Skip to main content

Advertisement

Log in

A Total Evidence Phylogeny of the Arctoidea (Carnivora: Mammalia): Relationships Among Basal Taxa

Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

A total evidence phylogenetic analysis was performed for 14 extant and 18 fossil caniform genera using a data matrix of 5.6 kbp of concatenated sequence data from six independent loci and 80 morphological characters from the cranium and dentition. Maximum parsimony analysis recovered a single most parsimonious cladogram (MPC). The topology of the extant taxa in the MPC agreed with previous molecular phylogenies. Phylogenetic positions for fossil taxa indicate that several taxa previously described as early members of extant families (e.g., Bathygale and Plesictis) are likely stem taxa at the base of the Arctoidea. Taxa in the “Paleomustelidae” were found to be paraphyletic, but a monophyletic Oligobuninae was recovered within this set of taxa. This clade was closely related to the extant genera Gulo and Martes, therefore, nested within the extant radiation of the family Mustelidae. This analysis provides a resolution to several discrepancies between phylogenies considering either fossil taxa or extant taxa separately, and provides a framework for incorporating fossil and extant taxa into comprehensive combined evidence analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Allard MW, Carpenter JM (1996) On weighting and congruence. Cladistics 12:183–198

    Article  Google Scholar 

  • Arango CP, Wheeler WC (2007) Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics 23:255–293

    Article  Google Scholar 

  • Baker RH, DeSalle R (1997) Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Syst Biol 46:654–673

    Article  PubMed  CAS  Google Scholar 

  • Baskin JA (1998a) Mustelidae. In: CM Janis, KM Scott, LL Jacobs (eds) Evolution of Tertiary Mammals of North America. Cambridge University Press, New York, pp 152–173

    Google Scholar 

  • Baskin JA (1998b) Procyonidae. In: CM Janis, KM Scott, LL Jacobs (eds) Evolution of Tertiary Mammals of North America. Cambridge University Press, New York, pp 144–151

    Google Scholar 

  • Berta A, Wyss AR (1994) Pinniped phylogeny. In: A Berta and TA Deméré (eds) Contributions in Marine Mammal Paleontology Honoring Frank C. Whitmore, Jr. Proceedings of the San Diego Society of Natural History, pp 33–56

  • Bond JE, Hedin M (2006) A total evidence assessment of the phylogeny of North American euctenizine trapdoor spiders (Araneae, Mygalomorphae, Cyrtaucheniidae) using Bayesian inference. Mol Phylogenet Evol 41:70–85

    Article  PubMed  CAS  Google Scholar 

  • Bremer K (1988) The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795–803

    Article  CAS  Google Scholar 

  • Bryant HN, Russell AP, Fitch WD (1993) Phylogenetic relationships within the extant Mustelidae (Carnivora): appraisal of the cladistic status of the Simpsonian subfamilies. Zool J Linn Soc 108:301–334

    Article  Google Scholar 

  • Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL, Waddell PJ (1993) Partitioning and combining data in phylogenetic analysis. Syst Biol 42:384–397

    Article  Google Scholar 

  • Cobbett A, Wilkinson M, Wills MA (2007) Fossils impact as hard as living taxa in parsimony analyses of morphology. Syst Biol 56:753–766

    Article  PubMed  Google Scholar 

  • Decker DM, Wozencraft WC (1991) Phylogenetic analysis of recent procyonid genera. J Mammal 72:42–55

    Article  Google Scholar 

  • Dejong CGV (1987) A phylogenetic study of the Lutrinae (Carnivora, Mustelidae) using morphological data. Can J Zool 65:2536–2544

    Article  Google Scholar 

  • Dragoo JW, Honeycutt RL (1997) Systematics of mustelid-like carnivores. J Mammal 78:426–443

    Article  Google Scholar 

  • Eriksson T (2001) AutoDecay Version 5.0.

  • Farris JS (1989a) The Retention Index and homoplasty excess. Syst Zool 38:406–407

    Article  Google Scholar 

  • Farris JS (1989b) The retention index and the rescaled consistency index. Cladistics 5:417–419

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence-limits on phylogenies—an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Finarelli JA, Flynn JJ (2006) Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Syst Biol 55:301–313

    Article  PubMed  Google Scholar 

  • Finarelli JA, Flynn JJ (2007) The evolution of encephalization in caniform carnivorans. Evolution 61:1758–1772

    Article  PubMed  Google Scholar 

  • Flynn JJ, Finarelli JA, Zehr S, Hsu J, Nedbal MA (2005) Molecular phylogeny of the Carnivora (Mammalia): assessing the impact of increased sampling on resolving enigmatic relationships. Syst Biol 54:317–337

    Article  PubMed  Google Scholar 

  • Flynn JJ, Nedbal MA (1998) Phylogeny of the Carnivora (Mammalia): congruence vs. incompatibility among multiple data sets. Mol Phylogenet Evol 9:414–426

    Article  PubMed  CAS  Google Scholar 

  • Flynn JJ, Nedbal MA, Dragoo JW, Honeycutt RL (2000) Whence the red panda? Mol Phylogenet Evol 17:190–199

    Article  PubMed  CAS  Google Scholar 

  • Flynn JJ, Neff NA, Tedford RH (1988) Phylogeny of the Carnivora. In: MJ Benton (eds) Phylogeny and Classification of the Tetrapods. Clarendon, Oxford, pp 73–116

    Google Scholar 

  • Fulton TL, Strobeck C (2006) Molecular phylogeny of the Arctoidea (Carnivora): effect of missing data on supertree and supermatrix analyses of multiple gene data sets. Mol Phylogenet Evol 41:165–181

    Article  PubMed  CAS  Google Scholar 

  • Gatesy J, Amato G, Norell M, DeSalle R, Hayashi C (2003) Combined support for wholesale taxic atavism in gavialine crocodylians. Syst Biol 52:403–422

    Article  PubMed  Google Scholar 

  • Gatesy J, O’Leary MA (2001) Deciphering whale origins with molecules and fossils. Trends Ecol Evol 16:562–570

    Article  Google Scholar 

  • Ginsburg L, Morales J (1992) Contribution to the knowledge of the European Miocene Mustelidae (Carnivora, Mammalia) Trochictis-Ischyrictis, related and new genera. Comptes Rendus Acad Sci Serie II 315:111–116

    Google Scholar 

  • Giribet G, Edgecombe GD, Wheeler WC (2001) Arthropod phylogeny based on eight molecular loci and morphology. Nature 413:157–161

    Article  PubMed  CAS  Google Scholar 

  • Grant T, Frost DR, Caldwell JP, Gagliardo R, Haddad CFB, Kok PJR, Means DB, Noonan BP, Schargel WE, Wheeler WC (2006) Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bull Am Mus Nat Hist 299:1–262

    Article  Google Scholar 

  • Huelsenbeck JP (1991) When are fossils better than extant taxa in phylogenetic analysis. Syst Zool 40:458–469

    Article  Google Scholar 

  • Hunt RM (1998) Ursidae. In: CM Janis, KM Scott, LL Jacobs (eds) Evolution of Tertiary Mammals of North America. Cambridge University Press, New York, pp 174–195

    Google Scholar 

  • Ledje C, Arnason U (1996a) Phylogenetic analyses of complete cytochrome b genes of the order Carnivora with particular emphasis on the Canifornia. J Mol Evol 42:135–144

    Article  PubMed  CAS  Google Scholar 

  • Ledje C, Arnason U (1996b) Phylogenetic relationships within caniform carnivores based on analyses of the mitochondrial 12S rRNA gene. J Mol Evol 43:641–649

    Article  PubMed  CAS  Google Scholar 

  • Maddison MJ, Maddison DR (2005) MacClade: Interactive Analysis of Phylogeny and Character Evolution, Version 4.08

  • Magallon S (2007) From fossils to molecules: phylogeny and the core eudicot floral groundplan in Hamamelidoideae (Hamamelidaceae, Saxifragales). Syst Bot 32:317–347

    Article  Google Scholar 

  • Manos PS, Soltis PS, Soltis DE, Manchester SR, Oh SH, Bell CD, Dilcher DL, Stone DE (2007) Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Syst Biol 56:412–430

    Article  PubMed  Google Scholar 

  • Mivart SGJ (1885) On the anatomy, classification and distribution of the Arctoidea. Proc Zool Soc Lond 23:340–404

    Google Scholar 

  • Nixon KC, Wheeler QD (1992) Extinction and the origin of species. In: MJ Novacek and QD Wheeler (eds) Extinction and Phylogeny. Columbia University Press, New York, pp 119–143

    Google Scholar 

  • Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53:47–67

    Article  PubMed  Google Scholar 

  • O’Brien SJ, Nash WG, Wildt DE, Bush ME, Benveniste RE (1985) A molecular solution to the riddle of the giant panda’s phylogeny. Nature 317:140–144

    Article  PubMed  CAS  Google Scholar 

  • O’Leary MA (1999) Parsimony analysis of total evidence from extinct and extant taxa and the cetacean-artiodactyl question (Mammalia, Ungulata). Cladistics 15:315–330

    Article  Google Scholar 

  • O’Leary MA (2001) The phylogenetic position of cetaceans: further combined data analyses, comparisons with the stratigraphic record and a discussion of character optimization. Am Zool 41:487–506

    Article  Google Scholar 

  • Radinsky L (1973) Are stink badgers skunks? Implications of neuroanatomy for mustelid phylogeny. J Mammal 54:585–593

    Article  Google Scholar 

  • Rothwell GW, Nixon KC (2006) How does the inclusion of fossil data change our conclusions about the phylogenetic history of euphyllophytes? Int J Plant Sci 167:737–749

    Article  Google Scholar 

  • Sanders KL, Malhotra A, Thorpe RS (2006) Combining molecular, morphological and ecological data to infer species boundaries in a cryptic tropical pitviper. Biol J Linn Soc 87:343–364

    Article  Google Scholar 

  • Sato JJ, Hosoda T, Wolsan M, Suzuki H (2004) Molecular phylogeny of arctoids (Mammalia: Carnivora) with emphasis on phylogenetic and taxonomic positions of the ferret-badgers and skunks. Zool Sci 21:111–118

    Article  PubMed  CAS  Google Scholar 

  • Sato JJ, Hosoda T, Wolsan M, Tsuchiya K, Yamamo M, Suzuki H (2003) Phylogenetic relationships and divergence times among mustelids (Mammalia: Carnivora) based on nucleotide sequences of the nuclear interphotoreceptor retinoid binding protein and mitochondrial cytochrome b genes. Zool Sci 20:243–264

    Article  PubMed  CAS  Google Scholar 

  • Sato JJ, Wolsan M, Suzuki H, Hosoda T, Yamaguchi Y, Hiyama K, Kobayashi M, Minami S (2006) Evidence from nuclear DNA sequences sheds light on the phylogenetic relationships of Pinnipedia: single origin with affinity to Musteloidea. Zool Sci 23:125–146

    Article  PubMed  CAS  Google Scholar 

  • Scotland RW, Olmstead RG, Bennett JR (2003) Phylogeny reconstruction: the role of morphology. Syst Biol 52:539–548

    PubMed  Google Scholar 

  • Simpson GG (1945) The principles of classification and a classification of mammals. Bull Am Mus Nat Hist 85:1–350

    Google Scholar 

  • Slattery JP, O’Brien SJ (1995) Molecular phylogeny of the red panda (Ailurus fulgens). J Heredity 86:413–422

    CAS  Google Scholar 

  • Stone KD, Cook JA (2002) Molecular evolution of Holarctic martens (genus Martes, Mammalia: Carnivora: Mustelidae). Mol Phylogenet Evol 24:169–179

    Article  PubMed  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (* and other methods), Version 4

  • Tedford RH, Barnes LG, Ray CE (1994) The early Miocene littoral ursoid carnivoran Kolponomos: systematics and mode of life. In: A Berta and TA Deméré (eds) Contributions in Marine Mammal Paleontology Honoring Frank C. Whitmore, Jr. Proceedings of the San Diego Society of Natural History, pp 11–32

  • Tedford RH, Taylor BE, Wang XM (1995) Phylogeny of the Caninae (Carnivora: Canidae): the living taxa. Am Mus Novit 3146:1–37

    Google Scholar 

  • Vrana PB, Milinkovitch MC, Powell JR, Wheeler WC (1994) Higher level relationships of the arctoid Carnivora based on sequence data and total evidence. Mol Phylogenet Evol 3:47–58

    Article  PubMed  CAS  Google Scholar 

  • Wang XM (1994) Phylogenetic systematics of the Hesperocyoninae (Carnivora: Canidae). Bull Am Mus Nat Hist 221:1–207

    Google Scholar 

  • Wang XM, McKenna M, Dashzeveg D (2005a) Amphicticeps and Amphicynodon (Arctoidea, Carnivora) from Hsanda Gol Formation, Central Mongolia and phylogeny of basal arctoids with comments on zoogeography. Am Mus Novit 3483:1–57

    Article  Google Scholar 

  • Wang XM, Qui Z (2004) Late Miocene Promephitis (Carnivora, Mephitidae) from China. J Vertebr Paleontol 24:721–731

    Article  Google Scholar 

  • Wang XM, Qiu ZX, Wang BY (2004) A new leptarctine (Carnivora: Mustelidae) from the early Miocene of the northern Tibetan Plateau: implications for the phylogeny and zoogeography of basal mustelids. Zool J Linn Soc 142:405–421

    Article  Google Scholar 

  • Wang XM, Whistler DP, Takeuchi GT (2005b) A new basal skunk Martinogale (Carnivora, Mephitinae) from late Miocene Dove Spring Formation, California, and origin of New World mephitines. J Vertebr Paleontol 25:936–949

    Article  Google Scholar 

  • Wesley-Hunt GD (2005) The morphological diversification of carnivores in North America. Paleobiology 31:35–55

    Article  Google Scholar 

  • Wesley-Hunt GD, Flynn JJ (2005) Phylogeny of the Carnivora: basal relationships among the carnivoramorphans, and assessment of the position of “Miacoidea” relative to crown-clade Carnivora. J Syst Palaeontol 3:1–28

    Article  Google Scholar 

  • Wesley-Hunt GD, Werdelin L (2005) Basicranial morphology and phylogenetic position of the upper Eocene carnivoramorphan Quercygale. Acta Palaeontol Pol 50:837–846

    Google Scholar 

  • Wheeler WC, Hayashi CY (1998) The phylogeny of the extant chelicerate orders. Cladistics 14:173–192

    Article  Google Scholar 

  • Wiens JJ (1998) Does adding characters with missing data increase or decrease phylogenetic accuracy. Syst Biol 47:625–640

    Article  PubMed  CAS  Google Scholar 

  • Wiens JJ (2003a) Incomplete taxa, incomplete characters and phylogenetic accuracy: is there a missing data problem? J Vertebr Paleontol 23:297–310

    Article  Google Scholar 

  • Wiens JJ (2003b) Missing data, incomplete taxa, and phylogenetic accuracy. Syst Biol 52:528–538

    Article  PubMed  Google Scholar 

  • Wilkinson M (1995) Coping with abundant missing entries in phylogenetic inference using parsimony. Syst Biol 44:501-514

    Article  Google Scholar 

  • Wolsan M (1993) Phylogeny and classification of early European Mustelida (Mammalia, Carnivora). Acta Theriol 38:345–384

    Google Scholar 

  • Wolsan M (1999) Oldest mephitine cranium and its implications for the origin of skunks. Acta Palaeontol Pol 44:223–230

    Google Scholar 

  • Wozencraft WC (2005) Order Carnivora. In: DE Wilson and DM Reeder (eds) Mammal Species of the World, a Taxonomic and Geographic Reference. Johns Hopkins University Press, Baltimore, pp 532–628

    Google Scholar 

  • Wyss AR, Flynn JJ (1993) A phylogenetic analysis and definition of the Carnivora. In: FS Szalay, MJ Novacek, MC McKenna (eds) Mammal Phylogeny: Placentals. Springer, New York, pp 32–52

    Google Scholar 

  • Yoder AD, Burns MM, Zehr S, Delefosse T, Veron G, Goodman SM, Flynn JJ (2003) Single origin of Malagasy Carnivora from an African ancestor. Nature 421:734–737

    Article  PubMed  CAS  Google Scholar 

  • Yonezawa T, Nikaido M, Kohno N, Fukumoto Y, Okada N, Hasegawa M (2007) Molecular phylogenetic study on the origin and evolution of Mustelidae. Gene 396:1–12

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Li Q, Ryder OA, Zhang Y (2004) Phylogenetic relationships within mammalian Order Carnivora indicated by sequences of two nuclear DNA genes. Mol Phylogenet Evol 33:694–705

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

J. Flynn provided ideas and feedback during the course of this project. I am grateful to W. Stanley and M. Schulenberg for assistance and access to the mammal collections in the Division of Mammals, Field Museum of Natural History. For assistance and access to fossil collections I also thank: W. Simpson (Field Museum of Natural History); J. Meng, C. Norris, J. Galkin (American Museum of Natural History); W. Joyce, D. Brinkman, M. Benoit (Yale Peabody Museum), P. Tassy, C. Sagne (Muséum National d’Histoire Naturelle, Paris), A. Currant (NHM, London) and X. Wang, S. McLeod, G. Takeuchi (Natural History Museum of Los Angeles County). I would also like to thank two anonymous reviewers and J. R. Wible for comments and corrections on manuscript drafts. This work was funded, in part, by National Science Foundation Doctoral Dissertation Improvement Grant (DEB-0608208), a Brown Family Foundation Graduate Fellowship, and by the University of Michigan, Society of Fellows.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Finarelli.

Appendices

Appendix 1

Table 4 Character state definitions for the morphological character partition

Appendix 2

Table 5 Character-by-taxon matrix for the morphological character partition

Appendix 3

Table 6 Fossil and extant specimens examined for the morphological character partition

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finarelli, J.A. A Total Evidence Phylogeny of the Arctoidea (Carnivora: Mammalia): Relationships Among Basal Taxa. J Mammal Evol 15, 231–259 (2008). https://doi.org/10.1007/s10914-008-9074-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-008-9074-x

Keywords

Navigation