Skip to main content
Log in

Effects of Quaternary Climatic Change on Speciation in Mammals

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

An ongoing controversy in evolutionary biology is the extent to which climatic changes drive evolutionary processes. On the one hand are “Red Queen” hypotheses, which maintain that climatic change is less important than biotic interactions in causing evolutionary change. On the other hand are “Court Jester” models, which recognize climatic change as a very important stimulus to speciation. The Quaternary Period (the last 1.8 million years), characterized by multiple climatic changes in the form of glacial–interglacial transitions, offers a fertile testing ground for ascertaining whether cyclical climatic changes that operate at the 100,000-year time scale appreciably influence evolutionary patterns in mammals. Despite the increased potential for isolation of populations that should occur with multiple advances and retreats of glaciers and rearrangement of climatic zones, empirical data suggests that speciation rates were neither appreciably elevated for Quaternary mammals, nor strongly correlated with glacial–interglacial transitions. Abundant evidence attests to population-level changes within the Quaternary, but these did not usually lead to the origin of new species. This suggests that if climatic change does influence speciation rates in mammals, it does so over time scales longer than a typical glacial–interglacial cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alley, R. B. (2000a). Ice-core evidence of abrupt climate changes. Proc. Natl. Acad. Sci. U.S.A. 97: 1331–1334.

    Article  CAS  Google Scholar 

  • Alley, R. B. (2000b). The Younger Dryas cold interval as viewed from central Greenland. Quaternary Sci. Rev. 19: 213–226.

    Article  Google Scholar 

  • Alroy, J. (1996). Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127: 285–311.

    Article  Google Scholar 

  • Alroy, J. (1998). Equilibrial diversity dynamics in North American mammals. In: Biodiversity Dynamics: Turnover of Populations, Taxa and Communities, M. L. McKinney and J. A. Drake, eds., pp. 232–287, Columbia University Press, New York.

  • Alroy, J. (2000). New methods for quantifying macroevolutionary patterns and processes. Paleobiology 26: 707–733.

    Google Scholar 

  • Alroy, J., Koch, P. L., and Zachos, J. C. (2000). Global climate change and North American mammalian evolution. In: Deep Time: Paleobiology's Perspective, D. H. Erwin and S. L. Wing, eds., pp. 259–288, Allen Press, Lawrence, Kansas.

    Google Scholar 

  • Avise, J. C., Walker, D., and Johns, G. C. (1998). Speciation durations and Pleistocene effects on vertebrate phylogeography. Proc. R. Soc. Lond. B 265: 1707–1712.

    CAS  Google Scholar 

  • Barnes, I., Matheus, P., Shapiro, B., Jensen, D., and Cooper, A. (2002). Dynamics of Pleistocene population extinctions in Beringian brown bears. Science 295: 2267–2270.

    Article  PubMed  CAS  Google Scholar 

  • Barnosky, A. D. (1989). The late Pleistocene event as a paradigm for widespread mammal extinction. In: Mass Extinctions: Processes and Evidence, S. K. Donovan, ed., pp. 235–254, Belhaven Press, London.

  • Barnosky, A. D. (1993). Mosaic evolution at the population level in Microtus pennsylvanicus. In: Morphological Change in Quaternary Mammals of North America, R. A. Martin and A. D. Barnosky, eds., pp. 24–59, Cambridge University Press, Cambridge.

    Google Scholar 

  • Barnosky, A. D. (2001). Distinguishing the effects of the Red Queen and Court Jester on Miocene mammal evolution in the northern Rocky Mountains. J. Vertebr. Paleontol. 21: 172–185.

    Google Scholar 

  • Barnosky, A. D. (2004). Faunal dynamics of small mammals through the Pit Sequence. In: Biodiversity Response to Climate Change in the Middle Pleistocene: The Porcupine Cave Fauna from Colorado, A. D. Barnosky, ed., pp. 318–326, University of California Press, Berkeley.

    Google Scholar 

  • Barnosky, A. D., and Bell, C. J. (2003). Evolution, climatic change and species boundaries: Perspectives from tracing Lemmiscus curtatus populations through time and space. Proc. R. Soc. Lond. B 270: 2585–2590.

    Article  Google Scholar 

  • Barnosky, A. D., and Bell, C. J. (2004). Age and correlation of key fossil sites in Porcupine Cave. In: Biodiversity Response to Climate Change in the Middle Pleistocene: The Porcupine Cave Fauna from Colorado, A. D. Barnosky, ed., pp. 64–73, University of California Press, Berkeley.

    Google Scholar 

  • Barnosky, A. D., and Carrasco, M. A. (2002). Effects of Oligo–Miocene global climate changes on mammalian species richness in the northwestern quarter of the USA. Evol. Ecol. Res. 4: 811–841.

    Google Scholar 

  • Barnosky, A. D., Bell, C. J., Emslie, S. D., Goodwin, H. T., Mead, J. I., Repenning, C. A., Scott, E., and Shabel, A. B. (2004a). Exceptional record of mid-Pleistocene vertebrates helps differentiate climatic from anthropogenic ecosystem perturbations. Proc. Natl. Acad. Sci. U.S.A. 101: 9297–9302.

    Article  CAS  Google Scholar 

  • Barnosky, A. D., Kaplan, M. H., and Carrasco, M. A. (2004b). Assessing the effect of middle Pleistocene climate change on Marmota populations from the pit locality. In: Biodiversity Response to Climate Change in the Middle Pleistocene: The Porcupine Cave Fauna from Colorado, A. D. Barnosky, ed., pp. 332–340, University of California Press, Berkeley.

    Google Scholar 

  • Barraclough, T. G., and Vogler, A. P. (2002). Recent diversification rates in North American tiger beetles estimated from a dated mtDNA phylogenetic tree. Mol. Biol. Evol. 19: 1706–1716.

    PubMed  CAS  Google Scholar 

  • Barton, N. H. (2001). Speciation. Trends Ecol. Evol. 16: 325.

  • Bell, C. J., Lundelius, E. L., Jr., Barnosky, A. D., Graham, R. W., Lindsay, E. H., Ruez, D. R., Jr., Semken, H. A., Jr., Webb, S. D., and Zakrzewski, R. J. (2004). The Blancan, Irvingtonian, and Rancholabrean mammal ages. In: Late Cretaceous and Cenozoic Mammals of North America: Biostratigraphy and Geochronology, M. O. Woodburne, ed., pp. 232–314, Columbia University Press, New York.

    Google Scholar 

  • Bennett, K. D. (1990). Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 16: 11–21.

    Google Scholar 

  • Bennett, K. D. (1997). Evolution and Ecology, the Pace of Life, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bennett, K. D. (2004). Continuing the debate on the role of Quaternary environmental change for macroevolution. Philos. Trans. R. Soc. Lond. B 359: 295–303.

    Article  CAS  Google Scholar 

  • Brett, C. E., and Baird, G. C. (1995). Coordinated stasis and evolutionary ecology of Silurian to Middle Devonian faunas in the Appalachian Basin. In: New Approaches to Speciation in the Fossil Record, D. H. E. a. R. L. Anstey, eds., pp. 285–315, Columbia University Press, New York.

    Google Scholar 

  • Brown, J. H. (1995). Macroecology, University of Chicago Press, Chicago.

    Google Scholar 

  • Capanna, E., Bekele, A., Capula, M., Castilia, R., Civitelli, M. V., Codjia, J. T. C., Corti, M., and Fadda, C. (1996). A multidisciplinary approach to the systematics of the genus Arvicanthis Lesson, 1842 (Rodentia, Murinae). Mammalia 60: 677–696.

    Article  Google Scholar 

  • Carrasco, M. A., Kraatz, B. P., Davis, E. B., and Barnosky, A. D. (2005). Miocene Mammal Mapping Project (MIOMAP), University of California Museum of Paleontology.http://www.ucmp.berkeley.edu/miomap/.

  • Clark, P. U., Alley, R. B., and Pollard, D. (1999). Northern hemisphere ice-sheet influences on global climate change. Science 286: 1104–1111.

    Article  CAS  Google Scholar 

  • Coope, G. R. (2004). Several million years of stability among insect species because of, or in spite of, Ice Age climatic instability? Philos. Trans. R. Soc. Lond. B 359: 209–214.

    Article  CAS  Google Scholar 

  • Coyne, J. A., and Orr, H. A. (1998). The evolutionary genetics of speciation. Philos. Trans. R. Soc. Lond. B 353: 287–305.

    Article  CAS  Google Scholar 

  • Dansgaard, W., Johnson, S. J., Clausen, H. B., Dahljensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. C., Steffensen, J. P., Sveinbjornsdottir, A. E., Jouzel, J., and Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364: 218–220.

    Article  Google Scholar 

  • Dynesius, M., and Jansson, R. (2000). Evolutionary consequences of changes in species' geographical ranges driven by Milankovitch climate oscillations. Proc. Natl. Acad. Sci. U.S.A. 97: 9115–9120.

    Article  PubMed  CAS  Google Scholar 

  • ETE. (2004). Evolution of Terrestrial Ecosystems Database, http://www.nmnh.si.edu/ete/.

  • FAUNMAP Working Group. (1994). FAUNMAP: A database documenting late Quaternary distributions of mammal species in the United States. Illinois Mus. Sci. Pap. 25: 1–690.

    Google Scholar 

  • FAUNMAP Working Group. (1996). Spatial response of mammals to the late Quaternary environmental fluctuations. Science 272: 1601–1606.

    Google Scholar 

  • Foote, M. (1999). Morphological diversity in the volutionary radiation of Paleozoic and Post-Paleozoic crinoids. Paleobiology 25: 1–15.

    Google Scholar 

  • Foote, M. (2000a). Origination and extinction components of taxonomic diversity: General problems. In: Deep Time: Paleobiology's Perspective, D. H. Erwin and S. L. Wing, eds., Allen Press, Lawrence, Kansas.

  • Foote, M. (2000b). Origination and extinction components of taxonomic diversity: Paleozoic and post-Paleozoic dynamics. Paleobiology 26: 578–605.

    Google Scholar 

  • Foote, M., and Raup, D. M. (1996). Fossil preservation and the stratigraphic ranges of taxa. Paleobiology 22: 121–140.

    PubMed  CAS  Google Scholar 

  • Freitag, R. (1979). Reclassification, phylogeny, and zoogeography of the Australian species of Cincindela (Coleoptera, Cincindelidae). Aust. J. Zool. 66 (Suppl. Ser.): 1–99.

    Google Scholar 

  • Gavrilets, S., Li, H., and Vose, M. D. (1998). Rapid parapatric speciation on holey adaptive landscapes. Proc. R. Soc. Lond. B 265: 1483–1489.

    CAS  Google Scholar 

  • Gingerich, P. D. (1984). Pleistocene extinctions in the context of origination–extinction equilibria in Cenozoic mammals. In: Quaternary Extinctions: A Prehistoric Revolution, P. S. Martin and R. G. Klein, eds., pp. 211–222, University of Arizona Press, Tucson.

    Google Scholar 

  • Gingerich, P. D. (1985). Species in the fossil record: Concepts, trends, and transitions. Paleobiology 11: 27–41.

    Google Scholar 

  • Goodwin, H. T. (2004). Systematics and faunal dynamics of fossil squirrels from Porcupine Cave. In: Biodiversity Response to Climate Change in the Middle Pleistocene: The Porcupine Cave Fauna from Colorado, A. D. Barnosky, ed., pp. 172–192, University of California Press, Berkeley.

    Google Scholar 

  • Graham, R. W., and Grimm, E. C. (1990). Effects of global climate change on the patterns of terrestrial biological communities. Trends Ecol. Evol. 5: 289–292.

    Article  Google Scholar 

  • Graham, R. W., and Lundelieus, E. L., Jr. (1984). Coevolutionary disequilibrium and Pleistocene extinctions. In: Quaternary Extinctions: A Prehistoric Revolution, P. S. Martin and R. G. Klein, eds., pp. 223–249, University of Arizona Press, Tucson.

    Google Scholar 

  • Hadly, E. A. (2003). The interface of paleontology and mammalogy: Past, present, and future. J. Mammal. 84: 347–353.

    Google Scholar 

  • Hadly, E. A., Kohn, M. H., Leonard, J. A., and Wayne, R. K. (1998). A genetic record of population isolation in pocket gophers during Holocene climatic change. Proc. Natl. Acad. Sci. U.S.A. 95: 6893–6896.

    Article  PubMed  CAS  Google Scholar 

  • Hadly, E. A., van Tuinen, M., Chan, Y. L., and Heiman, K. (2003). Ancient DNA evidence of prolonged population persistence with negligible genetic diversity in an endemic tuco-tuco (Ctenomys sociabilis). J. Mammal. 84: 403–417.

    Google Scholar 

  • Hadly, E. A., Ramakrishnan, U., Chan, Y. L., van Tuinen, M., O'Keefel, K., Spaeth, P. A., and Conroy, C. J. (2004). Genetic response to climatic change: Insights from ancient DNA and phylochronology. Public Libr. Sci. 2: e290.

  • Hewitt, G. M. (2000). The genetic legacy of the Quaternary ice ages. Nature 405: 907–913.

    Article  PubMed  CAS  Google Scholar 

  • Hewitt, G. M. (2004). Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. B 359: 183–195.

    Article  CAS  Google Scholar 

  • Hosey, G. R. (1982). The Bosporous land bridge and mammal distributions in Asia-Minor and the Balkans East Europe. Saeugetierkundliche Mitteilungen 30: 53–62.

    Google Scholar 

  • Janis, C. M. (1989). A climatic explanation for patterns of evolutionary diversity in ungulate mammals. Palaeontology 32: 463–481.

    Google Scholar 

  • Janis, C. M. (1993). Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu. Rev. Ecol. Syst. 24: 467–500.

    Article  Google Scholar 

  • Janis, C. M. (1997). Ungulate teeth, diets, and climatic changes at the Eocene/Oligocene boundary. Zoology 100: 203–220.

    Google Scholar 

  • Janis, C. M., and Wilhelm, P. B. (1993). Were there mammalian pursuit predators in the Tertiary? Dances with wolf avatars. J. Mammal. Evol. 1: 103–125.

    Article  Google Scholar 

  • Janis, C. M., Damuth, J., and Theodor, J. M. (2000). Miocene ungulates and terrestrial primary productivity: Where have all the browsers gone? Proc. Natl. Acad. Sci. U.S.A. 97: 7899–7904.

    Article  PubMed  CAS  Google Scholar 

  • Jansson, R., and Dynesius, M. (2002). The fate of clades in a world of recurrent climatic change: Milankovitch oscillations and evolution. Annu. Rev. Ecol. Syst. 33: 741–777.

    Article  Google Scholar 

  • Kadereit, J. W., Griebeler, E. M., and Comes, H. P. (2004). Quaternary diversification in European alpine plants: Pattern and process. Philos. Trans. R. Soc. Lond. B 359: 265–274.

    Article  Google Scholar 

  • Katz, M. E., Pak, D. K., Dickens, G. R., and Miller, K. G. (1999). The source and fate of massive carbon input during the latest Paleocene thermal maximum. Science 286: 1531–1533.

    Article  PubMed  CAS  Google Scholar 

  • Klicka, J., and Zink, R. M. (1999). Pleistocene effects on North American songbird evolution. Proc. R. Soc. Lond. B 266: 695–700.

    Article  Google Scholar 

  • Klicka, J., Zink, R. M., Barlow, J. C., McGillivray, W. B., and Doyle, T. J. (1999). Evidence supporting the recent origin and species status of the Timberline Sparrow. Condor 101: 577–588.

    Google Scholar 

  • Knowles, L. L. (2000). Tests of Pleistocene speciation in montane grasshoppers (genus Melanoplus) from the sky islands of western North America. Evolution 54: 1337–1348.

    PubMed  CAS  Google Scholar 

  • Kutzbach, J., Gallimore, R., Harrison, S., Behling, P. R., and Laarif, F. (1998). Climate and biome simulations for the past 21,000 years. Quaternary Sci. Rev. 17: 473–506.

    Article  Google Scholar 

  • Lessa, E. P., Cook, J. A., and Patton, J. L. (2003). Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary. Proc. Natl. Acad. Sci. U.S.A. 100: 10331–10334.

    Article  PubMed  CAS  Google Scholar 

  • Lister, A. M. (1993). Evolution of mammoths and moose: The Holarctic perspective. In: Morphological Change in Quaternary Mammals of North America, R. A. Martin and A. D. Barnosky, eds., pp. 178–204, Cambridge University Press, Cambridge.

    Google Scholar 

  • Lister, A. M. (2004). The impact of Quaternary Ice Ages on mammalian evolution. Philos. Trans. R. Soc. Lond. B 359: 221–241.

    Article  Google Scholar 

  • Lister, A. M., and Sher, A. V. (2001). The origin and evolution of the woolly mammoth. Science 294: 1094–1097.

    Article  PubMed  CAS  Google Scholar 

  • Mallet, J. (2001). The speciation revolution. J. Evol. Biol. 14: 887–888.

    Article  Google Scholar 

  • Martin, R. A. (1993). Patterns of variation and speciation in Quaternary rodents. In: Morphological Change in Quaternary Mammals of North America, R. A. Martin and A. D. Barnosky, eds., pp. 226–280, Cambridge University Press, Cambridge.

    Google Scholar 

  • McDonald, J. N. (1981). North American Bison—Their Classification and Evolution, University of California Press, Berkeley.

    Google Scholar 

  • McKinnon, G. E., Jordan, G. J., Vaillancourt, R. E., Steane, D. A., and Potts, B. M. (2004). Glacial refugia and reticulate evolution: The case of the Tasmanian eucalypts. Philos. Trans. R. Soc. Lond. B 359: 275–284.

    Article  Google Scholar 

  • NOW. (2004). Neogene of the Old World Database, http://www.helsinki.fi/science/now/.

  • PBD. (2004). The Paleobiology Database, http://paleodb.org.

  • Peters, J., Gautier, A., Brink, J. S., and Haenen, W. (1994). Late Quaternary extinction of ungulates in sub-Saharan Africa: A reductionist's approach. J. Archaeol. Sci. 21: 17–28.

    Google Scholar 

  • Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., and Stievenard, M. (1999). Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436.

    Article  CAS  Google Scholar 

  • Polly, P. D. (2003). Paleophylogeography: The tempo of geographic differentiation in marmots (Marmota). J. Mammal. 84: 369–384.

    Article  Google Scholar 

  • Preston, F. W. (1962a). The canonical distribution of commonness and rarity, Part II. Ecology 43: 410–432.

    Google Scholar 

  • Preston, F. W. (1962b). The canonical distribution of commonness and rarity, Part II. Ecology 43: 185–215.

    Google Scholar 

  • Prothero, D. R. (1999). Does climatic change drive mammalian evolution? GSA Today: 1–7.

  • Prothero, D. R., and Heaton, T. H. (1996). Faunal stability during the early Oligocene climatic crash. Palaeogeogr. Palaeoclimatol. Palaeoecol. 127: 239–256.

    Article  Google Scholar 

  • Raymo, M. E. (1997). The timing of major climate terminations. Paleoceanography 12: 577–585.

    Google Scholar 

  • Raymo, M. E. (1998). Glacial puzzles. Science 281: 1467–1468.

    Article  CAS  Google Scholar 

  • Raymo, M. E., Oppo, D. W., and Curry, W. (1997). The mid-Pleistocene climate transition: A deep-sea carbon isotopic perspective. Paleoceanography 12: 546–559.

    Google Scholar 

  • Raymo, M. E., Ganley, K., Carter, S., Oppo, D. W., and McManus, J. (1998). Millennial-scale climate instability during the early Pleistocene epoch. Nature 392: 699–702.

    Article  CAS  Google Scholar 

  • Rodbell, D. T. (2000). The Younger Dryas: Cold, cold everywhere? Science 290: 285–286.

    Article  CAS  PubMed  Google Scholar 

  • Romer, A. S. (1966). Vertebrate Paleontology, University of Chicago Press, Chicago.

    Google Scholar 

  • Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., and Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. Nature 421: 57–60.

    Article  PubMed  CAS  Google Scholar 

  • Rosenzweig, M. L. (2001). Loss of speciation rate will impoverish future diversity. Proc. Natl. Acad. Sci. U.S.A. 98: 5404–5410.

    Article  PubMed  CAS  Google Scholar 

  • Ruddiman, W. F. (2001). Earth's Climate, Past and Future, W. H. Freeman, New York.

  • Ruddiman, W. F., Raymo, M. E., Martinson, D. G., Clement, B. M., and Backman, J. (1989). Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean. Paleoceanography 4: 353–412.

    Google Scholar 

  • Schluter, D. (2001). Ecology and the origin of species. Trends Ecol. Evol. 16: 372–380.

    PubMed  Google Scholar 

  • Schmieder, F., Von Dobeneck, T., and Bleil, U. (2000). The mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean: Initiation, interim state and terminal event. Earth Planet. Sci. Lett. 179: 539–549.

    Article  CAS  Google Scholar 

  • Seehausen, O. (2002). Patterns in fish radiation are compatible with Pleistocene desiccation of Lake Victoria and 14,600 year history for its cichlid species flock. Proc. R. Soc. Lond. B 269: 491–497.

    Article  Google Scholar 

  • Seymour, K. (1993). Size change in North American Quaternary jaguars. In: Morphological Change in Quaternary Mammals of North America, R. A. Martin and A. D. Barnosky, eds., pp. 343–373, Cambridge University Press, Cambridge.

    Google Scholar 

  • Stenseth, N. C., and Maynard Smith, J. (1984). Coevolution in ecosystems: Red Queen evolution or stasis? Evolution 38: 870–880.

    Google Scholar 

  • Stucky, R. K. (1990). Evolution of land mammal diversity in North America during the Cenozoic. Curr. Mammal. 2: 375–432.

    Google Scholar 

  • Van Valen, L. (1973). A new evolutionary law. Evol. Theory 1: 1–30.

    Google Scholar 

  • Via, S. (2001). Sympatric speciation in animals: The ugly duckling grows up. Trends Ecol. Evol. 16: 381–390.

    Article  PubMed  Google Scholar 

  • Vrba, E. S. (1992). Mammals as a key to evolutionary theory. J. Mammal. 73: 1–28.

    Google Scholar 

  • Vrba, E. S. (1993). Turnover-pulses, the Red Queen, and related topics. Am. J. Sci. 293-A: 418–452.

    Google Scholar 

  • Vrba, E. S. (1995a). The fossil record of African antelopes (Mammalia, Bovidae) in relation to human evolution and paleoclimate. In: Paleoclimate and Evolution, With Emphasis on Human Origins, E. S. Vrba, G. H. Denton, T. C. Partridge, and L. H. Burckle, eds., pp. 385–424, Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Vrba, E. S. (1995b). On the connections between paleoclimate and evolution. In: Paleoclimate and Evolution, With Emphasis on Human Origins, E. S. Vrba, G. H. Denton, T. C. Partridge, and L. H. Burckle, eds., pp. 24–45, Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Vrba, E. S., and DeGusta, D. (2004). Do species populations really start small? New perspectives from the Late Neogene fossil record of African mammals. Philos. Trans. R. Soc. Lond. B 359: 285–293.

    Article  CAS  Google Scholar 

  • Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J.-M., Hoegh-Guldberg, O., and Bairllein, F. (2002). Ecological responses to recent climate change. Nature 416: 389–395.

    Article  PubMed  CAS  Google Scholar 

  • Webb III, T., Shuman, B., and Williams, J. W. (2004). Climatically forced vegetation dynamics in eastern North America during the late Quaternary Period. In: The Quaternary Period in the United States, A. R. Gillespie, S. C. Porter, and B. F. Atwater, eds., pp. 459–478, Elsevier, Amsterdam.

    Google Scholar 

  • Willis, K. J., and Niklas, K. J. (2004). The role of Quaternary environmental change in plant macroevolution: The exception or the rule? Philos. Trans. R. Soc. Lond. B 359: 159–172.

    Google Scholar 

  • Wilson, M. C. (1996). Late Quaternary vertebrates and the opening of the ice-free corridor, with special reference to the genus Bison. Quaternary Int. 32: 97–105.

    Google Scholar 

  • Wu, C.-I. (2001). The genic view of the process of speciation. J. Evol. Biol. 14: 851–865.

    Google Scholar 

  • Zachos, J. C., Pagani, M., Sloan, L., Thomas, E., and Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693.

    PubMed  CAS  Google Scholar 

  • Zink, R. M., Klicka, J., and Barber, B. R. (2004). The tempo of avian diversification during the Quaternary. Philos. Trans. R. Soc. Lond. B 359: 215–220.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony D. Barnosky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnosky, A.D. Effects of Quaternary Climatic Change on Speciation in Mammals. J Mammal Evol 12, 247–264 (2005). https://doi.org/10.1007/s10914-005-4858-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-005-4858-8

Keywords

Navigation