Skip to main content

Advertisement

Log in

Protein Expression of PI3K/AKT/mTOR Pathway Targets Validated by Gene Expression and its Correlation with Prognosis in Canine Mammary Cancer

  • Original Paper
  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Mammary cancer is the main type of neoplasia in female dogs and is considered an adequate model for the biological and therapeutic study of cancer in women. The PIK3CA/AKT/mTOR pathway plays a central role in cellular homeostasis and is often dysregulated in cancer. The increased expression of PI3K protein in the literature is associated with a poor prognosis, and alterations in the PIK3CA gene can lead to changes in downstream pathways. Thus, the objective of this study was to validate the protein expression to confirm the gene expression of proteins belonging to the main pathway PI3K and PTEN, and their downstream pathways through ZEB1, ZEB2, HIF1A, VHL, CASP3 and PARP1 relating to prognosis in canine mammary cancer. For protein studies, the samples came from 58 female dogs with mammary neoplasia, immunohistochemistry was performed and its analysis by the histoscore method. For the genetic evaluation, the samples came from 13 patients, the DNA was extracted and the analysis for quantitative expression. Through immunohistochemistry, PI3K positivity was significantly associated with affected regional lymph node, distant metastasis, patients with HER2+, Triple Negative and Luminal B phenotypes, and the lowest survival rates. Through gene expression, we observed higher gene expression of ZEB2 and PARP1 both among patients who were alive and who died, which was not true for the expressions of PIK3CA and HIF1A. In conclusion, the data observed in this work are promising in the study of new molecular prognostic markers such as PI3K, ZEB2 and PARP1 for canine mammary cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer. Nat Rev Dis Primers. 2019. https://doi.org/10.1038/s41598-018-22473-9.

    Article  Google Scholar 

  2. De Nardi AB, Daleck CR Oncologia de cães e gatos. 2 ed. Roca, 2017.

  3. Gelaleti GB, Borin TF, Maschio-Signorini LB, Moschetta MG, Hellmén E, Viloria-Petit AM, et al. Melatonin and IL-25 modulate apoptosis and angiogenesis mediators in metastatic (CF-41) and non-metastatic (CMT-U229) canine mammary tumour cells. Vet Comp Oncol. 2017. https://doi.org/10.1111/vco.12303.

    Article  Google Scholar 

  4. Amirkhani NA, Angelo D, Ciani F, Iannuzzi CA, Napolitano F, Avallone L, et al. Triple-negative breast cancer comparison with canine mammary tumors from light microscopy to molecular pathology. Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.563779.

    Article  Google Scholar 

  5. Colombo J, Moschetta-Pinheiro MG, Novais AA, Stoppe BR, Bonini ED, Gonçalves FM, et al. Liquid biopsy as a diagnostic and prognostic tool for women and female dogs with breast cancer. Cancers. 2021. https://doi.org/10.3390/cancers13205233.

    Article  Google Scholar 

  6. Kim KK, Seung BJ, Kim D, Park HM, Lee S, Song DW, et al. Whole-exome and whole-transcriptome sequencing of canine mammary gland tumors. Sci Data. 2019. https://doi.org/10.1038/s41597-019-0149-8.

    Article  Google Scholar 

  7. Kim SH, Seung BJ, Cho SH, Lim HY, Bae MK, Sur JH. Dysregulation of PI3K/AKT/PTEN pathway in canine mammary tumor. Animals. 2021. https://doi.org/10.3390/ani11072079.

    Article  Google Scholar 

  8. Varallo G, Gelaleti G, Maschio–Signorini L, Moschetta M, Lopes J, De Nardi A, et al. Prognostic phenotypic classification for canine mammary tumors. Oncol Lett. 2019. https://doi.org/10.3892/ol.2019.11052.

    Article  Google Scholar 

  9. Alsaihati BA, Ho KL, Watson J, Feng Y, Wang T, Dobbin KK, et al. Canine tumor mutational burden is correlated with TP53 mutation across tumor types and breeds. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-24836-9.

    Article  Google Scholar 

  10. Lee KH, Hwang HJ, Noh HJ, Shin TJ, Cho JY. Somatic mutation of PIK3CA (H1047R) is a common driver mutation hotspot in canine mammary tumors as well as human breast cancers. Cancers. 2019. https://doi.org/10.3390/cancers11122006.

    Article  Google Scholar 

  11. Ressel L, Millanta F, Caleri E, Innocenti VM, Poli A. Reduced PTEN protein expression and its prognostic implications in canine and feline mammary tumors. Vet. Pathol. 2009; https://doi.org/10.1354/vp.08-vp-0273-p-fl.

  12. Asproni P, Millanta F, Ressel L, Podestà F, Parisi F, Vannozzi I, et al. An immunohistochemical study of the PTEN/AKT pathway involvement in canine and feline mammary tumors. Animals. 2021; https://doi.org/10.3390/ani11020365.

  13. Jiang BH, Liu LZ. PI3K/PTEN signaling in angiogenesis and tumorigenesis. Adv Cancer Res. 2009. https://doi.org/10.1016/S0065-230X(09)02002-8.

    Article  Google Scholar 

  14. Skinner HD, Zheng JZ, Fang J, Agani F, Jiang B-H. Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1α, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT Signaling. J Biol Chem. 2004. https://doi.org/10.1074/jbc.M404097200.

    Article  Google Scholar 

  15. Koenig A, Bianco SR, Fosmire S, Wojcieszyn J, Modiano JF. Expression and significance of p53, Rb, p21/waf-1, p16/ink-4a, and PTEN tumor suppressors in canine melanoma. Vet Pathol. 2002. https://doi.org/10.1354/vp.39-4-458.

    Article  Google Scholar 

  16. Dickerson EB, Thomas R, Fosmire SP, Lamerato-Kozicki AR, Bianco SR, Wojcieszyn JW, et al. Mutations of phosphatase and tensin homolog deleted from chromosome 10 in canine hemangiosarcoma. Vet Pathol. 2005. https://doi.org/10.1354/vp.42-5-618.

    Article  Google Scholar 

  17. Russell DS, Jaworski L, Kisseberth WC. Immunohistochemical detection of p53, PTEN, Rb, and p16 in canine osteosarcoma using tissue microarray. J Vet Diagn Invest. 2018. https://doi.org/10.1177/1040638718770239.

    Article  Google Scholar 

  18. Rivera-Calderón LG, Fonseca-Alves CE, Kobayashi PE, Carvalho M, Drigo SA, de Oliveira Vasconcelos R, et al. Alterations in PTEN, MDM2, TP53 and AR protein and gene expression are associated with canine prostate carcinogenesis. Res Vet Sci. 2016. https://doi.org/10.1016/j.rvsc.2016.03.008.

    Article  Google Scholar 

  19. Borge KS, Nord S, Van Loo P, Lingjærde OC, Gunnes G, Alnæs GIG, et al BORGE, Kaja S, et al. Canine mammary tumours are affected by frequent copy number aberrations, including amplification of MYC and loss of PTEN. PLoS One. 2015; https://doi.org/10.1371/journal.pone.0126371.

  20. Maniscalco L, Iussich S, Mulas JM, Millán Y, Biolatti B, Sasaki N, et al. Activation of AKT in feline mammary carcinoma: A new prognostic factor for feline mammary tumours. Vet J. 2012. https://doi.org/10.1016/j.tvjl.2010.12.016.

    Article  Google Scholar 

  21. Fernald K, Kurokawa M. Evading apoptosis in cancer. Trends Cell Biol. 2013. https://doi.org/10.1016/j.tcb.2013.07.006.

    Article  Google Scholar 

  22. Donizy P, Wu C-L, Mull J, Fujimoto M, Chłopik A, Peng Y, et al. Up-Regulation of PARP1 expression significantly correlated with poor survival in mucosal melanomas. Cells. 2020. https://doi.org/10.3390/cells9051135.

    Article  Google Scholar 

  23. Thumser PT, Nytko KJ, Rohrer Bley C. Mutations of BRCA2 in canine mammary tumors and their targeting potential in clinical therapy. BMC Vet Res. 2020. https://doi.org/10.1186/s12917-020-2247-4.

    Article  Google Scholar 

  24. Saba C, Paoloni M, Mazcko C, Kisseberth W, Burton JH, Smith A, et al. A Comparative oncology study of iniparib defines its pharmacokinetic profile and biological activity in a naturally-occurring canine cancer model. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0149194.

    Article  Google Scholar 

  25. Cain RJ, Ridley AJ. Phosphoinositide 3-kinases in cell migration. Biol Cell. 2009. https://doi.org/10.1042/bc20080079.

    Article  Google Scholar 

  26. Wu K, Fan J, Zhang L, Ning Z, Zeng J, Zhou J, et al. PI3K/AKT to GSK3β/β-catenin signaling cascade coordinates cell colonization for bladder cancer bone metastasis through regulating ZEB1 transcription. Cell Signal. 2012. https://doi.org/10.1016/j.cellsig.2012.08.004.

    Article  Google Scholar 

  27. Larsen JE, Nathan V, Osborne JK, Farrow RK, Deb D, Sullivan JP, et al. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J Clin Investig. 2016. https://doi.org/10.1172/JCI76725.

    Article  Google Scholar 

  28. Xie Y, Shi X, Sheng K, Han G, Li W, Zhao Q, et al. PI3K/AKT signaling transduction pathway, erythropoiesis and glycolysis in hypoxia. Mol Med Rep. 2018. https://doi.org/10.3892/mmr.2018.9713.

    Article  Google Scholar 

  29. Tang Z, Xie H, Jiang S, Cao S, Pu Y, Zhou B, et al. Safflower yellow promotes angiogenesis through p-VHL/ HIF-1α/VEGF signaling pathway in the process of osteogenic differentiation. Biomed Pharmacother. 2018. https://doi.org/10.1016/j.biopha.2018.06.119.

    Article  Google Scholar 

  30. Zhang P, Sun Y, Ma L. ZEB1: At the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle. 2015. https://doi.org/10.1080/15384101.2015.1006048.

    Article  Google Scholar 

  31. Knauth K, Bex C, Jemth P, Buchberger A. Renal cell carcinoma risk in type 2 von Hippel–Lindau disease correlates with defects in pVHL stability and HIF-1α interactions. Oncogene. 2005. https://doi.org/10.1038/sj.onc.1209062.

    Article  Google Scholar 

  32. Jensen K, Hafstrøm RK, Lohse J, Petersen KH, Derand H. A novel quantitative immunohistochemistry method for precise protein measurements directly in formalin-fixed, paraffin-embedded specimens: analytical performance measuring HER2. J Mod Hum Pathol. 2016. https://doi.org/10.1038/modpathol.2016.176.

    Article  Google Scholar 

  33. Dancey CP, Reidy J. Estatística sem matemática: para psicologia usando SPSS para Windows. 3 ed. 2006.

  34. Goldschmidt M, Peña L, Rasotto R, Zappulli V. Classification and grading of canine mammary tumors. Vet Pathol. 2011. https://doi.org/10.1177/0300985810393258.

    Article  Google Scholar 

  35. Zhao Y, Cao J, Melamed A, Worley M, Gockley A, Jones D, et al. Losartan treatment enhances chemotherapy efficacy and reduces ascites in ovarian cancer models by normalizing the tumor stroma. Proc. Natl. Acad. Sci. 2019; https://doi.org/10.1073/pnas.1818357116.

  36. Aleskandarany MA, Rakha EA, Ahmed MAH, Powe DG, Paish EC, Macmillan RD, et al. PIK3CA expression in invasive breast cancer: a biomarker of poor prognosis. Breast Cancer Res Treat. 2009. https://doi.org/10.1007/s10549-009-0508-9.

    Article  Google Scholar 

  37. García-Escudero R, Segrelles C, Dueñas M, Pombo M, Ballestín C, Alonso-Riaño M, et al. Overexpression of PIK3CA in head and neck squamous cell carcinoma is associated with poor outcome and activation of the YAP pathway. Oral Oncol. 2018. https://doi.org/10.1016/j.oraloncology.2018.02.014.

    Article  Google Scholar 

  38. Tapia O, Riquelme I, Leal P, Sandoval A, Aedo S, Weber H, et al. The PI3K/AKT/mTOR pathway is activated in gastric cancer with potential prognostic and predictive significance. Virchows Arch. 2014. https://doi.org/10.1007/s00428-014-1588-4.

    Article  Google Scholar 

  39. Milella M, Falcone I, Conciatori F, Incani UC, Curatolo AD, Inzerilli N, et al. PTEN: multiple functions in human malignant tumors. Front. Oncol. 2015; https://doi.org/10.3389/fonc.2015.00024.

  40. Sitaram RT, Landström M, Roos G, Ljungberg B. Significance of PI3K signalling pathway in clear cell renal cell carcinoma in relation to VHL and HIF status. J Clin Pathol. 2020. https://doi.org/10.1136/jclinpath-2020-206693.

    Article  Google Scholar 

  41. Madej JA, Madej JP, Dziegiel P, Pula B, Nowak M. Expression of hypoxia-inducible factor-1α and vascular density in mammary adenomas and adenocarcinomas in bitches. Acta Vet Scand. 2013. https://doi.org/10.1186/1751-0147-55-73.

    Article  Google Scholar 

  42. Li R, Wu H, Sun Y, Zhu J, Tang J, Kuang Y, et al. A novel canine mammary cancer cell line: preliminary identification and utilization for drug screening studies. Front vet sci. 2021. https://doi.org/10.3389/fvets.2021.665906.

    Article  Google Scholar 

  43. Shin JI, Lim HY, Kim HW, Seung BJ, Sur JH. Analysis of hypoxia-inducible factor-1α expression relative to other key factors in malignant canine mammary tumours. J Comp Pathol. 2015. https://doi.org/10.1016/j.jcpa.2015.05.004.

    Article  Google Scholar 

  44. Mota ADL, Jardim-Perassi BV, Castro TB, Colombo J, Sonehara NM, Nishiyama VKG, et al. Melatonin modifies tumor hypoxia and metabolism by inhibiting HIF-1α and energy metabolic pathway in the in vitro and in vivo models of breast cancer. Melatonin Res. 2019. https://doi.org/10.32794/mr11250042.

    Article  Google Scholar 

  45. Liu LZ, He YZ, Dong PP, Ma LJ, Wang ZC, Liu XY, et al. Protein tyrosine phosphatase PTP4A1 promotes proliferation and epithelial-mesenchymal transition in intrahepatic cholangiocarcinoma via the PI3K/AKT pathway. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.12116.

    Article  Google Scholar 

  46. Wu D, Zhang T, Liu Y, Deng S, Han R, Liu T, et al. The PAX6-ZEB2 axis promotes metastasis and cisplatin resistance in non-small cell lung cancer through PI3K/AKT signaling. Cell Death Dis. 2019. https://doi.org/10.1038/s41419-019-1591-4.

    Article  Google Scholar 

  47. Li H, Xu L, Zhao L, Ma Y, Zhu Z, Liu Y, et al. Insulin-like growth factor-I induces epithelial to mesenchymal transition via GSK-3β and ZEB2 in the BGC-823 gastric cancer cell line. Oncol Lett. 2015. https://doi.org/10.3892/ol.2014.2687.

    Article  Google Scholar 

  48. Wang D, Li C, Zhang Y, Wang M, Jiang N, Xiang L, et al. Combined inhibition of PI3K and PARP is effective in the treatment of ovarian cancer cells with wild-type PIK3CA genes. Gynecol. Oncol. 2016. https://doi.org/10.1016/j.ygyno.2016.07.092.

    Article  Google Scholar 

  49. Chen ZZ. berberine induced apoptosis of human osteosarcoma cells by inhibiting phosphoinositide 3 kinase/protein kinase B (PI3K/AKT) signal pathway activation. Iran. J. Public Health. 2016.

  50. Xavier PLP, Cordeiro YG, Rochetti AL, Sangalli JR, Zuccari DAPC, Silveira JC, et al. ZEB1 and ZEB2 transcription factors are potential therapeutic targets of canine mammary cancer cells. Vet Comp Oncol. 2018. https://doi.org/10.1111/vco.12427.

    Article  Google Scholar 

  51. Moschetta MG, Colombo J, Godoy BLV, Balan JF, Nascimento BC, Zuccari DAPC. Modulation of epithelial mesenchymal transition after AGTR-1 gene edition by crispr/Cas9 and losartan treatment in mammary tumor cell line: a comparative study between human and canine species. Life. 2021; https://doi.org/10.3390/life11121427.

  52. Moschetta MG, Leonel C, Maschio-Signorini LB, Borin TF, Gelaleti GB, Jardim-Perassi BV, et al. Evaluation of angiogenesis process after metformin and LY294002 treatment in mammary tumor. Curr Med Chem Anticancer Agents. 2019. https://doi.org/10.2174/1871520619666181218164050.

    Article  Google Scholar 

  53. Coulson R, Liew SH, Connelly AA, Yee NS, Deb S, Kumar B, et al. The angiotensin receptor blocker, Losartan, inhibits mammary tumor development and progression to invasive carcinoma. Oncotarget. 2017. https://doi.org/10.18632/oncotarget.15553.

    Article  Google Scholar 

  54. Wang J, Yang L, Liang F, Chen Y, Yang G. Integrin alpha x stimulates cancer angiogenesis through PI3K/AKT signaling–mediated VEGFR2/VEGF-A overexpression in blood vessel endothelial cells. J Cell Biochem. 2018. https://doi.org/10.1002/jcb.27480.

    Article  Google Scholar 

  55. Khan N, Jajeh F, Eberhardt EL, Miller DD, Albrecht DM, Van Doorn R, et al. Fisetin and 5-fluorouracil: effective combination for PIK3CA‐mutant colorectal cancer. Int J Cancer. 2019. https://doi.org/10.1002/ijc.32367.

    Article  Google Scholar 

  56. Varanda AS, Santos M, Soares AR, Vitorino R, Oliveira P, Oliveira C, et al. Human cells adapt to translational errors by modulating protein synthesis rate and protein turnover. RNA Biol. 2019. https://doi.org/10.1080/15476286.2019.1670039.

    Article  Google Scholar 

Download references

Acknowledgements

The present work was carried out with the support of CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabela F. S. Perossi.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perossi, I.F.S., Saito, M.M., Varallo, G.R. et al. Protein Expression of PI3K/AKT/mTOR Pathway Targets Validated by Gene Expression and its Correlation with Prognosis in Canine Mammary Cancer. J Mammary Gland Biol Neoplasia 27, 241–252 (2022). https://doi.org/10.1007/s10911-022-09527-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-022-09527-5

Keywords

Navigation