Advertisement

Journal of Mammalian Evolution

, Volume 12, Issue 3–4, pp 495–511 | Cite as

A New European Marsupial Indicates a Late Cretaceous High-Latitude Transatlantic Dispersal Route

  • James E. Martin
  • Judd A. Case
  • John W. M. Jagt
  • Anne S. Schulp
  • Eric W. A. Mulder
Other Original Articles

Abstract

The first record of an undoubted opossum-like marsupial from the Mesozoic of Europe indicates an invasion from North America at the end of Late Cretaceous (Maastrichtian). The new 66.1 million-year-old marsupial, Maastrichtidelphys meurismeti n. gen., n. sp., represented by a right upper molar, comes from the type Maastrichtian of The Netherlands. The Maastricht marsupial exhibits affinities with earlier (early Maastrichtian) North American herpetotheriids providing definitive evidence of a high-latitude North Atlantic dispersal route between North America and Europe during the latest Cretaceous. Previously, the first major interchange for marsupials was thought to have occurred nearly 10 million years later in the Eocene. The occurrence of this new marsupial in Europe implies that at some time during the latest Cretaceous, sea level and climatic conditions must have been sufficiently favorable to allow for such a high-latitude dispersal. The fragmentary remains of hadrosaurid and theropod dinosaurs, as well as boid snakes from northwestern Europe which have affinities with North American taxa help substantiate assumptions made by the occurrence of the herpetotheriid marsupial in Maastricht.

Key Words

high-latitude dispersal Late Cretaceous Maastrichtian marsupials new taxa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramovich, S., Keller, G., Adatte, T., Stinnesbeck, W., Hottinger, L., Steuben, D., Berner, Z., Ramanivosoa, B., and Randriamanantenasoa, A. (2002). Age and paleoenvironment of the Maastrichtian to Paleocene of the Mahajanga Basin, Madagascar: A multidisciplinary approach. Mar. Micropaleont. 47: 17–70.Google Scholar
  2. Amiot, R., Lécuyer, C., Buffetaut, E., Fluteau, F., Legendre, S., and Martineau, F. (2004). Latitudinal temperature gradient during the Cretaceous Upper Campanian–Middle Maastrichtian: δ18O record of continental vertebrates. Earth Planet. Sci. Lett. 226: 255–272.CrossRefGoogle Scholar
  3. Antunes, M. T., and Mateus, O. (2003). Dinosaurs of Portugal. C. R. Palevol. 2: 77–95.Google Scholar
  4. Antunes, M. T., Sigogneau-Russell, D., and Russell, D. E. (1986). Sur quelques dents de Mammifères du Crétacé supérieur de Taveiro, Portugal (Note préliminaire). C. R. Acad. Sci. Paris 303: 1247–1250.Google Scholar
  5. Archibald, J. D., Clemens, W. A., Gingerich, P. D., Krause, D. W., Lindsay, E. H., and Rose, K. D. (1987). First North American Land Mammal Ages of the Cenozoic Era. In: Cenozoic Mammals of North America: Geochronology and Biostratigraphy, M. O. Woodburne, ed., pp. 24–76, University of California Press, Berkeley.Google Scholar
  6. Averianov, A. O., and Kielan-Jaworowska, Z. (1999). Marsupials from the Late Cretaceous of Uzbekistan. Acta Palaeontol. Pol. 44: 71–81.Google Scholar
  7. Buffetaut, E., Delfino, M., and Pinna, G. (2001). The crocodilians, pterosaurs and dinosaurs from the Campanian-Santonian of Villaggio del Pescatore (northeastern Italy): A preliminary report. In: Abstracts 6th European Workshop on Vertebrate Palaeontology, Florence-Montevarchi, Italy, September 2001, p. 28.Google Scholar
  8. Canudo, J. I., Ardevol, L., Cuenca-Bescos, G., Lopez-Martinez, N., Murelaga, X., Pereda-Suberbiola, X., Ruiz-Omenaca, J. I., and Orue-Etxebarria, X. (1999). New dinosaur localities near the Cretaceous/Tertiary boundary from Aren (Huesca, Spain). In: Abstracts 4th European Workshop on Vertebrate Palaeontology, Albarracín, Spain, June 1999, p. 40.Google Scholar
  9. Carpenter, K., Russell, D., Baird, D., and Denton, R. (1997). Redescription of the holotype of Dryptosaurus aquilunguis (Dinosauria: Theropoda) from the Upper Cretaceous of New Jersey. J. Vertebr. Paleontol. 17: 561–573.CrossRefGoogle Scholar
  10. Case, J. A., Martin, J. E., Chaney, D. S., Reguero M., Marenssi, S. A., Santillana, S. M., and Woodburne, M. O. (2000). The first duck-billed dinosaur (Family Hadrosauridae) from Antarctica. J. Vertebr. Paleontol. 20: 612–614.Google Scholar
  11. Case, J. A., Goin, F. J., and Woodburne, M. O. (2004). South American marsupials from the Late Cretaceous of North America and the origin of marsupial cohorts. J. Mammal. Evol. 11: 223–255.CrossRefGoogle Scholar
  12. Cifelli, R. L. (1993). Early Cretaceous mammal from North America and the evolution of marsupial dental characters. Proc. Natl. Acad. Sci. U.S.A. 90: 9413–9416.PubMedGoogle Scholar
  13. Cifelli, R. L., and de Muizon, C. (1997). Dentition and jaw of Kokopellia juddi, a primitive marsupial or near marsupial from the medial Cretaceous of Utah. J. Mamm. Evol. 4: 241–258.Google Scholar
  14. Cifelli, R. L., Eberlie, J. J., Lofgren, D. L., Lillegraven, J. A., and Clemens, W. A. (2004) Mammalian biochronology of the latest Cretaceous. In: Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology, M. O. Woodburne, ed., pp. 21–42, Columbia University Press, New York.Google Scholar
  15. Clemens, W. A. (1966). Fossil mammals from the type Lance Formation, Wyoming. Part II. Univ. Calif. Publs. Geol. Sci. 66: 1–122.Google Scholar
  16. Clemens, W. A. (2003). Late Cretaceous mammals from the Prince Creek Formation, Colville River, Alberta. J. Vertebr. Paleontol. 23 suppl.: 41–42A.Google Scholar
  17. Company, J., Murelaga, X., Pereda-Suberbiola, X., and Ruiz-Omenaca, J. I. (1999). The vertebrate fauna from the new Late Cretaceous Chera locality (Valencia Provence, Spain). In: Abstracts 4th European Workshop on Vertebrate Palaeontology, Albarracín, Spain, June 1999, p. 47.Google Scholar
  18. Crochet, J.-Y. (1979). Diversité systématique des Didelphidae (Marsupialia) européens Tertiaires. Geobios 12: 365–378.Google Scholar
  19. Crochet, J.-Y. (1984). Garatherium mahboubii nov. gen., nov. sp., marsupiale de L'Eocène inférieur d'El Kohol (sud-Oranias, Algérie). Ann. Paléont. (Vert.-Invert.) 70: 275–294.Google Scholar
  20. Crochet, J.-Y., and Sigé, B. (1996). Un marsupial ancien (transition Crétacé-Tertiaire) à denture évoluée en Amérique du Sud (Chulpas, Formation Umayo, Pérou). N. Jb. Geol. Paläont. Mh. 1996: 622–634.Google Scholar
  21. Csiki, Z., and Grigorescu, D. (1999). New data on the multituberculate mammals from the uppermost Cretaceous dinosaur-bearing deposits of the Hateg Basin. In: Abstracts 4th European Workshop on Vertebrate Palaeontology, Albarracín, Spain, June 1999, p. 49.Google Scholar
  22. Gheerbrant, E., and Astibia, H. (1999). The Upper Cretaceous mammals from Laño (Spanish Basque country). Estudios Museo Cienc. Nat. Alava 14 (Número especial 1): 295–323.Google Scholar
  23. Gill, T. (1872). Arrangement of the families of mammals, with analytical tables. Smiths. Misc. Collns. 11: 1–98.Google Scholar
  24. Graham, A. (1993). History of North American vegetation—Cretaceous (Maastrichtian)– Tertiary. In: Flora of North America: North of Mexico, Committee, ed., pp. 57–70, Oxford University Press, Oxford.Google Scholar
  25. Grandstaff, B. S., Parris, D. C., and Denton, R. K. (1992). Alphadon (Marsupialia) and Multituberculata (Allotheria) in the Cretaceous of eastern North America. J. Vertebr. Paleontol. 12: 217–222.CrossRefGoogle Scholar
  26. Gray, J. E. (1821). On the natural arrangement of vertebrate animals. Lond. Med. Rept. 15: 296–310.Google Scholar
  27. Haq, B. U., Hardenbol, J., and Vail, P. R. (1987). Chronology of fluctuating sea levels since the Triassic. Science 235: 1156–1167.PubMedGoogle Scholar
  28. Head, J. J. (1998). A reanalysis of the phylogenetic position of Eolambia caroljonesa (Dinosauria, Iguanodontia). J. Vertebr. Paleontol. 21: 392–396.Google Scholar
  29. Herman, A. B., and Spicer, R. A. (1996). Palaeobotanical evidence for a warm Cretaceous Arctic Ocean. Nature 380: 330–333.CrossRefGoogle Scholar
  30. Hickey, L. J., West, R. M., Dawson, M. R., and Choi, D. K. (1983). Arctic terrestrial biota: Paleomagnetic evidence of age of disparity with mid-northern latitudes during the Late Cretaceous and Early Tertiary. Science 221: 1153–1156.PubMedGoogle Scholar
  31. Huber, B. T. (1998). Tropical paradise at the poles? Science 282: 2199–2200.CrossRefGoogle Scholar
  32. Illiger, J. C. W. (1811). Prodromus Systematis Mammalium et Avium Additis Terminis Zoographicus Utriuque Classis, C. Salfeld, Berlin.Google Scholar
  33. Irving, E., and Hebda, R. (2003). Contributions to the study of the origin and distribution of magnolias from paleomagnetism. In: Abstracts Chapman Conference on Timescales of the Geomagnetic Field, University of Florida, Gainesville, p. 47.Google Scholar
  34. Jagt, J. W. M., Mulder, E. W. A., Schulp, A. S., Dortangs, R. W., and Fraaije, R. H. B. (2003). Dinosaurs from the Maastrichtian type area (SE Netherlands, NE Belgium). C. R. Paleovol. 2: 67–76.Google Scholar
  35. Johanson, Z. (1996). New marsupial from the Fort Union Formation, Swain Quarry, Wyoming. J. Paleontol. 70: 1023–1032.Google Scholar
  36. Jolley, D. W., and Bell, B. R. (2002). The evolution of the North Atlantic Igneous Province and the opening of the NE Atlantic rift. In: North Atlantic Igneous Province, Tectonic, Volcanic and Magmatic Processes, D. W. Jolley and B. R. Bell, eds., pp. 1–13, Geological Society, Special Publications, London, 197.Google Scholar
  37. Keller, G. (2001). The End-Cretaceous mass extinction in the marine realm: Year 2000 assessment. Planet. Space Sci. 49: 817–830.CrossRefGoogle Scholar
  38. Krause, D.W. (2001). Fossil molar from a Madagascan marsupial. Nature 412: 497–498.PubMedCrossRefGoogle Scholar
  39. Laurent, Y., Bilotte, M., and Le Loeuff, J. (2002). Late Maastrichtian continental vertebrates from southwestern France: correlation with marine fauna. Palaeogeogr. Palaeoclimat. Palaeoecol. 187: 121–135.CrossRefGoogle Scholar
  40. Marshall, L. G. (1987). Systematics of Itaboraian (middle Paleocene) age “opossum-like” marsupials from the limestone quarry at Sao Jose de Itaborai, Brazil. In: Possums and Opossums: Studies in Evolution, M. Archer, ed., pp. 91–160, Surrey Beatty & Sons/Royal Zoological Society of New South Wales, Sydney.Google Scholar
  41. Marshall, L. G., and de Muizon, C. (1988). The dawn of the age of mammals in South America. Natl. Geogr. Res. 4: 23–55.Google Scholar
  42. Marshall, L. G., Case, J. A., and Woodburne, M. O. (1990). Phylogenetic relationships of the families of marsupials. In: Current Mammalogy 2, H. H. Genoways, ed., pp. 433–505, Plenum, New York.Google Scholar
  43. McKenna, M. C. (1983). Cenozoic paleogeography of North Atlantic land bridges. In: Structure and Development of the Greenland-Scotland Bridge: New Concepts and Methods, M. H. P. Bott, S. Saxov, M. Talwani, and J. Thiede, eds., pp. 351–395, Plenum, New York.Google Scholar
  44. Miller, K. G., Barrera, E., Olsson, R. K., Sugerman, P. J., and Savin, S. M. (1999). Does ice drive early Maastrichtian eustacy? Geology 27: 783–786.Google Scholar
  45. de Muizon, C. (1991). La fauna de mamíferos de Tiupampa (Paleoceno Inferior, Formación Santa Lucía), Bolivia. In: Fosiles y Facies de Bolivia, 1, Vertebrados, 12. pp. 575–624, Santa Cruz, Revista Técnica de Yacimientos Petroliferos Fiscales Bolivianos.Google Scholar
  46. Mulder, E. W. A., Jagt, J. W. M., Kuypers, M. M. M., Peeters, H. H. G., and Rompen, P. (1998). Preliminary observations of the stratigraphic distribution of Late Cretaceous marine and terrestrial reptiles from the Maastrichtian type area (SE Netherlands, NE Belgium). Oryctos 1: 55–64.Google Scholar
  47. Nessov, L. A., Sigogneau-Russell, D., and Russell, D. E. (1994). A survey of Cretaceous tribosphenic mammals from Middle Asia (Uzbekistan, Kazakhstan and Tajikistan), of the geological setting, age and faunal environment. Palaeovertebrata 23: 51–92.Google Scholar
  48. Otto-Bliesner, B. L., and Upchurch, Jr., G. R. (1997). Vegetation-induced warming of high-latitude regions during the Late Cretaceous Period. Nature 385: 804–807.CrossRefGoogle Scholar
  49. Parrish, J. T., and Spicer, R. A. (1988). Late Cretaceous terrestrial vegetation: A near-polar temperature curve. Geology 16: 22–25.CrossRefGoogle Scholar
  50. Peters, R. B., and Sloan, L. C. (2000). High concentrations of greenhouse gases and polar stratospheric clouds: A possible solution to high-latitude faunal migration at the Latest Paleocene thermal maximum. Geology 28: 979–982.CrossRefGoogle Scholar
  51. Rage, J.-C. (1978). Une connexion continentale entre Amérique du Nord et Amérique du Sud au Crétacé supérieur ? L'exemple des Vertébrés continentaux. C. R. Somm. Soc. Géol. Fr. 6: 281–285.Google Scholar
  52. Royer, D. L., Osborne, C. P., and Beerling, D. J. (2002). High CO2 increases the freezing sensitivity of plants: Implications for paleoclimatic reconstructions from fossil floras. Geology 30: 963–966.CrossRefGoogle Scholar
  53. Sanmartin, I., Enghoff, H., and Ronquist, F. (2001). Patterns of animal dispersal, vicariance, and diversification in the Holarctic. Biol. J. Linn. Soc. 73: 345–390.Google Scholar
  54. Sigé, B. (1972). La faunule des mammifères du Crétacé supérieur de Laguna Umayo (Andes péruviennes). Bull. Mus. Natn. Hist. Nat. 99: 375–405.Google Scholar
  55. Schiøler, P., Brinkhuis, H., Roncaglia, L., and Wilson, G. J. (1997). Dinoflagellate biostratigraphy and sequence stratigraphy of the Type Maastrichtian (Upper Cretaceous) ENCI Quarry, The Netherlands. Mar. Micropaleontol. 31: 69–95.Google Scholar
  56. Swofford, D. L. (1991). PAUP: Phylogenetic Analysis Using Parsimony, Version 3.0s, Champaign, Illinois Natural History Survey.Google Scholar
  57. Szalay, F. S. (1982). A new appraisal of marsupial phylogeny and classification. In: Carnivorous Marsupials, M. Archer, ed., pp. 621–640, Royal Zoological Society of New South Wales, Sydney.Google Scholar
  58. Tarduno, J. A., Brinkman, D. B., Renne, P. R., Cottrell, R. D., Scher, H., and Castillo, P. (1998). Evidence for extreme climatic warmth from Late Cretaceous Arctic vertebrates. Science 282: 2241–2244.PubMedCrossRefGoogle Scholar
  59. Trofimov, B. A., and Szalay, F. S. (1994). New Cretaceous marsupial from Mongolia and the early radiation of the Metatheria. Proc. Natl. Acad. Sci. U.S.A. 91: 12569–12573.PubMedGoogle Scholar
  60. Trouessart, E.-L. (1879). Catalogue des mammifères vivants et fossiles. Rev. Mag. Zool. 7: 219–285.Google Scholar
  61. Weishampel, D. B., and Horner, J. R. (1990). Hadrosauridae. In: The Dinosauria, D. B. Weishampel, P. Dodson, and H. Osmólska, eds., pp. 534–561, University of California Press, Berkeley.Google Scholar
  62. Weishampel, D. B., Norman, D. B., and Grigorescu, D. (1993). Telmatosaurus transsylvanicus from the Late Cretaceous of Romania: The most basal hadrosaurid dinosaur. Palaeontology 36: 361–385.Google Scholar
  63. Weishampel, D. B., Mulder, E. W. A., Dortangs, R. W., Jagt, J. W. M., Jianu, C.-M., Kuypers, M. M. M., Peeters, H. H. G., and Schulp, A. S. (1999). Dinosaur remains from the Type Maastrichtian: an update. Geol. Mijnbouw 78: 357–365.Google Scholar
  64. Wilf, P., Johnson, K. R., and Huber, B. T. (2003). Correlated terrestrial and marine evidence for global climate changes before mass extinction at the Cretaceous–Paleogene boundary. Proc. Natl. Acad. Sci. U.S.A. 100: 599–604.PubMedCrossRefGoogle Scholar
  65. Woodburne, M. O., and Case, J. A. (1996). Dispersal, vicariance, and the Late Cretaceous to Early Tertiary land mammal biogeography from South America to Australia. J. Mammal. Evol. 3: 121–161.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • James E. Martin
    • 1
    • 6
  • Judd A. Case
    • 2
  • John W. M. Jagt
    • 4
  • Anne S. Schulp
    • 3
    • 4
  • Eric W. A. Mulder
    • 3
    • 5
  1. 1.Museum of GeologySouth Dakota School of Mines and TechnologyRapid CityUSA
  2. 2.Department of BiologySt Mary's CollegeMoragaUSA
  3. 3.Natuurhistorisch Museum MaastrichtMaastrichtThe Netherlands
  4. 4.Faculty of Earth and Life SciencesVrije Universiteit AmsterdamThe Netherlands
  5. 5.Museum Natura DocetDenekampThe Netherlands
  6. 6.Museum of GeologySouth Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations