Journal of Mammalian Evolution

, Volume 12, Issue 1–2, pp 195–207 | Cite as

Anatomy of the Cranial Endocast of the Bottlenose Dolphin, Tursiops truncatus, Based on HRXCT

  • Matthew W. ColbertEmail author
  • Rachel Racicot
  • Timothy Rowe


Endocranial surfaces, volumes, and interconnectivities of extant and fossil odontocetes potentially offer information on the general architecture of the brain and on the structure of the specialized cetacean circulatory system. Although conventional methods for acquiring such data have generally involved invasive preparation of the specimen, particularly in the case of fossils, new tomographic technologies afford nondestructive access to these internal morphologies. In this study we used high-resolution X-ray computed tomography (HRXCT) to scan a skull of the extant Tursiops truncatus (Cetacea: Odontoceti). We processed the data to reveal the cranial endocast and details of internal skeletal architecture (data at Major features that can be discerned include aspects of the specimen's hypertrophied retia mirabilia, the major canals and openings of the cranial cavity, and the relationship of the brain and endocranial circulatory structures to the surrounding skeleton. CT data also provide information on the shape of the brain that may be lost in conventional anatomical preparations, and readily provide volumetric and linear measurements of the endocast and its individual segments. These results demonstrate the utility of HRXCT for interpreting the internal cranial anatomy of both extant and fossil cetaceans.


Tursiops endocast computed tomography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnes, L. G. (1985). Review: General features of the paleobiological evolution of Cetacea. Mar. Mamm. Sci. 1: 90–93.Google Scholar
  2. Breathnach, A. S. (1960). The cetacean central nervous system. Biol. Rev. Camb. Philos. Soc. 35: 187–230.Google Scholar
  3. Carlson, W. D., Rowe, T., Ketcham, R. A., and Colbert, M. W. (2003). Geological applications of high-resolution X-ray computed tomography in petrology, meteoritics and palaeontology. In: Applications of X-Ray Computed Tomography in the Geosciences, F. Mees, R. Swennen, M. Van Geet, and P. Jacobs, eds., vol. 215, pp. 7–22, Geological Society, London.Google Scholar
  4. Conroy, G. C., and Vannier, M. W. (1984). Noninvasive three-dimensional computer imaging of matrix-filled fossils by high-resolution computed tomography. Science 226: 456–458.PubMedGoogle Scholar
  5. Edinger, T. (1955). Hearing and smell in cetacean history. Monnatsschr. Psychiatr. Neurol. 129: 37–58.Google Scholar
  6. Fordyce, R. E., and de Muizon, C. (2001). Evolutionary history of cetaceans: A review. In: Secondary Adaptations of Tetrapods to Life in Water, J.-M. Mazin and V. de Buffrenil, eds., pp. 16–233, Verlag Dr. Friedrich Pfeil, München, Germany.Google Scholar
  7. Fraser, F. C., and Purves, P. E. (1960). Hearing in Cetaceans: Evolution of the accessory air sacs and the structure and function of the outer and middle ear in recent Cetaceans. The Bulletin of the British Museum (Natural History) Zoology 7: 1–139.Google Scholar
  8. Galliano, R. E., Morgane, P. J., McFarland, W. L., Nagel, E. L., and Catherman, R. L. (1966). The anatomy of the cervicothoracic arterial system in the bottlenose dolphin (Tursiops truncatus) with a surgical approach suitable for guided angiography. Anat. Rec. 155: 325–338.CrossRefPubMedGoogle Scholar
  9. Geisler, J. H., and Lou, Z. (1998). Relationships of Cetacea to terrestrial ungulates and the evolution of cranial vasculature in Cete. In: The Emergence of Whales, J. G. M. Thewissen, ed., pp. 163–212, Plenum, New York.Google Scholar
  10. Gingerich, P. D. (1998). Paleobiological perspectives on Mesonychia, Archaeoceti, and the origin of whales. In: The Emergence of Whales, J. G. M. Thewissen, ed., pp. 423–449, Plenum, New York.Google Scholar
  11. Glezer, I. I. (2002). Neural morphology. In: Marine Mammal Biology, A. R. Hoelzel, ed., pp. 98–115, Blackwell, Oxford.Google Scholar
  12. Glezer, I., Jacobs, M., and Morgane, P. (1988). Implications of the “initial brain” concept for brain evolution in Cetacea. Behav. Brain Sci. 11: 75–116.Google Scholar
  13. Hansen, L. J. (1990). California coastal bottlenose dolphins. In: The Bottlenose Dolphin, S. Leatherwood and R R. Reeves, eds., pp. 403–420, Academic Press, San Diego.Google Scholar
  14. Jerison, H. J. (1973). Evolution of the Brain and Intelligence, Academic Press, New York.Google Scholar
  15. Joeckel, R. M. (1998). Unique frontal sinuses in fossil and living Hyaenidae (Mammalia, Carnivora): Description and interpretation. J. Vertebr. Paleontol. 18: 627–639.CrossRefGoogle Scholar
  16. Ketcham, R. A., and Carlson, W. D. (2001). Acquisition, optimization, and interpretation of X-ray computed tomographic imagery: Applications to the geosciences. Comput. Geosci. 27: 381–400.Google Scholar
  17. Leatherwood, S., and Reeves, R. R. (1990). The Bottlenose Dolphin, Academic Press, San Diego.Google Scholar
  18. Marino, L., McShea, D. W., and Uhen, M. (2004). Origin and evolution of large brains in toothed whales. Anat. Rec. 281A: 1247–1255.Google Scholar
  19. Marino, L., Sudheimer, K. D., Murphy, T. L., Pabst, D. A., McLellan, W. A., Rilling, J. K., and Johnson, J. I. (2001). Anatomy and three-dimensional reconstructions of the brain of a bottlenose dolphin (Tursiops truncatus) from magnetic resonance images. Anat. Rec. 264: 397–414.CrossRefPubMedGoogle Scholar
  20. Marino, L., Sudheimer, K. D., Sirpenski, G., and Johnson, J. I. (2003a). Neuroanatomy of the harbor porpoise (Phocoena phocoena) from magnetic resonance images. J. Morphol. 257: 308–347.CrossRefGoogle Scholar
  21. Marino, L., Uhen, M. D., Frohlich, B., Aldag, J. M., Blane, C., Bohaska, D., and Whitmore, F. C., Jr. (2000). Endocranial volume of mid-late Eocene archaeocetes (Order: Cetacea) revealed by computed tomography: Implications for cetacean brain evolution. J. Mamm. Evol. 7: 81–94.Google Scholar
  22. Marino, L., Uhen, M. D., Pyenson, N. D., and Frohlich, B. (2003b). Reconstructing cetacean brain evolution using computed tomography. Anat. Rec. 272B: 107–117.CrossRefGoogle Scholar
  23. McFarland, W. L., Jacobs, M. S., and Morgane, P. J. (1979). Blood supply to the brain of the dolphin, Tursiops truncatus, with comparative observations on special aspects of the cerebrovascular supply of other vertebrates. Neurosci. Biobehav. Rev. 3 (Suppl. 1): 1–93.Google Scholar
  24. Melnikov, V. V. (1997). The arterial system of the sperm whale (Physeter macrocephalus). J. Morphol. 234: 37–50.CrossRefPubMedGoogle Scholar
  25. Miller, G. S. (1923). The telescoping of the cetacean skull. Smithsonian Misc. Coll. 76: 1–71.Google Scholar
  26. Moore, W. J. (1981). The Mammalian Skull, Cambridge University Press, Cambridge.Google Scholar
  27. Morgane, P. J., and Jacobs, M. S. (1972). Comparative anatomy of the cetacean nervous system. In: Functional Anatomy of Marine Mammals, Vol. 1, R. J. Harrison, ed., pp. 117–244, Academic Press, New York.Google Scholar
  28. Morgane, P. J., Jacobs, M. S., and McFarland, W. L. (1980). The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Surface configurations of the telencephalon of the bottlenose dolphin with comparative anatomical observations in four other cetacean species. Brain Res. Bull. 5: 1–108.CrossRefGoogle Scholar
  29. Novacek, M. J. (1993). Patterns of diversity on the mammalian skull. In: The Skull, Vol. 2, J. Hanken and B. K. Hall, eds., pp. 438–545, University of Chicago Press, Chicago.Google Scholar
  30. Ridgway, S. H. (1990). The central nervous system of the bottlenose dolphin. In: The Bottlenose Dolphin, S. Leatherwood and R. R. Reeves, eds., pp. 69–97, Academic Press, San Diego.Google Scholar
  31. Ridgway, S. H., Demski, L. S., Bullock, T. H., and Schwanzel-Fukuda, M. (1987). The terminal nerve in odontocete cetaceans. Ann. N. Y. Acad. Sci. 519: 201–212.PubMedGoogle Scholar
  32. Rommel, S. (1990). Osteology of the bottlenose dolphin. In: The Bottlenose Dolphin, S. Leatherwood and R. R. Reeves, eds., pp. 29–49, Academic Press, San Diego.Google Scholar
  33. Rowe, T. (1996a). Coevolution of the mammalian middle ear and neocortex. Science 273: 651–654.Google Scholar
  34. Rowe, T. (1996b). Brain heterochrony and evolution of the mammalian middle ear. In: New Perspectives on the History of Life, M. Ghiselin and G. Pinna, eds., pp. 71–96, California Academy of Sciences Memoir 20.Google Scholar
  35. Rowe, T., Brochu, C. A., Kishi, K., Colbert, M., Merck, J. W., Jr., Saglamer, E., and Warren, S. (1999a). Alligator: Digital altas of the skull. Interactive multimedia on CD-ROM for Macintosh and PC computers. In: Cranial Morphology of Alligator and Phylogeny of Alligatoroidae, T. Rowe, C. A. Brochu, and K. Kishi, eds., Society of Vertebrate Paleontology Memoir 6.Google Scholar
  36. Rowe, T., Brochu, C. A., Kishi, K., Colbert, M., and Merck, J. W., Jr. (1999b). Introduction to Alligator: Digital atlas of the skull. In: Cranial Morphology of Alligator and Phylogeny of Alligatoroidae, T. Rowe, C. A. Brochu, and K. Kishi, eds., pp. 1–8, Society of Vertebrate Paleontology Memoir 6. J. Vertebr. Paleontol. 19 (Suppl. 2).Google Scholar
  37. Rowe, T., Carlson, W., and Bottorff, W. (1995). Thrinaxodon: Digital Atlas of the Skull. CD-ROM, 2nd edn. (for Windows and Macintosh platforms), University of Texas Press, 547 megabytes.Google Scholar
  38. Rowe, T., Eiting, T., Macrini, T. E., and Ketcham, R. (2005). Osteology of the olfactory and respiratory systems in the nose of the opossum Monodelphis domestica. J. Mamm. Evol. 12: 303–336.Google Scholar
  39. Slijper, E. J. (1936). Die Cetaceen. Vergleichend-Anatomische und Systematisch. Capita. Zoologica VI & VII: 1–590.Google Scholar
  40. Viamonte, M., Morgane, P. J., Galliano, R. E., and Nagel, E. L. (1968). Angiography in the living dolphin and observations on blood supply to the brain. Am. J. Physiol. 214: 1225–1249.PubMedGoogle Scholar
  41. Vogl, A. W., and Fisher, H. D. (1981a). The internal carotid artery does not directly supply the brain in the Monodontidae (Order Cetacea). J. Morphol. 170: 207–214.Google Scholar
  42. Vogl, A. W., and Fisher, H. D. (1981b). Arterial circulation of the spinal cord and brain in the Monodontidae (Order Cetacea). J. Morphol. 170: 171–180.Google Scholar
  43. Wells, R., and Scott, M. (1999). Bottlenose dolphin Tursiops truncatus (Montagu, 1821). In: Handbook of Marine Mammals, Volume 6: The Second Book of Dolphins and the Porpoises, S. Ridgway and Sir R. Harrison, eds., pp. 137–182, Academic Press, San Diego.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Matthew W. Colbert
    • 1
    • 4
    Email author
  • Rachel Racicot
    • 1
    • 3
  • Timothy Rowe
    • 1
    • 2
  1. 1.Jackson School of GeosciencesThe University of Texas at AustinAustinUSA
  2. 2.Texas Memorial MuseumThe University of Texas at AustinAustinUSA
  3. 3.Biology DepartmentSan Diego State UniversitySan DiegoUSA
  4. 4.Geological Science DepartmentAustinUSA

Personalised recommendations