Skip to main content

Advertisement

Log in

The Eleventh ENBDC Workshop: Advances in Technology Help to Unveil Mechanisms of Mammary Gland Development and Cancerogenesis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The eleventh annual workshop of the European Network for Breast Development and Cancer, Methods in mammary gland biology and breast cancer, took place on the 16th to 18th of May 2019 in Weggis, Switzerland. The main topics of the meeting were high resolution genomics and proteomics for the study of mammary gland development and cancer, breast cancer signaling, tumor microenvironment, preclinical models of breast cancer, and tissue morphogenesis. Exciting novel findings in, or highly relevant to, mammary gland biology and breast cancer field were presented, with insights into the methods used to obtain them. Among others, the discussed methods included single-cell RNA sequencing, genetic barcoding, lineage tracing, spatial transcriptomics, optogenetics, genetic mouse models and organoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

53BP1:

p53-binding protein 1

BRCA1:

BRCA1 DNA repair associated

cAMP:

cyclic adenosine monophosphate

CAF:

cancer-associated fibroblast

CDC42EP3:

cell division cycle 42 effector protein 3

CREB1:

cAMP responsive element binding protein 1

EGFR:

epithelial growth factor receptor

ECM:

extracellular matrix

EMBL:

European Molecular Biology Laboratory

ENBDC:

European Network of Breast Development and Cancer

ER:

estrogen receptor

FGF:

fibroblast growth factor

FGFR:

fibroblast growth factor receptor

IDC:

invasive ductal carcinoma

MSPC:

mammary stem/progenitor cell

NOTCH4:

notch receptor 4

PARP:

poly (ADP-ribose) polymerase

PARPi:

PARP inhibitor

PR:

progesterone receptor

RSK2:

p90 ribosomal S6 kinase 2

scRNAseq:

single cell RNA sequencing

TNBC:

triple negative breast cancer

UK:

United Kingdom

VPS11:

vacuolar protein sorting-associated protein 11 homolog

YAP:

Yes-associated protein

References

  1. Pal B, Chen Y, Vaillant F, Jamieson P, Gordon L, Rios AC, et al. Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nat Commun. 2017;8:1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Merino D, Weber TS, Serrano A, Vaillant F, Liu K, Pal B, et al. Barcoding reveals complex clonal behavior in patient-derived xenografts of metastatic triple negative breast cancer. Nat Commun. 2019;10:766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science. 2016;353:78–82.

    Article  CAS  PubMed  Google Scholar 

  4. Salmén F, Vickovic S, Larsson L, Stenbeck L, Vallon-Christersson J, Ehinger A, et al. Multidimensional transcriptomics provides detailed information about immune cell distribution and identity in HER2+ breast tumors. bioRxiv. 2018;358937.

  5. Francavilla C, Rigbolt KTG, Emdal KB, Carraro G, Vernet E, Bekker-Jensen DB, et al. Functional proteomics defines the molecular switch underlying FGF receptor trafficking and cellular outputs. Mol Cell. 2013;51:707–22.

    Article  CAS  PubMed  Google Scholar 

  6. Piasecka D, Kitowska K, Czaplinska D, Mieczkowski K, Mieszkowska M, Turczyk L, et al. Fibroblast growth factor signalling induces loss of progesterone receptor in breast cancer cells. Oncotarget. 2016;7:86011–25.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Piasecka D, Braun M, Kitowska K, Mieczkowski K, Kordek R, Sadej R, et al. FGFs/FGFRs-dependent signalling in regulation of steroid hormone receptors - implications for therapy of luminal breast cancer. J Exp Clin Cancer Res CR. 2019;38:230.

    Article  PubMed  Google Scholar 

  8. Berto M, Jean V, Zwart W, Picard D. ERα activity depends on interaction and target site corecruitment with phosphorylated CREB1. Life Sci Alliance. 2018;1:e201800055.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Segala G, Bennesch MA, Ghahhari NM, Pandey DP, Echeverria PC, Karch F, et al. Vps11 and Vps18 of Vps-C membrane traffic complexes are E3 ubiquitin ligases and fine-tune signalling. Nat Commun. 2019;10:1833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K, et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol. 2007;9:1392–400.

    Article  CAS  PubMed  Google Scholar 

  11. Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, et al. Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol. 2013;15:637–46.

    Article  CAS  PubMed  Google Scholar 

  12. Calvo F, Ranftl R, Hooper S, Farrugia AJ, Moeendarbary E, Bruckbauer A, et al. Cdc42EP3/BORG2 and Septin network enables Mechano-transduction and the emergence of Cancer-associated fibroblasts. Cell Rep. 2015;13:2699–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duarte AA, Gogola E, Sachs N, Barazas M, Annunziato S, R de Ruiter J, et al. BRCA-deficient mouse mammary tumor organoids to study cancer-drug resistance. Nat Methods. 2018;15:134–40.

    Article  CAS  PubMed  Google Scholar 

  14. Gogola E, Duarte AA, de Ruiter JR, Wiegant WW, Schmid JA, de Bruijn R, et al. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell. 2018;33:1078–93 e12.

    Article  CAS  PubMed  Google Scholar 

  15. Noordermeer SM, Adam S, Setiaputra D, Barazas M, Pettitt SJ, Ling AK, et al. The shieldin complex mediates 53BP1-dependent DNA repair. Nature. 2018;560:117–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barazas M, Gasparini A, Huang Y, Küçükosmanoğlu A, Annunziato S, Bouwman P, et al. Radiosensitivity is an acquired vulnerability of PARPi-resistant BRCA1-deficient tumors. Cancer Res. 2019;79:452–60.

    Article  CAS  PubMed  Google Scholar 

  17. Acerbi I, Cassereau L, Dean I, Shi Q, Au A, Park C, et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr Biol Quant Biosci Nano Macro. 2015;7:1120–34.

    CAS  Google Scholar 

  18. Mohammadi H, Sahai E. Mechanisms and impact of altered tumour mechanics. Nat Cell Biol. 2018;20:766–74.

    Article  CAS  PubMed  Google Scholar 

  19. Mayorca-Guiliani AE, Madsen CD, Cox TR, Horton ER, Venning FA, Erler JT. ISDoT: in situ decellularization of tissues for high-resolution imaging and proteomic analysis of native extracellular matrix. Nat Med. 2017;23:890–8.

    Article  CAS  PubMed  Google Scholar 

  20. Northcott JM, Dean IS, Mouw JK, Weaver VM. Feeling stress: the mechanics of Cancer progression and aggression. Front Cell Dev Biol. 2018;6:17.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Simões BM, O’Brien CS, Eyre R, Silva A, Yu L, Sarmiento-Castro A, et al. Anti-estrogen resistance in human breast tumors is driven by JAG1-NOTCH4-dependent Cancer stem cell activity. Cell Rep. 2015;12:1968–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao Y, Hu Q, Cheng F, Su N, Wang A, Zou Y, et al. SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents. Cell Metab. 2015;21:777–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nelson CM. On Buckling Morphogenesis. J Biomech Eng. 2016;138:021005.

    Article  PubMed  Google Scholar 

  24. Pearl EJ, Li J, Green JBA. Cellular systems for epithelial invagination. Philos Trans R Soc B Biol Sci. 2017;372:20150526.

    Article  CAS  Google Scholar 

  25. Li J, Economou AD, Green JBA. Epithelial invagination by vertical telescoping. bioRxiv. 2019;515981.

  26. Izquierdo E, Quinkler T, De Renzis S. Guided morphogenesis through optogenetic activation of rho signalling during early Drosophila embryogenesis. Nat Commun. 2018;9:2366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krueger D, Tardivo P, Nguyen C, De Renzis S. Downregulation of basal myosin-II is required for cell shape changes and tissue invagination. EMBO J. 2018;37.

  28. Wuidart A, Ousset M, Rulands S, Simons BD, Van Keymeulen A, Blanpain C. Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes Dev. 2016;30:1261–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wuidart A, Sifrim A, Fioramonti M, Matsumura S, Brisebarre A, Brown D, et al. Early lineage segregation of multipotent embryonic mammary gland progenitors. Nat Cell Biol. 2018;20:666–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Santoro A, Vlachou T, Carminati M, Pelicci PG, Mapelli M. Molecular mechanisms of asymmetric divisions in mammary stem cells. EMBO Rep. 2016;17:1700–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Myllymäki S-M, Mikkola ML. Inductive signals in branching morphogenesis - lessons from mammary and salivary glands. Curr Opin Cell Biol. 2019;61:72–8.

    Article  CAS  PubMed  Google Scholar 

  32. Lloyd-Lewis B, Mourikis P, Fre S. Notch signalling: sensor and instructor of the microenvironment to coordinate cell fate and organ morphogenesis. Curr Opin Cell Biol. 2019;61:16–23.

    Article  CAS  PubMed  Google Scholar 

  33. Koledova Z, Sumbal J. A pleiotropic role for FGF signaling in mammary gland stromal fibroblasts. bioRxiv. 2019;565267.

  34. Lerche M, Elosegui-Artola A, Guzmán C, Georgiadou M, Kechagia JZ, Gullberg D, et al. Integrin binding dynamics modulate ligand-specific mechanosensing in mammary gland fibroblasts. bioRxiv. 2019;570721.

  35. Marusiak AA, Prelowska MK, Mehlich D, Lazniewski M, Kaminska K, Gorczynski A, et al. Upregulation of MLK4 promotes migratory and invasive potential of breast cancer cells. Oncogene. 2019;38:2860–75.

    Article  CAS  PubMed  Google Scholar 

  36. Koledova Z, Howard BA, Englund J, Bach K, Bentires-Alj M, Gonzalez-Suarez E. European network of breast development and Cancer turned 10 years: a growing family of mammary gland researchers. Breast Cancer Res BCR. 2018;20:102.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Xiomara Banholzer for help with the organization of the meeting.

Funding

Funding for the meeting was received from Krebsforschung Schweiz and Krebsliga Schweiz, Novartis, The Company of Biologists, Frontiers in Cell and Developmental Biology, Cytoskeleton Inc., and from European Association for Cancer Research. VV has been supported by the Swiss National Science Foundation, EP has been supported by Academy of Finland and Finnish Cultural foundation. MLM received funding from Academy of Finland, Cancer Foundation Finland, and Sigrid Juselius Foundation. Research in the MB-A laboratory is supported by the Swiss Initiative for Systems Biology- SystemsX, the European Research Council (grant no. 694033 STEM-BCPC), the Swiss National Science Foundation, Novartis, the Krebsliga Beider Basel, the Swiss Cancer League, the Swiss Personalized Health Network (Swiss Personalized Oncology driver project) and the Department of Surgery of the University Hospital Basel. ZK is supported by the Grant Agency of Masaryk University (grants no. MUNI/G/1446/2018 and MUNI/E/0519/2019).

Author information

Authors and Affiliations

Authors

Contributions

VV, EP, MLM, WTK, MB-A, and ZK wrote the manuscript. All authors approved the final manuscript.

Corresponding author

Correspondence to Zuzana Koledova.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

The manuscript has been read and approved by all authors, has not been published previously in print or electronic format, and is not under consideration by another publication or electronic medium. Consent for publication has been obtained from all the speakers.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vafaizadeh, V., Peuhu, E., Mikkola, M.L. et al. The Eleventh ENBDC Workshop: Advances in Technology Help to Unveil Mechanisms of Mammary Gland Development and Cancerogenesis. J Mammary Gland Biol Neoplasia 24, 201–206 (2019). https://doi.org/10.1007/s10911-019-09436-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-019-09436-0

Keywords

Navigation