Skip to main content

Preclinical Models to Study Obesity and Breast Cancer in Females: Considerations, Caveats, and Tools

Abstract

Obesity increases the risk for breast cancer and is associated with poor outcomes for cancer patients. A variety of rodent models have been used to investigate these relationships; however, key differences in experimental approaches, as well as unique aspects of rodent physiology lead to variability in how these valuable models are implemented. We combine expertise in the development and implementation of preclinical models of obesity and breast cancer to disseminate effective practices for studies that integrate these fields. In this review, we share, based on our experience, key considerations for model selection, highlighting important technical nuances and tips for use of preclinical models in studies that integrate obesity with breast cancer risk and progression. We describe relevant mouse and rat paradigms, specifically highlighting differences in breast tumor subtypes, estrogen production, and strategies to manipulate hormone levels. We also outline options for diet composition and housing environments to promote obesity in female rodents. While we have applied our experience to understanding obesity-associated breast cancer, the experimental variables we incorporate have relevance to multiple fields that investigate women’s health.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Data Availability

The data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ER:

Estrogen receptor

PR:

Progesterone receptor

HER2/ERBB2:

Human epidermal growth factor receptor 2

TN:

Triple negative

HR:

Hormone receptor

BMI:

Body mass index

PDX:

Patient derived xenograft

MNU:

1-methyl-1-nitrosourea

DMBA:

7,12-dimethylbenzathracene

MMTV:

Mouse mammary tumor virus

WAP:

Whey acidic promoter

PyMT:

Polyoma-virus middle T antigen

DIO:

Diet-induced obesity

DIOX:

Diet-induced obesity/xenograft

MDST:

Mouse-derived syngeneic transplant

NSG:

NOD-SCID (non-obese diabetic, severe combined immunodeficient) IL2R-gamma

PMBC:

Peripheral blood mononuclear cell

OVX:

Ovariectomy

DEXA:

Dual-energy x-ray absorptiometry

HF:

High fat

HFHS:

High fat/high sucrose

LFHS:

Low fat/high sucrose

LFLS:

Low fat/low sucrose

HOMA-IR:

Homeostatic model assessment of insulin resistance

OR:

Obesity-resistant

OP:

Obesity-prone

NK:

Natural killer

VCD:

4-vinylcyclohexene diepoxide

E2:

17ß-estradiol

qMR:

Quantitative magnetic resonance

NHANES:

National Health and Nutrition Examination Survey

PBMC:

Peripheral blood mononuclear cell

SEM:

Standard error of the mean

References

  1. Flegal KM, Kruszon-Moran D, Carroll MD, Fryar CD, Ogden CL. Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 2016;315(21):2284–91.

    CAS  PubMed  Google Scholar 

  2. Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity among adults and youth: United States, 2015-2016. NCHS Data Brief. 2017;(288):1–8

  3. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA. 2014;311(8):806–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chan DSM, Vieira AR, Aune D, Bandera EV, Greenwood DC, McTiernan A, et al. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol. 2014;25(10):1901–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Neuhouser ML, Aragaki AK, Prentice RL, Manson JE, Chlebowski R, Carty CL, et al. Overweight, obesity, and postmenopausal invasive breast cancer risk: a secondary analysis of the women’s health initiative randomized clinical trials. JAMA Oncol. 2015;1(5):611–21.

    PubMed  PubMed Central  Google Scholar 

  6. Matthews SB, Thompson HJ. The obesity-breast cancer conundrum: an analysis of the issues. Int J Mol Sci. 2016;17(6):989.

    PubMed Central  Google Scholar 

  7. Chen L, Cook LS, Tang MT, Porter PL, Hill DA, Wiggins CL, et al. Body mass index and risk of luminal, HER2-overexpressing, and triple negative breast cancer. Breast Cancer Res Treat. 2016;157(3):545–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Park YM, White AJ, Nichols HB, O’Brien KM, Weinberg CR, Sandler DP. The association between metabolic health, obesity phenotype and the risk of breast cancer. Int J Cancer. 2017;140(12):2657–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Picon-Ruiz M, Morata-Tarifa C, Valle-Goffin JJ, Friedman ER, Slingerland JM. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA Cancer J Clin. 2017;67(5):378–97.

    PubMed  PubMed Central  Google Scholar 

  10. Azvolinsky A. Cancer risk: the fat tissue-BMI-obesity connection. J Natl Cancer Inst. 2014;106(4):dju100.

    PubMed  Google Scholar 

  11. Howlader N, Altekruse SF, Li CI, Chen VW, Clarke CA, Ries LA, et al. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J Natl Cancer Inst. 2014;106(5):dju055.

    PubMed  PubMed Central  Google Scholar 

  12. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747–52.

    CAS  PubMed  Google Scholar 

  13. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160–7.

    PubMed  PubMed Central  Google Scholar 

  14. Waks AG, Winer EP. Breast cancer treatment: a review. JAMA. 2019;321(3):288–300.

    CAS  PubMed  Google Scholar 

  15. Heshmati K, Harris DA, Rosner B, Pranckevicius E, Ardestani A, Cho N, et al. Association of bariatric surgery status with reduced HER2+ breast cancers: a retrospective cohort study. Obes Surg. 2019;29(4):1092–8.

    PubMed  Google Scholar 

  16. Krasniqi E, Pizzuti L, Barchiesi G, Sergi D, Carpano S, Botti C, et al. Impact of BMI on HER2+ metastatic breast cancer patients treated with pertuzumab and/or trastuzumabemtansine. Real-world evidence J Cell Physiol. 2020;235(11):7900–10.

    CAS  PubMed  Google Scholar 

  17. Chavez-MacGregor M, Mittendorf EA, Clarke CA, Lichtensztajn DY, Hunt KK, Giordano SH. Incorporating tumor characteristics to the American joint committee on cancer breast cancer staging system. Oncologist. 2017;22(11):1292–300.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Torres-de la Roche LA, Steljes I, Janni W, Friedl TWP, De Wilde RL. The association between obesity and premenopausal breast cancer according to intrinsic subtypes - a systematic review. Geburtshilfe Frauenheilkd. 2020;80(6):601–10.

    PubMed  PubMed Central  Google Scholar 

  19. Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28(16):2784–95.

    PubMed  PubMed Central  Google Scholar 

  20. Pan H, Gray R, Braybrooke J, Davies C, Taylor C, McGale P, et al. 20-year risks of breast-cancer recurrence after stopping endocrine therapy at 5 years. N Engl J Med. 2017;377(19):1836–46.

    PubMed  PubMed Central  Google Scholar 

  21. Sestak I, Distler W, Forbes JF, Dowsett M, Howell A, Cuzick J. Effect of body mass index on recurrences in tamoxifen and anastrozole treated women: an exploratory analysis from the ATAC trial. J Clin Oncol. 2010;28(21):3411–5.

    CAS  PubMed  Google Scholar 

  22. Folkerd EJ, Dixon JM, Renshaw L, A’Hern RP, Dowsett M. Suppression of plasma estrogen levels by letrozole and anastrozole is related to body mass index in patients with breast cancer. J Clin Oncol. 2012;30(24):2977–80.

    CAS  PubMed  Google Scholar 

  23. Ligibel JA, Winer EP. Aromatase inhibition in obese women: how much is enough? J Clin Oncol. 2012;30(24):2940–2.

    CAS  PubMed  Google Scholar 

  24. Buzdar AU, Jones SE, Vogel CL, Wolter J, Plourde P, Webster A. A phase III trial comparing anastrozole (1 and 10 milligrams), a potent and selective aromatase inhibitor, with megestrol acetate in postmenopausal women with advanced breast carcinoma. Arimidex study group. Cancer. 1997;79(4):730–9.

    CAS  PubMed  Google Scholar 

  25. Jonat W, Howell A, Blomqvist C, Eiermann W, Winblad G, Tyrrell C, et al. A randomised trial comparing two doses of the new selective aromatase inhibitor anastrozole (Arimidex) with megestrol acetate in postmenopausal patients with advanced breast cancer. Eur J Cancer. 1996;32A(3):404–12.

    CAS  PubMed  Google Scholar 

  26. Dixon JM, Renshaw L, Young O, Murray J, Macaskill EJ, McHugh M, et al. Letrozole suppresses plasma estradiol and estronesulphate more completely than anastrozole in postmenopausal women with breast cancer. J Clin Oncol. 2008;26(10):1671–6.

    CAS  PubMed  Google Scholar 

  27. Elliott MJ, Ennis M, Pritchard KI, Townsley C, Warr D, Elser C, et al. Association between BMI, vitamin D, and estrogen levels in postmenopausal women using adjuvant letrozole: a prospective study. NPJ Breast Cancer. 2020;6:22.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ozdemir BC, Sflomos G, Brisken C. The challenges of modeling hormone receptor-positive breast cancer in mice. Endocr Relat Cancer. 2018;25(5):R319–30.

    CAS  PubMed  Google Scholar 

  29. Welsch CW. Host factors affecting the growth of carcinogen-induced rat mammary carcinomas: a review and tribute to Charles Brenton Huggins. Cancer Res. 1985;45(8):3415–43.

    CAS  PubMed  Google Scholar 

  30. Thompson HJ. Methods for the induction of mammary carcinogenesis in the rat using either 7,12-Dimethylbenz[α]anthracene or 1-Methyl-1-Nitrosourea. In: Ip M.M. ABB, editor. Methods in mammary gland biology and breast cancer research. Boston: Springer; 2000. p. 19–29.

    Google Scholar 

  31. Thompson HJ, McGinley JN, Rothhammer K, Singh M. Rapid induction of mammary intraductal proliferations, ductal carcinoma in situ and carcinomas by the injection of sexually immature female rats with 1-methyl-1-nitrosourea. Carcinogenesis. 1995;16(10):2407–11.

    CAS  PubMed  Google Scholar 

  32. Perse M, Cerar A, Injac R, Strukelj B. N-methylnitrosourea induced breast cancer in rat, the histopathology of the resulting tumours and its drawbacks as a model. Pathol Oncol Res. 2009;15(1):115–21.

    CAS  PubMed  Google Scholar 

  33. McCormick DL, Adamowski CB, Fiks A, Moon RC. Lifetime dose-response relationships for mammary tumor induction by a single administration of N-methyl-N-nitrosourea. Cancer Res. 1981;41(5):1690–4.

    CAS  PubMed  Google Scholar 

  34. MacLean PS, Giles ED, Johnson GC, McDaniel SM, Fleming-Elder BK, Gilman KA, et al. A surprising link between the energetics of ovariectomy-induced weight gain and mammary tumor progression in obese rats. Obesity (Silver Spring). 2010;18(4):696–703.

    Google Scholar 

  35. Giles ED, Wellberg EA, Astling DP, Anderson SM, Thor AD, Jindal S, et al. Obesity and overfeeding affecting both tumor and systemic metabolism activates the progesterone receptor to contribute to postmenopausal breast cancer. Cancer Res. 2012;72(24):6490–501.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Giles ED, Jindal S, Wellberg EA, Schedin T, Anderson SM, Thor AD, et al. Metformin inhibits stromal aromatase expression and tumor progression in a rodent model of postmenopausal breast cancer. Breast Cancer Res. 2018;20(1):50.

    PubMed  PubMed Central  Google Scholar 

  37. Giles ED, Jackman MR, MacLean PS. Modeling diet-induced obesity with obesity-prone rats: implications for studies in females. Front Nutr. 2016;3:50.

    PubMed  PubMed Central  Google Scholar 

  38. Checkley LA, Rudolph MC, Wellberg EA, Giles ED, Wahdan-Alaswad RS, Houck JA, et al. Metformin accumulation correlates with organic cation transporter 2 protein expression and predicts mammary tumor regression in vivo. Cancer Prev Res (Phila). 2017;10(3):198–207.

    CAS  Google Scholar 

  39. Wellberg EA, Checkley LA, Giles ED, Johnson SJ, Oljira R, Wahdan-Alaswad R, et al. The androgen receptor supports tumor progression after the loss of ovarian function in a preclinical model of obesity and breast cancer. Horm Cancer. 2017;8(5–6):269–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Thompson HJ, McGinley JN, Wolfe P, Singh M, Steele VE, Kelloff GJ. Temporal sequence of mammary intraductal proliferations, ductal carcinomas in situ and adenocarcinomas induced by 1-methyl-1-nitrosourea in rats. Carcinogenesis. 1998;19(12):2181–5.

    CAS  PubMed  Google Scholar 

  41. Thompson HJ, Adlakha H, Singh M. Effect of carcinogen dose and age at administration on induction of mammary carcinogenesis by 1-methyl-1-nitrosourea. Carcinogenesis. 1992;13(9):1535–9.

    CAS  PubMed  Google Scholar 

  42. Thompson HJ, Adlakha H. Dose-responsive induction of mammary gland carcinomas by the intraperitoneal injection of 1-methyl-1-nitrosourea. Cancer Res. 1991;51(13):3411–5.

    CAS  PubMed  Google Scholar 

  43. Hennighausen L. Mouse models for breast cancer. Oncogene. 2000;19(8):966–7.

    CAS  PubMed  Google Scholar 

  44. Hutchinson JN, Muller WJ. Transgenic mouse models of human breast cancer. Oncogene. 2000;19(53):6130–7.

    CAS  PubMed  Google Scholar 

  45. Federico L, Chong Z, Zhang D, McGrail DJ, Zhao W, Jeong KJ, et al. A murine preclinical syngeneic transplantation model for breast cancer precision medicine. Sci Adv. 2017;3(4):e1600957.

    PubMed  PubMed Central  Google Scholar 

  46. Savas P, Salgado R, Denkert C, Sotiriou C, Darcy PK, Smyth MJ, et al. Clinical relevance of host immunity in breast cancer: from TILs to the clinic. Nat Rev Clin Oncol. 2016;13(4):228–41.

    CAS  PubMed  Google Scholar 

  47. Evangelista GCM, Salvador PA, Soares SMA, Barros LRC, Xavier F, Abdo LM, et al. 4T1 Mammary carcinoma colonization of metastatic niches is accelerated by obesity. Front Oncol. 2019;9:685.

    PubMed  PubMed Central  Google Scholar 

  48. Kirma NB, Tekmal RR. Transgenic mouse models of hormonal mammary carcinogenesis: advantages and limitations. J Steroid Biochem Mol Biol. 2012;131(3–5):76–82.

    CAS  PubMed  Google Scholar 

  49. Usary J, Darr DB, Pfefferle AD, Perou CM. Overview of genetically engineered mouse models of distinct breast cancer subtypes. Curr Protoc Pharmacol. 2016;72:14 38 1-14 38 11.

    Google Scholar 

  50. Jallow F, Brockman JL, Helzer KT, Rugowski DE, Goffin V, Alarid ET, et al. 17beta-Estradiol and ICI182,780 differentially regulate STAT5 isoforms in female mammary epithelium, with distinct outcomes. J Endocr Soc. 2018;2(3):293–309.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Rose-Hellekant TA, Arendt LM, Schroeder MD, Gilchrist K, Sandgren EP, Schuler LA. Prolactin induces ERalpha-positive and ERalpha-negative mammary cancer in transgenic mice. Oncogene. 2003;22(30):4664–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tilli MT, Frech MS, Steed ME, Hruska KS, Johnson MD, Flaws JA, et al. Introduction of estrogen receptor-alpha into the tTA/TAg conditional mouse model precipitates the development of estrogen-responsive mammary adenocarcinoma. Am J Pathol. 2003;163(5):1713–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chan SR, Vermi W, Luo J, Lucini L, Rickert C, Fowler AM, et al. STAT1-deficient mice spontaneously develop estrogen receptor alpha-positive luminal mammary carcinomas. Breast Cancer Res. 2012;14(1):R16.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cardiff RD, Wellings SR. The comparative pathology of human and mouse mammary glands. J Mammary Gland Biol Neoplasia. 1999;4(1):105–22.

    CAS  PubMed  Google Scholar 

  55. Fleming JM, Long EL, Ginsburg E, Gerscovich D, Meltzer PS, Vonderhaar BK. Interlobular and intralobular mammary stroma: genotype may not reflect phenotype. BMC Cell Biol. 2008;9:46.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dankort DL, Muller WJ. Transgenic models of breast cancer metastasis. Cancer Treat Res. 1996;83:71–88.

    CAS  PubMed  Google Scholar 

  57. Dobrolecki LE, Airhart SD, Alferez DG, Aparicio S, Behbod F, Bentires-Alj M, et al. Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Rev. 2016;35(4):547–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sflomos G, Dormoy V, Metsalu T, Jeitziner R, Battista L, Scabia V, et al. A preclinical model for ERalpha-Positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. Cancer Cell. 2016;29(3):407–22.

    CAS  PubMed  Google Scholar 

  59. Matthews SB, Sartorius CA. Steroid hormone receptor positive breast cancer patient-derived xenografts. Horm Cancer. 2017;8(1):4–15.

    CAS  PubMed  Google Scholar 

  60. Finlay-Schultz J, Jacobsen BM, Riley D, Paul KV, Turner S, Ferreira-Gonzalez A, et al. New generation breast cancer cell lines developed from patient-derived xenografts. Breast Cancer Res. 2020;22(1):68.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Nunez NP, Perkins SN, Smith NC, Berrigan D, Berendes DM, Varticovski L, et al. Obesity accelerates mouse mammary tumor growth in the absence of ovarian hormones. Nutr Cancer. 2008;60(4):534–41.

    CAS  PubMed  Google Scholar 

  62. Chumlea WC, Guo SS, Kuczmarski RJ, Flegal KM, Johnson CL, Heymsfield SB, et al. Body composition estimates from NHANES III bioelectrical impedance data. Int J Obes Relat Metab Disord. 2002;26(12):1596–609.

    CAS  PubMed  Google Scholar 

  63. Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, et al. Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol. 2018;14(3):140–62.

    PubMed  Google Scholar 

  64. Speakman J, Hambly C, Mitchell S, Krol E. The contribution of animal models to the study of obesity. Lab Anim. 2008;42(4):413–32.

    CAS  PubMed  Google Scholar 

  65. Tschop M, Heiman ML. Overview of rodent models for obesity research. Curr Protoc Neurosci. 2002;Chapter 9:Unit 9 10.

  66. Gunter MJ, Xie X, Xue X, Kabat GC, Rohan TE, Wassertheil-Smoller S, et al. Breast cancer risk in metabolically healthy but overweight postmenopausal women. Cancer Res. 2015;75(2):270–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Kabat GC, Kim MY, Lee JS, Ho GY, Going SB, Beebe-Dimmer J, et al. Metabolic obesity phenotypes and risk of breast cancer in postmenopausal women. Cancer Epidemiol Biomarkers Prev. 2017;26(12):1730–5.

    PubMed  PubMed Central  Google Scholar 

  68. Chlebowski RT, Aragaki AK, Anderson GL, Thomson CA, Manson JE, Simon MS, et al. Low-fat dietary pattern and breast cancer mortality in the women’s health initiative randomized controlled trial. J Clin Oncol. 2017;35(25):2919–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Chlebowski RT, Anderson GL, Manson JE, Prentice RL, Aragaki AK, Snetselaar L, et al. Low-fat dietary pattern and cancer mortality in the women’s health initiative (WHI) randomized controlled trial. JNCI Cancer Spectr. 2018;2(4):pky065.

    PubMed  Google Scholar 

  70. Chlebowski RT, Aragaki AK, Anderson GL, Simon MS, Manson JE, Neuhouser ML, et al. Association of low-fat dietary pattern with breast cancer overall survival: a secondary analysis of the women’s health initiative randomized clinical trial. JAMA Oncol. 2018;4(10):e181212.

    PubMed  PubMed Central  Google Scholar 

  71. Chlebowski RT, Aragaki AK, Anderson GL, Pan K, Neuhouser ML, Manson JE, et al. Dietary modification and breast cancer mortality: long-term follow-up of the women’s health initiative randomized trial. J Clin Oncol. 2020;38(13):1419–28.

    PubMed  Google Scholar 

  72. Wellberg EA, Kabos P, Gillen AE, Jacobsen BM, Brechbuhl HM, Johnson SJ, et al. FGFR1 underlies obesity-associated progression of estrogen receptor-positive breast cancer after estrogen deprivation. JCI Insight. 2018;3(14):e120594.

    PubMed Central  Google Scholar 

  73. Giles ED, Jackman MR, Johnson GC, Schedin PJ, Houser JL, MacLean PS. Effect of the estrous cycle and surgical ovariectomy on energy balance, fuel utilization, and physical activity in lean and obese female rats. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1634–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sherk VD, Jackman MR, Giles ED, Higgins JA, Foright RM, Presby DM, et al. Prior weight loss exacerbates the biological drive to gain weight after the loss of ovarian function. Physiol Rep. 2017;5(10):e13272.

    PubMed  PubMed Central  Google Scholar 

  75. Sherk VD, Jackman MR, Higgins JA, Giles ED, Foright RM, Presby DM, et al. Impact of exercise and activity on weight regain and musculoskeletal health post-ovariectomy. Med Sci Sports Exerc. 2019;51(12):2465–73.

    PubMed  PubMed Central  Google Scholar 

  76. Fischer AW, Cannon B, Nedergaard J. The answer to the question “What is the best housing temperature to translate mouse experiments to humans?” is: thermoneutrality. Mol Metab. 2019;26:1–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ganeshan K, Chawla A. Warming the mouse to model human diseases. Nat Rev Endocrinol. 2017;13(8):458–65.

    PubMed  PubMed Central  Google Scholar 

  78. Keijer J, Li M, Speakman JR. What is the best housing temperature to translate mouse experiments to humans? Mol Metab. 2019a;25:168–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Keijer J, Li M, Speakman JR. To best mimic human thermal conditions, mice should be housed slightly below thermoneutrality. Mol Metab. 2019b;26:4.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Speakman JR, Keijer J. Not so hot: Optimal housing temperatures for mice to mimic the thermal environment of humans. Mol Metab. 2012;2(1):5–9.

    PubMed  PubMed Central  Google Scholar 

  81. Gordon CJ. Thermal physiology of laboratory mice: defining thermoneutrality. J Therm Biol. 2012;37(8):654–85.

    Google Scholar 

  82. Morris EM, Noland RD, Allen JA, McCoin CS, Xia Q, Koestler DC, et al. Difference in housing temperature-induced energy expenditure elicits sex-specific diet-induced metabolic adaptations in mice. Obesity (Silver Spring). 2020;28(10):1922–31.

    CAS  Google Scholar 

  83. Cui X, Nguyen NL, Zarebidaki E, Cao Q, Li F, Zha L, et al. Thermoneutrality decreases thermogenic program and promotes adiposity in high-fat diet-fed mice. Physiol Rep. 2016;4(10):e12799.

    PubMed  PubMed Central  Google Scholar 

  84. Hylander BL, Repasky EA. Thermoneutrality, mice, and cancer: A heated opinion. Trends Cancer. 2016;2(4):166–75.

    PubMed  Google Scholar 

  85. Ravussin Y, LeDuc CA, Watanabe K, Leibel RL. Effects of ambient temperature on adaptive thermogenesis during maintenance of reduced body weight in mice. Am J Physiol Regul Integr Comp Physiol. 2012;303(4):R438–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Stemmer K, Kotzbeck P, Zani F, Bauer M, Neff C, Muller TD, et al. Thermoneutral housing is a critical factor for immune function and diet-induced obesity in C57BL/6 nude mice. Int J Obes (Lond). 2015;39(5):791–7.

    CAS  Google Scholar 

  87. Szymusiak R, Satinoff E. Maximal REM sleep time defines a narrower thermoneutral zone than does minimal metabolic rate. Physiol Behav. 1981;26(4):687–90.

    CAS  PubMed  Google Scholar 

  88. Neff EP. A point on thermoneutrality for mice. Lab Animal. 2020;49(6):169.

    Google Scholar 

  89. Rogers NH, Perfield JW 2nd, Strissel KJ, Obin MS, Greenberg AS. Reduced energy expenditure and increased inflammation are early events in the development of ovariectomy-induced obesity. Endocrinology. 2009;150(5):2161–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Witte MM, Resuehr D, Chandler AR, Mehle AK, Overton JM. Female mice and rats exhibit species-specific metabolic and behavioral responses to ovariectomy. Gen Comp Endocrinol. 2010;166(3):520–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Brooks HL, Pollow DP, Hoyer PB. The VCD mouse model of menopause and perimenopause for the study of sex differences in cardiovascular disease and the metabolic syndrome. Physiology (Bethesda). 2016;31(4):250–7.

    CAS  Google Scholar 

  92. Van Kempen TA, Milner TA, Waters EM. Accelerated ovarian failure: a novel, chemically induced animal model of menopause. Brain Res. 2011;1379:176–87.

    PubMed  PubMed Central  Google Scholar 

  93. Pearse G, Frith J, Randall KJ, Klinowska T. Urinary retention and cystitis associated with subcutaneous estradiol pellets in female nude mice. Toxicol Pathol. 2009;37(2):227–34.

    CAS  PubMed  Google Scholar 

  94. Dall G, Vieusseux J, Unsworth A, Anderson R, Britt K. Low dose, low cost estradiol pellets can support MCF-7 tumour growth in nude mice without bladder symptoms. J Cancer. 2015;6(12):1331–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Eyre R, Alferez DG, Spence K, Kamal M, Shaw FL, Simoes BM, et al. Patient-derived mammosphere and xenograft tumour initiation correlates with progression to metastasis. J Mammary Gland Biol Neoplasia. 2016;21(3–4):99–109.

    PubMed  PubMed Central  Google Scholar 

  96. Levin-Allerhand JA, Sokol K, Smith JD. Safe and effective method for chronic 17beta-estradiol administration to mice. Contemp Top Lab Anim Sci. 2003;42(6):33–5.

    CAS  PubMed  Google Scholar 

  97. Marangoni E, Vincent-Salomon A, Auger N, Degeorges A, Assayag F, de Cremoux P, et al. A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clin Cancer Res. 2007;13(13):3989–98.

    CAS  PubMed  Google Scholar 

  98. Scalzo RL, Foright RM, Hull SE, Knaub LA, Johnson-Murguia S, Kinanee F, et al. Breast cancer endocrine therapy exhausts adipocyte progenitors promoting weight gain and glucose intolerance. BioRxiv The Preprint Server for Biology. 2020.

  99. Strom JO, Theodorsson A, Ingberg E, Isaksson IM, Theodorsson E. Ovariectomy and 17beta-estradiol replacement in rats and mice: a visual demonstration. J Vis Exp. 2012;64:e4013.

    Google Scholar 

Download references

Acknowledgments

Development of these models was a team effort, and we are incredibly grateful to the members of the ‘Fat Rat’ team, who were instrumental in developing and characterizing these models. This includes: Drs. Paul MacLean, Pepper Schedin, Ann Thor, Steven Anderson, and members of each of their labs. We are equally grateful to the skilled research technicians who ensured the success of the many studies in mice and rats that contributed to this work. Summary figures were created using BioRender.com.

Funding

This work was supported by the NIH R00CA169430 (Giles), R01CA241156 (Wellberg), R01CA164166 (MacLean), Colorado Nutrition Obesity Research Center Metabolic Phenotyping Core and Pilot Grant Program P30DK48520, TREC Training Workshop R25CA203650 (Giles and Wellberg), KL2TR002534 (Wellberg), the Komen Foundation CCR17483321 (Wellberg), and seed grants from the University of Colorado’s Center for Women’s Health Research (Giles and Wellberg).

Author information

Authors and Affiliations

Authors

Contributions

EDG and EAW contributed equally to this manuscript. Both authors contributed to the conception of the work and the acquisition, analysis, and interpretation of data. Both authors contributed to the intellectual content and writing of this paper and have approved the version to be published. Both EDG and EAW assume accountability for all aspects of the work and will ensure that any questions related to the accuracy or integrity of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Erin D. Giles.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

All animal work was approved by Texas A&M and/or University of Colorado Institutional Animal Care and Use Committees.

Consent to Participate

Not applicable.

Consent for Publication

Include appropriate statements.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giles, E.D., Wellberg, E.A. Preclinical Models to Study Obesity and Breast Cancer in Females: Considerations, Caveats, and Tools. J Mammary Gland Biol Neoplasia 25, 237–253 (2020). https://doi.org/10.1007/s10911-020-09463-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-020-09463-2

Keywords