Skip to main content

Advertisement

Log in

Single Cell RNA Sequencing of Human Milk-Derived Cells Reveals Sub-Populations of Mammary Epithelial Cells with Molecular Signatures of Progenitor and Mature States: a Novel, Non-invasive Framework for Investigating Human Lactation Physiology

  • Original Paper
  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Cells in human milk are an untapped source, as potential “liquid breast biopsies”, of material for investigating lactation physiology in a non-invasive manner. We used single cell RNA sequencing (scRNA-seq) to identify milk-derived mammary epithelial cells (MECs) and their transcriptional signatures in women with diet-controlled gestational diabetes (GDM) with normal lactation. Methodology is described for coordinating milk collections with single cell capture and library preparation via cryopreservation, in addition to scRNA-seq data processing and analyses of MEC transcriptional signatures. We comprehensively characterized 3740 cells from milk samples from two mothers at two weeks postpartum. Most cells (>90%) were luminal MECs (luMECs) expressing lactalbumin alpha and casein beta and positive for keratin 8 and keratin 18. Few cells were keratin 14+ basal MECs and a small immune cell population was present (<10%). Analysis of differential gene expression among clusters identified six potentially distinct luMEC subpopulation signatures, suggesting the potential for subtle functional differences among luMECs, and included one cluster that was positive for both progenitor markers and mature milk transcripts. No expression of pluripotency markers POU class 5 homeobox 1 (POU5F1, encoding OCT4) SRY-box transcription factor 2 (SOX2) or nanog homeobox (NANOG), was observed. These observations were supported by flow cytometric analysis of MECs from mature milk samples from three women with diet-controlled GDM (2–8 mo postpartum), indicating a negligible basal/stem cell population (epithelial cell adhesion molecule (EPCAM)/integrin subunit alpha 6 (CD49f)+, 0.07%) and a small progenitor population (EPCAM+/CD49f+, 1.1%). We provide a computational framework for others and future studies, as well as report the first milk-derived cells to be analyzed by scRNA-seq. We discuss the clinical potential and current limitations of using milk-derived cells as material for characterizing human mammary physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

To review GEO accession GSE153889, go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153889.

References

  1. Lee S, Kelleher SL. Biological underpinnings of breastfeeding challenges: the role of genetics, diet, and environment on lactation physiology. Am J Physiol Endocrinol Metab. 2016;311(2):E405–E22. https://doi.org/10.1152/ajpendo.00495.2015.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Chapman DJ, Pérez-Escamilla R. Identification of risk factors for delayed onset of lactation. J Am Diet Assoc. 1999;99(4):450–4; quiz 5-6. https://doi.org/10.1016/s0002-8223(99)00109-1.

    Article  CAS  PubMed  Google Scholar 

  3. Li R, Jewell S, Grummer-Strawn L. Maternal obesity and breast-feeding practices. Am J Clin Nutr. 2003;77(4):931–6.

    Article  CAS  Google Scholar 

  4. Amir LH, Donath S. A systematic review of maternal obesity and breastfeeding intention, initiation and duration. BMC Pregnancy and Childbirth. 2007;7(1):9. https://doi.org/10.1186/1471-2393-7-9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Baker JL, Michaelsen KF, Sørensen TI, Rasmussen KM. High prepregnant body mass index is associated with early termination of full and any breastfeeding in Danish women. Am J Clin Nutr. 2007;86(2):404–11. https://doi.org/10.1093/ajcn/86.2.404.

    Article  CAS  PubMed  Google Scholar 

  6. Nommsen-Rivers LA, Chantry CJ, Peerson JM, Cohen RJ, Dewey KG. Delayed onset of lactogenesis among first-time mothers is related to maternal obesity and factors associated with ineffective breastfeeding. Am J Clin Nutr. 2010;92(3):574–84. https://doi.org/10.3945/ajcn.2010.29192.

    Article  CAS  PubMed  Google Scholar 

  7. Matias SL, Dewey KG, Quesenberry JCP, Gunderson EP. Maternal prepregnancy obesity and insulin treatment during pregnancy are independently associated with delayed lactogenesis in women with recent gestational diabetes mellitus. Am J Clin Nutr. 2014;99(1):115–21. https://doi.org/10.3945/ajcn.113.073049.

    Article  CAS  PubMed  Google Scholar 

  8. Stuebe AM, Horton BJ, Chetwynd E, Watkins S, Grewen K, Meltzer-Brody S. Prevalence and risk factors for early, undesired weaning attributed to lactation dysfunction. J Women’s Health. 2014;23(5):404–12. https://doi.org/10.1089/jwh.2013.4506.

    Article  Google Scholar 

  9. Bærug A, Sletner L, Laake P, Fretheim A, Løland BF, Waage CW, et al. Recent gestational diabetes was associated with mothers stopping predominant breastfeeding earlier in a multi-ethnic population. Acta Paediatr. 2018;107(6):1028–35. https://doi.org/10.1111/apa.14274.

    Article  PubMed  Google Scholar 

  10. Nguyen PTH, Binns CW, Nguyen CL, Ha AVV, Chu TK, Duong DV, et al. Gestational diabetes mellitus reduces breastfeeding duration: a prospective cohort study. Breastfeed Med. 2019;14(1):39–45. https://doi.org/10.1089/bfm.2018.0112.

    Article  PubMed  Google Scholar 

  11. Crume TL, Ogden L, Maligie M, Sheffield S, Bischoff KJ, McDuffie R, et al. Long-term impact of neonatal breastfeeding on childhood adiposity and fat distribution among children exposed to diabetes in utero. Diabetes Care. 2011;34(3):641–5. https://doi.org/10.2337/dc10-1716.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wallby T, Lagerberg D, Magnusson M. Relationship between breastfeeding and early childhood obesity: results of a prospective longitudinal study from birth to 4 years. Breastfeed Med. 2017;12(1):48–53. https://doi.org/10.1089/bfm.2016.0124.

    Article  PubMed  Google Scholar 

  13. Sauder KA, Bekelman TA, Harrall KK, Glueck DH, Dabelea D. Gestational diabetes exposure and adiposity outcomes in childhood and adolescence: An analysis of effect modification by breastfeeding, diet quality, and physical activity in the EPOCH study. Pediatr Obes .0(0). https://doi.org/10.1111/ijpo.12562.

  14. Stuebe AM. Duration of lactation and incidence of type 2 diabetes. JAMA. 2005;294(20):2601–10. https://doi.org/10.1001/jama.294.20.2601.

    Article  CAS  PubMed  Google Scholar 

  15. Ram KT, Bobby P, Hailpern SM, Lo JC, Schocken M, Skurnick J, et al. Duration of lactation is associated with lower prevalence of the metabolic syndrome in midlife—SWAN, the study of women’s health across the nation. Am J Obstet Gynecol. 2008;198(3):268.e1–6. https://doi.org/10.1016/j.ajog.2007.11.044.

    Article  Google Scholar 

  16. Villegas R, Gao YT, Yang G, Li HL, Elasy T, Zheng W et al. Duration of breast-feeding and the incidence of type 2 diabetes mellitus in the Shanghai Women’s Health Study. 2008;51(2):258–66. https://doi.org/10.1007/s00125-007-0885-8.

  17. Schwarz EB, Ray RM, Stuebe AM, Allison MA, Ness RB, Freiberg MS, et al. Duration of lactation and risk factors for maternal cardiovascular disease. Obstet Gynecol. 2009;113(5):974–82. https://doi.org/10.1097/01.aog.0000346884.67796.ca.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schwarz EB, Brown JS, Creasman JM, Stuebe A, McClure CK, Van Den Eeden SK, et al. Lactation and Maternal Risk of Type 2 Diabetes: A Population-based Study. Am J Med. 2010;123(9):863.e1–6. https://doi.org/10.1016/j.amjmed.2010.03.016.

    Article  Google Scholar 

  19. Gunderson EP, Lewis CE, Lin Y, Sorel M, Gross M, Sidney S, et al. Lactation duration and progression to diabetes in women across the childbearing years: the 30-year cardia study. JAMA Intern Med. 2018;178(3):328–37. https://doi.org/10.1001/jamainternmed.2017.7978.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maningat PD, Sen P, Rijnkels M, Sunehag AL, Hadsell DL, Bray M, et al. Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiol Genomics. 2009;37(1):12–22. https://doi.org/10.1152/physiolgenomics.90341.2008.

    Article  CAS  PubMed  Google Scholar 

  21. Mohammad MA, Haymond MW. Regulation of lipid synthesis genes and milk fat production in human mammary epithelial cells during secretory activation. Am J Physiol Endocrinol Metab. 2013;305(6):E700–E16. https://doi.org/10.1152/ajpendo.00052.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lemay DG, Ballard OA, Hughes MA, Morrow AL, Horseman ND, Nommsen-Rivers LA. RNA sequencing of the human Milk fat layer Transcriptome reveals distinct gene expression profiles at three stages of lactation. PLoS One. 2013;8(7):e67531. https://doi.org/10.1371/journal.pone.0067531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lemay DG, Hovey RC, Hartono SR, Hinde K, Smilowitz JT, Ventimiglia F, et al. Sequencing the transcriptome of milk production: milk trumps mammary tissue. BMC Genomics. 2013;14(1):872. https://doi.org/10.1186/1471-2164-14-872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen Q, Wu Y, Zhang M, Xu W, Guo X, Yan X, et al. Milk fat globule is an alternative to mammary epithelial cells for gene expression analysis in buffalo. J Dairy Res. 2016;83(2):202–8. https://doi.org/10.1017/S0022029916000133.

    Article  CAS  PubMed  Google Scholar 

  25. Patton S, Huston GE. Incidence and characteristics of cell pieces on human milk fat globules. Biochim Biophys Acta Gen Subj. 1988;965(2):146–53. https://doi.org/10.1016/0304-4165(88)90050-5.

    Article  CAS  Google Scholar 

  26. Boutinaud M, Galio L, Lollivier V, Finot L, Wiart S, Esquerré D, et al. Unilateral once daily milking locally induces differential gene expression in both mammary tissue and milk epithelial cells revealing mammary remodeling. Physiol Genomics. 2013;45(20):973–85. https://doi.org/10.1152/physiolgenomics.00059.2013.

    Article  CAS  PubMed  Google Scholar 

  27. Hassiotou F, Geddes DT, Hartmann PE. Cells in human milk: state of the science. J Hum Lact. 2013;29(2):171–82. https://doi.org/10.1177/0890334413477242.

    Article  PubMed  Google Scholar 

  28. Riskin A, Almog M, Peri R, Halasz K, Srugo I, Kessel A. Changes in immunomodulatory constituents of human milk in response to active infection in the nursing infant. Pediatr Res. 2012;71(2):220–5. https://doi.org/10.1038/pr.2011.34.

    Article  CAS  PubMed  Google Scholar 

  29. Hassiotou F, Hepworth AR, Metzger P, Tat Lai C, Trengove N, Hartmann PE, et al. Maternal and infant infections stimulate a rapid leukocyte response in breastmilk. Clin Transl Immunology. 2013;2(4):e3. https://doi.org/10.1038/cti.2013.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Trend S, de Jong E, Lloyd ML, Kok CH, Richmond P, Doherty DA, et al. Leukocyte populations in human preterm and term breast Milk identified by multicolour flow Cytometry. PLoS One. 2015;10(8):e0135580. https://doi.org/10.1371/journal.pone.0135580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharp JA, Lefèvre C, Watt A, Nicholas KR. Analysis of human breast milk cells: gene expression profiles during pregnancy, lactation, involution, and mastitic infection. Funct Integr Genomics. 2016;16(3):297–321. https://doi.org/10.1007/s10142-016-0485-0.

    Article  CAS  PubMed  Google Scholar 

  32. Cregan MD, Fan Y, Appelbee A, Brown ML, Klopcic B, Koppen J, et al. Identification of nestin-positive putative mammary stem cells in human breastmilk. Cell Tissue Res. 2007;329(1):129–36. https://doi.org/10.1007/s00441-007-0390-x.

    Article  PubMed  Google Scholar 

  33. Fan Y, Chong YS, Choolani MA, Cregan MD, Chan JK. Unravelling the mystery of stem/progenitor cells in human breast milk. PLoS One. 2010;5(12):e14421. https://doi.org/10.1371/journal.pone.0014421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patki S, Kadam S, Chandra V, Bhonde R. Human breast milk is a rich source of multipotent mesenchymal stem cells. Hum Cell. 2010;23(2):35–40. https://doi.org/10.1111/j.1749-0774.2010.00083.x.

    Article  CAS  PubMed  Google Scholar 

  35. Thomas E, Zeps N, Cregan M, Hartmann P, Martin T. 14-3-3σ (sigma) regulates proliferation and differentiation of multipotent p63-positive cells isolated from human breastmilk. Cell Cycle. 2011;10(2):278–84. https://doi.org/10.4161/cc.10.2.14470.

    Article  CAS  PubMed  Google Scholar 

  36. Hassiotou F, Beltran A, Chetwynd E, Stuebe AM, Twigger AJ, Metzger P, et al. Breastmilk is a novel source of stem cells with multilineage differentiation potential. Stem Cells. 2012;30(10):2164–74. https://doi.org/10.1002/stem.1188.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sani M, Hosseini SM, Salmannejad M, Aleahmad F, Ebrahimi S, Jahanshahi S, et al. Origins of the breast milk-derived cells; an endeavor to find the cell sources. Cell Biol Int. 2015;39(5):611–8. https://doi.org/10.1002/cbin.10432.

    Article  CAS  PubMed  Google Scholar 

  38. Li S, Zhang L, Zhou Q, Jiang S, Yang Y, Cao Y. Characterization of stem cells and immune cells in preterm and term Mother’s Milk. J Hum Lact. 2019;35(3):528–34. https://doi.org/10.1177/0890334419838986.

    Article  PubMed  Google Scholar 

  39. Goudarzi N, Shabani R, Ebrahimi M, Baghestani A, Dehdashtian E, Vahabzadeh G, et al. Comparative phenotypic characterization of human colostrum and breast milk-derived stem cells. Hum Cell. 2020;33(2):308–17. https://doi.org/10.1007/s13577-019-00320-x.

    Article  CAS  PubMed  Google Scholar 

  40. Bach K, Pensa S, Grzelak M, Hadfield J, Adams DJ, Marioni JC, et al. Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing. Nat Commun. 2017;8(1):2128. https://doi.org/10.1038/s41467-017-02001-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pal B, Chen Y, Vaillant F, Jamieson P, Gordon L, Rios AC, et al. Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nat Commun. 2017;8(1):1627. https://doi.org/10.1038/s41467-017-01560-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun H, Miao Z, Zhang X, Chan UI, Su SM, Guo S, et al. Single-cell RNA-Seq reveals cell heterogeneity and hierarchy within mouse mammary epithelia. J Biol Chem. 2018;293(22):8315–29. https://doi.org/10.1074/jbc.RA118.002297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wuidart A, Sifrim A, Fioramonti M, Matsumura S, Brisebarre A, Brown D, et al. Early lineage segregation of multipotent embryonic mammary gland progenitors. Nat Cell Biol. 2018;20(6):666–76. https://doi.org/10.1038/s41556-018-0095-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Giraddi RR, Chung C-Y, Heinz RE, Balcioglu O, Novotny M, Trejo CL, et al. Single-Cell Transcriptomes Distinguish Stem Cell State Changes and Lineage Specification Programs in Early Mammary Gland Development. Cell Rep. 2018;24(6):1653–66.e7. https://doi.org/10.1016/j.celrep.2018.07.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Colacino JA, Azizi E, Brooks MD, Harouaka R, Fouladdel S, McDermott SP, et al. Heterogeneity of human breast stem and progenitor cells as revealed by transcriptional profiling. Stem Cell Rep. 2018;10(5):1596–609. https://doi.org/10.1016/j.stemcr.2018.03.001.

    Article  CAS  Google Scholar 

  46. Nguyen QH, Pervolarakis N, Blake K, Ma D, Davis RT, James N, et al. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity. Nat Commun. 2018;9(1):2028. https://doi.org/10.1038/s41467-018-04334-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen W, Morabito SJ, Kessenbrock K, Enver T, Meyer KB, Teschendorff AE. Single-cell landscape in mammary epithelium reveals bipotent-like cells associated with breast cancer risk and outcome. Commun Biol. 2019;2(1):306. https://doi.org/10.1038/s42003-019-0554-8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hernandez TL, Van Pelt RE, Anderson MA, Daniels LJ, West NA, Donahoo WT, et al. A higher-complex carbohydrate diet in gestational diabetes mellitus achieves glucose targets and lowers postprandial lipids: a randomized crossover study. Diabetes Care. 2014;37(5):1254–62. https://doi.org/10.2337/dc13-2411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hernandez TL, Van Pelt RE, Anderson MA, Reece MS, Reynolds RM, de la Houssaye BA, et al. Women with gestational diabetes mellitus randomized to a higher–complex carbohydrate/low-fat diet manifest lower adipose tissue insulin resistance, inflammation, glucose, and free fatty acids: a pilot study. Diabetes Care. 2016;39(1):39–42. https://doi.org/10.2337/dc15-0515.

    Article  CAS  PubMed  Google Scholar 

  50. McManaman JL, Neville MC. Mammary physiology and milk secretion. Adv Drug Deliv Rev. 2003;55(5):629–41. https://doi.org/10.1016/S0169-409X(03)00033-4.

    Article  CAS  PubMed  Google Scholar 

  51. Huang Y, Ouyang Y-Q, Redding SR. Maternal Prepregnancy body mass index, gestational weight gain, and cessation of breastfeeding: a systematic review and meta-analysis. Breastfeed Med. 2019;14(6):366–74. https://doi.org/10.1089/bfm.2018.0138.

    Article  PubMed  Google Scholar 

  52. Cohen SS, Alexander DD, Krebs NF, Young BE, Cabana MD, Erdmann P, et al. Factors Associated with Breastfeeding Initiation and Continuation: A Meta-Analysis. J Pediatr. 2018;203:190–6.e21. https://doi.org/10.1016/j.jpeds.2018.08.008.

    Article  PubMed  Google Scholar 

  53. Fein SB, Labiner-Wolfe J, Shealy KR, Li R, Chen J, Grummer-Strawn LM. Infant Feeding Practices Study II: Study Methods. Pediatr. 2008;122(Supplement 2):S28–35. https://doi.org/10.1542/peds.2008-1315c.

    Article  Google Scholar 

  54. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat Immunol. 2019;20(2):163–72. https://doi.org/10.1038/s41590-018-0276-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mabbott NA, Baillie JK, Brown H, Freeman TC, Hume DA. An expression atlas of human primary cells: inference of gene function from coexpression networks. BMC Genomics. 2013;14:632. https://doi.org/10.1186/1471-2164-14-632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Keller T, Wengenroth L, Smorra D, Probst K, Kurian L, Kribs A, et al. Novel DRAQ5™/SYTOX® blue based flow Cytometric strategy to identify and characterize stem cells in human breast Milk. Cytometry B Clin Cytom. 2019;96(6):480–9. https://doi.org/10.1002/cyto.b.21748.

    Article  CAS  PubMed  Google Scholar 

  57. Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, et al. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med. 2008;14(12):1384–9. https://doi.org/10.1038/nm.1791.

    Article  CAS  PubMed  Google Scholar 

  58. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15:907–13. https://doi.org/10.1038/nm.2000https://www.nature.com/articles/nm.2000#supplementary-information.

    Article  CAS  PubMed  Google Scholar 

  59. Aydın MŞ, Yiğit EN, Vatandaşlar E, Erdoğan E, Öztürk G. Transfer and integration of breast Milk stem cells to the brain of suckling pups. Sci Rep. 2018;8(1):14289. https://doi.org/10.1038/s41598-018-32715-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of Normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67. https://doi.org/10.1016/j.stem.2007.08.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Anderson SM, Rudolph MC, JL MM, Neville MC. Key stages in mammary gland development. Secretory activation in the mammary gland: it's not just about milk protein synthesis! Breast Cancer Res. 2007;9(1):204. https://doi.org/10.1186/bcr1653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rudolph MC, McManaman JL, Phang T, Russell T, Kominsky DJ, Serkova NJ, et al. Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol Genomics. 2007;28(3):323–36. https://doi.org/10.1152/physiolgenomics.00020.2006.

    Article  CAS  PubMed  Google Scholar 

  63. Rudolph MC, McManaman JL, Hunter L, Phang T, Neville MC. Functional development of the mammary gland: use of expression profiling and trajectory clustering to reveal changes in gene expression during pregnancy, lactation, and involution. J Mammary Gland Biol Neoplasia. 2003;8(3):287–307.

    Article  Google Scholar 

  64. Shillingford JM, Miyoshi K, Robinson GW, Bierie B, Cao Y, Karin M, et al. Proteotyping of mammary tissue from transgenic and gene knockout mice with Immunohistochemical markers: a tool to define developmental lesions. J Histochem Cytochem. 2003;51(5):555–65. https://doi.org/10.1177/002215540305100501.

    Article  CAS  PubMed  Google Scholar 

  65. Miyoshi K, Shillingford JM, Smith GH, Grimm SL, Wagner K-U, Oka T, et al. Signal transducer and activator of transcription (stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol. 2001;155(4):531–42. https://doi.org/10.1083/jcb.200107065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Long W, Wagner K-U, Lloyd KCK, Binart N, Shillingford JM, Hennighausen L, et al. Impaired differentiation and lactational failure of <em>Erbb4</em>−deficient mammary glands identify ERBB4 as an obligate mediator of STAT5. Development. 2003;130(21):5257–68. https://doi.org/10.1242/dev.00715.

    Article  CAS  PubMed  Google Scholar 

  67. Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat. 2001;67(2):93–109. https://doi.org/10.1023/A:1010615124301.

    Article  CAS  PubMed  Google Scholar 

  68. Chamberlin T, D’Amato JV, Arendt LM. Obesity reversibly depletes the basal cell population and enhances mammary epithelial cell estrogen receptor alpha expression and progenitor activity. Breast Cancer Res. 2017;19(1):128. https://doi.org/10.1186/s13058-017-0921-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Molenaar AJ, Davis SR, Wilkins RJ. Expression of alpha-lactalbumin, alpha-S1-casein, and lactoferrin genes is heterogeneous in sheep and cattle mammary tissue. J Histochem Cytochem. 1992;40(5):611–8. https://doi.org/10.1177/40.5.1374090.

    Article  CAS  PubMed  Google Scholar 

  70. Robinson GW, McKnight RA, Smith GH, Hennighausen L. Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development. 1995;121(7):2079–90.

    CAS  PubMed  Google Scholar 

  71. Rudolph MC, Young BE, Lemas DJ, Palmer CE, Hernandez TL, Barbour LA, et al. Early infant adipose deposition is positively associated with the n-6 to n-3 fatty acid ratio in human milk independent of maternal BMI. Int J Obes. 2016;41:510–7. https://doi.org/10.1038/ijo.2016.211.

    Article  CAS  Google Scholar 

  72. Rudolph MC, Wellberg EA, Lewis AS, Terrell KL, Merz AL, Maluf NK, et al. Thyroid hormone responsive protein Spot14 enhances catalysis of fatty acid synthase in lactating mammary epithelium. J Lipid Res. 2014;55(6):1052–65. https://doi.org/10.1194/jlr.M044487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Smith S. Mechanism of chain length determination in biosynthesis of milk fatty acids. J Dairy Sci. 1980;63(2):337–52. https://doi.org/10.3168/jds.S0022-0302(80)82935-3.

    Article  CAS  PubMed  Google Scholar 

  74. Herve L, Quesnel H, Lollivier V, Portanguen J, Bruckmaier RM, Boutinaud M. Mammary epithelium disruption and mammary epithelial cell exfoliation during milking in dairy cows. J Dairy Sci. 2017;100(12):9824–34. https://doi.org/10.3168/jds.2017-13166.

    Article  CAS  PubMed  Google Scholar 

  75. Eisenhoffer GT, Loftus PD, Yoshigi M, Otsuna H, Chien C-B, Morcos PA, et al. Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature. 2012;484(7395):546–9. https://doi.org/10.1038/nature10999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hassiotou F, Hepworth AR, Williams TM, Twigger A-J, Perrella S, Lai CT, et al. Breastmilk cell and fat contents respond similarly to removal of Breastmilk by the infant. PLoS One. 2013;8(11):e78232. https://doi.org/10.1371/journal.pone.0078232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Masedunskas A, Chen Y, Stussman R, Weigert R, Mather IH. Kinetics of milk lipid droplet transport, growth, and secretion revealed by intravital imaging: lipid droplet release is intermittently stimulated by oxytocin. Mol Biol Cell. 2017;28(7):935–46. https://doi.org/10.1091/mbc.e16-11-0776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Herve L, Lollivier V, Quesnel H, Boutinaud M. Oxytocin induces mammary epithelium disruption and could stimulate epithelial cell exfoliation. J Mammary Gland Biol Neoplasia. 2018;23(3):139–47. https://doi.org/10.1007/s10911-018-9400-8.

    Article  CAS  PubMed  Google Scholar 

  79. Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. Lancet. 2016;387(10017):475–90. https://doi.org/10.1016/S0140-6736(15)01024-7.

    Article  PubMed  Google Scholar 

  80. Gunderson EP, Jacobs DR, Chiang V, Lewis CE, Feng J, Quesenberry CP, et al. Duration of lactation and incidence of the metabolic syndrome in women of reproductive age according to gestational diabetes mellitus status: a 20-year prospective study in CARDIA (coronary artery risk development in Young adults). Diabetes. 2010;59(2):495–504. https://doi.org/10.2337/db09-1197.

    Article  CAS  PubMed  Google Scholar 

  81. Lucas A, Cole TJ. Breast milk and neonatal necrotising enterocolitis. Lancet. 1990;336(8730):1519–23. https://doi.org/10.1016/0140-6736(90)93304-8.

    Article  CAS  PubMed  Google Scholar 

  82. Armstrong J, Reilly JJ. Breastfeeding and lowering the risk of childhood obesity. Lancet. 2002;359(9322):2003–4. https://doi.org/10.1016/S0140-6736(02)08837-2.

    Article  PubMed  Google Scholar 

  83. Vandyousefi S, Goran MI, Gunderson EP, Khazaee E, Landry MJ, Ghaddar R, et al. Association of breastfeeding and gestational diabetes mellitus with the prevalence of prediabetes and the metabolic syndrome in offspring of Hispanic mothers. Pediatr Obes. 2019:e12515. https://doi.org/10.1111/ijpo.12515.

  84. Odom EC, Li R, Scanlon KS, Perrine CG, Grummer-Strawn L. Reasons for earlier than desired cessation of breastfeeding. Pediatrics. 2013;131(3):e726–e32. https://doi.org/10.1542/peds.2012-1295.

    Article  PubMed  PubMed Central  Google Scholar 

  85. O'Sullivan EJ, Perrine CG, Rasmussen KM. Early breastfeeding problems mediate the negative association between maternal obesity and exclusive breastfeeding at 1 and 2 months postpartum. J Nutr. 2015;145(10):2369–78. https://doi.org/10.3945/jn.115.214619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hauff LE, Leonard SA, Rasmussen KM. Associations of maternal obesity and psychosocial factors with breastfeeding intention, initiation, and duration. Am J Clin Nutr. 2014;99(3):524–34. https://doi.org/10.3945/ajcn.113.071191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chapman DJ, Morel K, Bermudez-Millan A, Young S, Damio G, Perez-Escamilla R. Breastfeeding education and support trial for overweight and obese women: a randomized trial. Pediatrics. 2013;131(1):e162-ee70. https://doi.org/10.1542/peds.2012-0688.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Carlsen EM, Kyhnaeb A, Renault KM, Cortes D, Michaelsen KF, Pryds O. Telephone-based support prolongs breastfeeding duration in obese women: a randomized trial. Am J Clin Nutr. 2013;98(5):1226–32. https://doi.org/10.3945/ajcn.113.059600.

    Article  CAS  PubMed  Google Scholar 

  89. Boutinaud M, Herve L, Lollivier V. Mammary epithelial cells isolated from milk are a valuable, non-invasive source of mammary transcripts. Front Genet. 2015;6(323). https://doi.org/10.3389/fgene.2015.00323.

  90. Twigger A-J, Küffer G, Geddes D, Filgueria L. Expression of Granulisyn, Perforin and Granzymes in human Milk over lactation and in the case of maternal infection. Nutrients. 2018;10(9):1230. https://doi.org/10.3390/nu10091230.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health, including the National Institute of Diabetes and Digestive and Kidney Diseases (P30 DK048520 – PSM, JFMC and MCR, T32 DK007658-28 – JFMC, 5R01DK101659 – TLH and LAB, K01 DK109079 – MCR, & R03 DK122189-01 – MCR), the Eunice Kennedy Shriver National Institute of Child Health and Human Development (5T32HD007186-40 – JFMC & 5R01HD093729-02 – JLM and JM), the National Institute of Aging (U54 AG062319 – PSM) and the National Center for Advancing Translational Sciences (UL1 TR002535 – MCR). The authors wish to thank the anonymous reviewers who clarified and strengthened the analysis described here. We also thank the study participants for donating their precious milk samples and David Orlicky for numerous insightful discussions related to this study.

Author information

Authors and Affiliations

Authors

Contributions

JFMC and MCR conceived of the project and JFMC, MCR, JLM and JM designed the experiments with input from LAB, TLH, JEF and PSM. NH, KPR and EZD collected the samples. JFMC performed the experiments and JFMC, GDT and MCR analyzed the data. JFMC, GDT, MCR, JLM, JM and KLJ prepared the manuscript, which all other authors critically reviewed and approved.

Corresponding author

Correspondence to Jayne F. Martin Carli.

Ethics declarations

Conflicts of Interest/Competing Interests

The authors declare that there are no conflicts of interest.

Ethics Approval

(include appropriate approvals or waivers)

Milk-derived cells were collected from deidentified samples obtained for Clinical Trial #NCT02244814. This trial was approved by the Colorado Multiple Institution Review Board (COMIRB #14–1538).

Consent to Participate

(include appropriate statements)

All participants gave their informed consent for milk collection and samples were deidentified prior to experimentation for this study.

Consent for Publication

All authors declare their consent to the publication of this work.

Code Availability

All code has been submitted in the supplemental methods file (“Martin_Carli_MEC_scRNA-seq_Markdown.html”).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 226 kb)

ESM 2

(XLSX 745 kb)

ESM 3

(XLSX 83 kb)

ESM 4

(DOCX 16614 kb)

ESM 5

(HTML 26989 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin Carli, J.F., Trahan, G.D., Jones, K.L. et al. Single Cell RNA Sequencing of Human Milk-Derived Cells Reveals Sub-Populations of Mammary Epithelial Cells with Molecular Signatures of Progenitor and Mature States: a Novel, Non-invasive Framework for Investigating Human Lactation Physiology. J Mammary Gland Biol Neoplasia 25, 367–387 (2020). https://doi.org/10.1007/s10911-020-09466-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-020-09466-z

Keywords

Navigation