia, Notoungulata). Ameghiniana 41:363–380

    Google Scholar 

  • Elissamburu A, Vizcaíno SF (2004) Limb proportions and adaptations in caviomorph rodents (Rodentia: Caviomorpha). J Zool Lond 262:145–159

    Article  Google Scholar 

  • Fischer MS, Blickhan R (2006) The tri-segmented limbs of therian mammals: kinematics, dynamics, and self-stabilization—a review. J Exp Biol 305A:935–952

    Google Scholar 

  • Fischer MS, Schilling N, Schmidt M, Haarhaus D, Witte H (2002) Basic limb kinematics of small therian mammals. J Exp Biol 205:1315–1338

    PubMed  Google Scholar 

  • Gambaryan PP (1974) How Mammals Run: Anatomical Adaptations. Wiley, New York

    Google Scholar 

  • Hildebrand M (1977) Analysis of asymmetrical gaits. J Mammal 58:131–156

    Article  Google Scholar 

  • Hildebrand M (1980) The adaptive significance of tetrapod gait selection. Am Zool 20:255–267

    Google Scholar 

  • Hildebrand M (1985) Walking and running. In: Hildebrand M, Bramble DM, Liem KF, Wake DB (eds) Functional Vertebrate Morphology. Belknap, London, pp 38–75

    Google Scholar 

  • Homberger DG, Walker WF Jr (2004) Vertebrate Dissection, 9th edn. Brooks/Cole, Thomson Learning, Belmont, CA

    Google Scholar 

  • Howell AB (1944) Speed in Animals. University of Chicago Press, Chicago

    Google Scholar 

  • Hucheon D, Douzery EJP (2001) From the old world to the new world: a molecular chronicle of the phylogeny and biogeography of hystricognath rodents. Mol Phylogenet Evol 20:238–251

    Article  CAS  Google Scholar 

  • Jenkins FA Jr (1971) Limb posture and locomotion in the Virginia opossum (Didelphis marsupialis) and in other non-cursorial mammals. J Zool Lond 165:303–315

    Google Scholar 

  • Jenkins FA Jr (1974a) Tree shrew locomotion and the origin of primate arborealism. In: Jenkins FA Jr (ed) Primate Locomotion. Academic, New York, pp 85–115

    Google Scholar 

  • Jenkins FA Jr (1974b) The movement of the shoulder in claviculate and aclaviculate mammals. J Morphol 144:71–84

    Article  Google Scholar 

  • Jenkins FA Jr, Parrington FR (1976) The postcranial skeleton of the Triassic mammals Eozostrodon, Megazostrodon, and Erythrotherium. Philos Trans R Soc B273:387–431

    Google Scholar 

  • Jenkins FA Jr, Weijs WA (1979) The functional anatomy of the shoulder in the Virginia opossum (Didelphis virginiana). J Zool Lond 188:379–410

    Article  Google Scholar 

  • Kaiser HF (1960) The application of electronic computers to factor analysis. Educ Psychol Meas 20:141–151

    Article  Google Scholar 

  • Kingdon J (1974) East African Mammals: An Atlas of Evolution in Africa. Volume II, Part A (Insectivores and Bats). The University of Chicago Press, Chicago

    Google Scholar 

  • Krause W (1884) Anatomie des Kaninchens. Verlag Von Wilhelm Englemann, Leipzig

    Google Scholar 

  • Lammers AR, German RZ (2002) Ontogenetic allometry in the locomotor skeleton of specialized half-bounding mammals. J Zool Lond 258:485–495

    Article  Google Scholar 

  • Nowak RM (1999) Walker’s Mammals of the World, 6th edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Opazo JC (2005) A molecular timescale for caviomorph rodents (Mammalia, Hystricomorpha). Mol Phylogenet Evol 37:932–937

    Article  PubMed  CAS  Google Scholar 

  • Richmond FJR, Liinamaa TA, Keane J, Thomson DB (1999) Morphometry, histochemistry, and innervation of cervical shoulder muscles in the cat. J Morphol 239:255–269

    Article  PubMed  CAS  Google Scholar 

  • Rowe DL, Honeycutt RL (2002) Phylogenetic relationships, ecological correlates, and molecular evolution within the Cavoidea (Mammalia, Rodentia). Mol Biol Evol 19:263–277

    PubMed  CAS  Google Scholar 

  • Ruff C (1990) Body mass and hindlimb bone cross-sectional and articular dimensions in anthropoid primates. In: Damuth J, MacFadden BJ (eds) Body Size in Mammalian Paleobiology: Estimation and Biological Implications. Cambridge University Press, Cambridge, pp 119–149

    Google Scholar 

  • Ruina A, Bertram JEA, Srinivasan M (2005) A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition. J Theor Biol 237:170–192

    Article  PubMed  Google Scholar 

  • Savage RJG, Long MR (1986) Mammal Evolution: A Illustrated Guide. British Museum (Natural History) Publishing, London

    Google Scholar 

  • Sears KE (2004) Constraints on the morphological evolution of marsupial shoulder girdles. Evolution 58:2353–2370

    PubMed  Google Scholar 

  • Sereno PC, McKenna MC (1995) Cretaceous multituberculate skeleton and the early evolution of the mammalian shoulder girdle. Nature 377:144–147

    Article  CAS  Google Scholar 

  • Sinclair WJ (1909) Typotheria of the Santa Cruz beds. In: Scott WB (ed) Reports of the Princeton University Expeditions to Patagonia, 1896–1899. Princeton University Press, Princeton, pp 1–110

    Google Scholar 

  • Smith FA, Lyons SK, Ernest SKM, Jones KE, Kauffman DM, Dyan T, Marquet PA, James JH, Haskell JP (2003) Body mass of late Quaternary mammals. Ecology 84:3403

    Article  Google Scholar 

  • Vaughan TA, Ryan JM, Czaplewski NJ (2000) Mammalogy, 4th edn. Saunders College Publishing, Fort Worth

    Google Scholar 

  • Williams SB, Wilson AM, Payne C (2007) Functional specialisation of the thoracic limb of the hare (Lepus europaeus). J Anat 201:491–505

    Article  Google Scholar 

  • Wilson AM, McGuigan MP, Su A, van den Bogert AJ (2001) Horses damp the spring in their step. Nature 414:895–898

    Article  PubMed  CAS  Google Scholar 

  • Witte H, Biltzinger J, Hackert R, Schilling N, Schmidt M, Reich C, Fischer MS (2002) Torque patterns of the limbs of small therian mammals during locomotion on flat ground. J Exp Biol 205:1339–1353

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Manuel Mendoza for help with statistics, and Judy Chupasko (Harvard University Museum of Comparative Zoology), Eileen Westwig (American Museum of Natural History), and Richard Thorington (Smithsonian Institution) for access to specimens in their care. Thanks also to members of the Brown University Morphology Group for discussion of this manuscript, especially to Beth Brainerd and Tonia Hsieh for written comments, Tom Roberts for suggestion of references, and useful comments from two reviewers and the journal editor. An earlier version of this paper comprised the Brown University undergraduate honors thesis for the senior author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Janis.

Appendix

Appendix

Table 4 Size Adjusted Scapular Measurements (cm). (See Table 1 for measurements)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seckel, L., Janis, C. Convergences in Scapula Morphology among Small Cursorial Mammals: An Osteological Correlate for Locomotory Specialization. J Mammal Evol 15, 261–279 (2008). https://doi.org/10.1007/s10914-008-9085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-008-9085-7

Keywords

Navigation