Skip to main content

Long-Chain Omega-3 Polyunsaturated Fatty Acids Modulate Mammary Gland Composition and Inflammation

Abstract

Studies in rodents have shown that dietary modifications as mammary glands (MG) develop, regulates susceptibility to mammary tumor initiation. However, the effects of dietary PUFA composition on MGs in adult life, remains poorly understood. This study investigated morphological alterations and inflammatory microenvironments in the MGs of adult mice fed isocaloric and isolipidic liquid diets with varying compositions of omega (ω)-6 and long-chain (Lc)-ω3FA that were pair-fed. Despite similar consumption levels of the diets, mice fed the ω-3 diet had significantly lower body-weight gains, and abdominal-fat and mammary fat pad (MFP) weights. Fatty acid analysis showed significantly higher levels of Lc-ω-3FAs in the MFPs of mice on the ω-3 diet, while in the MFPs from the ω-6 group, Lc-ω-3FAs were undetectable. Our study revealed that MGs from ω-3 group had a significantly lower ductal end-point density, branching density, an absence of ductal sprouts, a thinner ductal stroma, fewer proliferating epithelial cells and a lower transcription levels of estrogen receptor 1 and amphiregulin. An analysis of the MFP and abdominal-fat showed significantly smaller adipocytes in the ω-3 group, which was accompanied by lower transcription levels of leptin, IGF1, and IGF1R. Further, MFPs from the ω-3 group had significantly decreased numbers and sizes of crown-like-structures (CLS), F4/80+ macrophages and decreased expression of proinflammatory mediators including Ptgs2, IL6, CCL2, TNFα, NFκB, and IFNγ. Together, these results support dietary Lc-ω-3FA regulation of MG structure and density and adipose tissue inflammation with the potential for dietary Lc-ω-3FA to decrease the risk of mammary gland tumor formation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

AA:

Arachidonic acid

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

FA:

Fatty acid

IGF:

Insulin like growth factor

Lc:

Long-chain

MFP:

Mammary fat pad

MG:

Mammary gland

MUFA:

Monounsaturated fatty acid

PUFA:

Polyunsaturated fatty acid

qRT-PCR:

Quantitative real-time polymerase chain reaction

SFA:

Saturated Fatty Acid

SPF:

Specific pathogen free

TEB:

Terminal end bud

References

  1. 1.

    Olson LK, Tan Y, Zhao Y, Aupperlee MD, Haslam SZ. Pubertal exposure to high fat diet causes mouse strain-dependent alterations in mammary gland development and estrogen responsiveness. Int J Obes. 2010;34(9):1415–26.

    CAS  Google Scholar 

  2. 2.

    Fasano E, et al. Long-chain n-3 PUFA against breast and prostate cancer: which are the appropriate doses for intervention studies in animals and humans? Crit Rev Food Sci Nutr. 2015;57(11):2245–62.

    Google Scholar 

  3. 3.

    Hilakivi-Clarke L, Clarke R, Onojafe I, Raygada M, Cho E, Lippman M. A maternal diet high in n - 6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci U S A. 1997;94(17):9372–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Hilakivi-Clarke L, Olivo SE, Shajahan A, Khan G, Zhu Y, Zwart A, et al. Mechanisms mediating the effects of prepubertal (n-3) polyunsaturated fatty acid diet on breast cancer risk in rats. J Nutr. 2005;135(12 Suppl):2946S–52S.

    CAS  PubMed  Google Scholar 

  5. 5.

    MacLennan MB, Anderson BM, Ma DW. Differential mammary gland development in FVB and C57Bl/6 mice: implications for breast cancer research. Nutrients. 2011;3(11):929–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Anderson BM, MacLennan MB, Hillyer LM, Ma DWL. Lifelong exposure to n-3 PUFA affects pubertal mammary gland development. Appl Physiol Nutr Metab. 2014;39(6):699–706.

    CAS  PubMed  Google Scholar 

  7. 7.

    Zhu Z, Jiang W, McGinley JN, Prokopczyk B, Richie JP, el Bayoumy K, et al. Mammary gland density predicts the cancer inhibitory activity of the N-3 to N-6 ratio of dietary fat. Cancer Prev Res (Phila). 2011;4(10):1675–85.

    CAS  Google Scholar 

  8. 8.

    Hilakivi-Clarke L. Nutritional modulation of terminal end buds: its relevance to breast cancer prevention. Curr Cancer Drug Targets. 2007;7(5):465–74.

    CAS  PubMed  Google Scholar 

  9. 9.

    Davis CD, Uthus EO. DNA methylation, cancer susceptibility, and nutrient interactions. Exp Biol Med (Maywood). 2004;229(10):988–95.

    CAS  Google Scholar 

  10. 10.

    Maller O, Martinson H, Schedin P. Extracellular matrix composition reveals complex and dynamic stromal-epithelial interactions in the mammary gland. J Mammary Gland Biol Neoplasia. 2010;15(3):301–18.

    PubMed  Google Scholar 

  11. 11.

    Iyengar NM, Hudis CA, Dannenberg AJ. Obesity and inflammation: new insights into breast cancer development and progression. Am Soc Clin Oncol Educ Book. 2013;33:46–51.

    PubMed Central  Google Scholar 

  12. 12.

    Hovey RC, Aimo L. Diverse and active roles for adipocytes during mammary gland growth and function. J Mammary Gland Biol Neoplasia. 2010;15(3):279–90.

    PubMed  PubMed Central  Google Scholar 

  13. 13.

    Berger NA. Crown-like structures in breast adipose tissue from normal weight women: important impact. Cancer Prev Res. 2017;10(4):223–5.

    Google Scholar 

  14. 14.

    Couldrey C, Moitra J, Vinson C, Anver M, Nagashima K, Green J. Adipose tissue: a vital in vivo role in mammary gland development but not differentiation. Dev Dyn. 2002;223(4):459–68.

    PubMed  Google Scholar 

  15. 15.

    MacLennan M, Ma DW. Role of dietary fatty acids in mammary gland development and breast cancer. Breast Cancer Res. 2010;12(5):211.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Olivo SE, Hilakivi-Clarke L. Opposing effects of prepubertal low- and high-fat n-3 polyunsaturated fatty acid diets on rat mammary tumorigenesis. Carcinogenesis. 2005;26(9):1563–72.

    CAS  PubMed  Google Scholar 

  17. 17.

    Khadge S, Sharp JG, Thiele GM, McGuire TR, Klassen LW, Duryee MJ, et al. Dietary omega-3 and omega-6 polyunsaturated fatty acids modulate hepatic pathology. J Nutr Biochem. 2018;52:92–102.

    CAS  PubMed  Google Scholar 

  18. 18.

    Sealls W, Gonzalez M, Brosnan MJ, Black PN, DiRusso CC. Dietary polyunsaturated fatty acids (C18:2 omega6 and C18:3 omega3) do not suppress hepatic lipogenesis. Biochim Biophys Acta. 2008;1781(8):406–14.

    CAS  PubMed  Google Scholar 

  19. 19.

    Gonzalez M, Sealls W, Jesch ED, Brosnan MJ, Ladunga I, Ding X, et al. Defining a relationship between dietary fatty acids and the cytochrome P450 system in a mouse model of fatty liver disease. Physiol Genomics. 2011;43(3):121–35.

    CAS  PubMed  Google Scholar 

  20. 20.

    Blacher S, Gérard C, Gallez A, Foidart JM, Noël A, Péqueux C. Quantitative assessment of mouse mammary gland morphology using automated digital image processing and TEB detection. Endocrinology. 2016;157(4):1709–16.

    CAS  PubMed  Google Scholar 

  21. 21.

    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 2001;25(4):402–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Belzung F, Raclot T, Groscolas R. Fish oil n-3 fatty acids selectively limit the hypertrophy of abdominal fat depots in growing rats fed high-fat diets. Am J Phys. 1993;264(6 Pt 2):R1111–8.

    CAS  Google Scholar 

  23. 23.

    Peyron-Caso E, Quignard-Boulangé A, Laromiguière M, Feing-Kwong-Chan S, Véronèse A, Ardouin B, et al. Dietary fish oil increases lipid mobilization but does not decrease lipid storage-related enzyme activities in adipose tissue of insulin-resistant, sucrose-fed rats. J Nutr. 2003;133(7):2239–43.

    CAS  PubMed  Google Scholar 

  24. 24.

    Casado-Diaz A, et al. The omega-6 arachidonic fatty acid, but not the omega-3 fatty acids, inhibits osteoblastogenesis and induces adipogenesis of human mesenchymal stem cells: potential implication in osteoporosis. Osteoporos Int. 2013;24(5):1647–61.

    CAS  PubMed  Google Scholar 

  25. 25.

    Massaro M, Habib A, Lubrano L, Turco SD, Lazzerini G, Bourcier T, et al. The omega-3 fatty acid docosahexaenoate attenuates endothelial cyclooxygenase-2 induction through both NADP(H) oxidase and PKC epsilon inhibition. Proc Natl Acad Sci U S A. 2006;103(41):15184–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Ukropec J, Reseland JE, Gasperikova D, Demcakova E, Madsen L, Berge RK, et al. The hypotriglyceridemic effect of dietary n-3 FA is associated with increased beta-oxidation and reduced leptin expression. Lipids. 2003;38(10):1023–9.

    CAS  PubMed  Google Scholar 

  27. 27.

    Wójcik C, Lohe K, Kuang C, Xiao Y, Jouni Z, Poels E. Modulation of adipocyte differentiation by omega-3 polyunsaturated fatty acids involves the ubiquitin-proteasome system. J Cell Mol Med. 2014;18(4):590–9.

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Brenna JT. Efficiency of conversion of alpha-linolenic acid to long chain n-3 fatty acids in man. Curr Opin Clin Nutr Metab Care. 2002;5(2):127–32.

    CAS  PubMed  Google Scholar 

  29. 29.

    Zhu ZR, Ågren J, Männistö S, Pietinen P, Eskelinen M, Syrjänen K, et al. Fatty acid composition of breast adipose tissue in breast cancer patients and in patients with benign breast disease. Nutr Cancer. 1995;24(2):151–60.

    CAS  PubMed  Google Scholar 

  30. 30.

    Bagga D, Anders KH, Wang HJ, Glaspy JA. Long-chain n-3-to-n-6 polyunsaturated fatty acid ratios in breast adipose tissue from women with and without breast cancer. Nutr Cancer. 2002;42(2):180–5.

    CAS  PubMed  Google Scholar 

  31. 31.

    Palomer X, et al. Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends Endocrinol Metab. 29(3):178–90.

    CAS  Google Scholar 

  32. 32.

    Hilakivi-Clarke L, Stoica A, Raygada M, Martin MB. Consumption of a high-fat diet alters estrogen receptor content, protein kinase C activity, and mammary gland morphology in virgin and pregnant mice and female offspring. Cancer Res. 1998;58(4):654–60.

    CAS  PubMed  Google Scholar 

  33. 33.

    Hilakivi-Clarke L, Cho E, Cabanes A, DeAssis S, Olivo S, Helferich W, et al. Dietary modulation of pregnancy estrogen levels and breast cancer risk among female rat offspring. Clin Cancer Res. 2002;8(11):3601–10.

    CAS  PubMed  Google Scholar 

  34. 34.

    McGinley JN, Thompson HJ. Quantitative assessment of mammary gland density in rodents using digital image analysis. Biol Proced Online. 2011;13(1):4.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    McCormack VA, dos Santos Silva I. Breast density and parenchymal patterns as markers of breast Cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev. 2006;15(6):1159–69.

    Google Scholar 

  36. 36.

    Sandhu, N., Schetter S.E., Liao J., Hartman T.J., Richie J.P., McGinley J., Thompson H.J., Prokopczyk B., DuBrock C., Signori C., Hamilton C., Calcagnotto A., Trushin N., Aliaga C., Demers L.M., El-Bayoumy K., Manni A., Influence of obesity on breast density reduction by omega-3 fatty acids: evidence from a randomized clinical trial. Cancer Prev Res, April 1 2016 (9) (4) 275–282.

    PubMed  Google Scholar 

  37. 37.

    Wolfson B, et al. A high-fat diet promotes mammary gland Myofibroblast differentiation through MicroRNA 140 downregulation. Mol Cell Biol. 2017;37(4):e00461–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Xue L, Newmark H, Yang K, Lipkin M. Model of mouse mammary gland hyperproliferation and hyperplasia induced by a western-style diet. Nutr Cancer. 1996;26(3):281–7.

    CAS  PubMed  Google Scholar 

  39. 39.

    Hidaka BH, Li S, Harvey KE, Carlson SE, Sullivan DK, Kimler BF, et al. Omega-3 and Omega-6 fatty acids in blood and breast tissue of high-risk women and association with atypical Cytomorphology. Cancer Prev Res. 2015;8(5):359–64.

    CAS  Google Scholar 

  40. 40.

    Fabian CJ, et al. Modulation of Breast Cancer Risk Biomarkers by High Dose Omega-3 Fatty Acids: Phase II Pilot Study in Pre-menopausal Women. Cancer Prev Res (Phila). 2015;8(10):922–31.

    CAS  PubMed Central  Google Scholar 

  41. 41.

    Yee LD, et al. The inhibition of early stages of HER-2/neu-mediated mammary carcinogenesis by dietary n-3 polyunsaturated fatty acids. Mol Nutr Food Res. 2013;57(2) https://doi.org/10.1002/mnfr.201200445.

    Google Scholar 

  42. 42.

    Manni A, Richie JP Jr, Xu H, Washington S, Aliaga C, Bruggeman R, et al. Influence of omega-3 fatty acids on tamoxifen-induced suppression of rat mammary carcinogenesis. Int J Cancer. 2014;134(7):1549–57.

    CAS  PubMed  Google Scholar 

  43. 43.

    Cunha GR, Young P, Hom YK, Cooke PS, Taylor JA, Lubahn DB. Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants. J Mammary Gland Biol Neoplasia. 1997;2(4):393–402.

    CAS  PubMed  Google Scholar 

  44. 44.

    Mueller SO, Clark JA, Myers PH, Korach KS. Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha. Endocrinology. 2002;143(6):2357–65.

    CAS  PubMed  Google Scholar 

  45. 45.

    Ciarloni L, Mallepell S, Brisken C. Amphiregulin is an essential mediator of estrogen receptor α function in mammary gland development. Proc Natl Acad Sci. 2007;104(13):5455–60.

    CAS  PubMed  Google Scholar 

  46. 46.

    Kenney NJ, Smith GH, Rosenberg K, Cutler ML, Dickson RB. Induction of ductal morphogenesis and lobular hyperplasia by amphiregulin in the mouse mammary gland. Cell Growth Differ. 1996;7(12):1769–81.

    CAS  PubMed  Google Scholar 

  47. 47.

    Ruan W, Monaco ME, Kleinberg DL. Progesterone stimulates mammary gland ductal morphogenesis by synergizing with and enhancing insulin-like growth factor-I action. Endocrinology. 2005;146(3):1170–8.

    CAS  PubMed  Google Scholar 

  48. 48.

    Hadsell DL, Bonnette SG. IGF and insulin action in the mammary gland: lessons from transgenic and knockout models. J Mammary Gland Biol Neoplasia. 2000;5(1):19–30.

    CAS  PubMed  Google Scholar 

  49. 49.

    Drolet R, Richard C, Sniderman AD, Mailloux J, Fortier M, Huot C, et al. Hypertrophy and hyperplasia of abdominal adipose tissues in women. Int J Obes. 2008;32(2):283–91.

    CAS  Google Scholar 

  50. 50.

    LeMieux MJ, Kalupahana NS, Scoggin S, Moustaid-Moussa N. Eicosapentaenoic acid reduces adipocyte hypertrophy and inflammation in diet-induced obese mice in an adiposity-independent manner. J Nutr. 2015;145(3):411–7.

    CAS  PubMed  Google Scholar 

  51. 51.

    Obst BE, Schemmel RA, Czajka-Narins D, Merkel R. Adipocyte size and number in dietary obesity resistant and susceptible rats. Am J Physiol Endocrinol Metab. 1981;240(1):E47–53.

    CAS  Google Scholar 

  52. 52.

    Haramizu S, Nagasawa A, Ota N, Hase T, Tokimitsu I, Murase T. Different contribution of muscle and liver lipid metabolism to endurance capacity and obesity susceptibility of mice. J Appl Physiol (1985). 2009;106(3):871–9.

    CAS  Google Scholar 

  53. 53.

    Buckley JD, Howe PRC. Long-chain Omega-3 polyunsaturated fatty acids may be beneficial for reducing obesity—a review. Nutrients. 2010;2(12):1212–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Mori T, Kondo H, Hase T, Tokimitsu I, Murase T. Dietary fish oil upregulates intestinal lipid metabolism and reduces body weight gain in C57BL/6J mice. J Nutr. 2007;137(12):2629–34.

    CAS  PubMed  Google Scholar 

  55. 55.

    Flachs P, Horakova O, Brauner P, Rossmeisl M, Pecina P, Franssen-van Hal N, et al. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce beta-oxidation in white fat. Diabetologia. 2005;48(11):2365–75.

    CAS  PubMed  Google Scholar 

  56. 56.

    Ailhaud G, et al. Temporal changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Prog Lipid Res. 2006;45(3):203–36.

    CAS  PubMed  Google Scholar 

  57. 57.

    Massiera F, Barbry P, Guesnet P, Joly A, Luquet S, Moreilhon-Brest C, et al. A western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations. J Lipid Res. 2010;51(8):2352–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Gaillard D, Négrel R, Lagarde M, Ailhaud G. Requirement and role of arachidonic acid in the differentiation of pre-adipose cells. Biochem J. 1989;257(2):389–97.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Kim HK, Della-Fera MA, Lin J, Baile CA. Docosahexaenoic acid inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 preadipocytes. J Nutr. 2006;136(12):2965–9.

    CAS  PubMed  Google Scholar 

  60. 60.

    Kalupahana NS, Claycombe K, Newman SJ, Stewart T, Siriwardhana N, Matthan N, et al. Eicosapentaenoic acid prevents and reverses insulin resistance in high-fat diet-induced obese mice via modulation of adipose tissue inflammation. J Nutr. 2010;140(11):1915–22.

    CAS  PubMed  Google Scholar 

  61. 61.

    Skurk T, Alberti-Huber C, Herder C, Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab. 2007;92(3):1023–33.

    CAS  PubMed  Google Scholar 

  62. 62.

    Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med. 1995;1(12):1311–4.

    CAS  PubMed  Google Scholar 

  63. 63.

    Meilleur KG, Doumatey A, Huang H, Charles B, Chen G, Zhou J, et al. Circulating adiponectin is associated with obesity and serum lipids in west Africans. J Clin Endocrinol Metab. 2010;95(7):3517–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Meyer LK, Ciaraldi TP, Henry RR, Wittgrove AC, Phillips SA. Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity. Adipocytes. 2013;2(4):217–26.

    CAS  Google Scholar 

  65. 65.

    Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Kim EJ, Choi MR, Park H, Kim M, Hong JE, Lee JY, et al. Dietary fat increases solid tumor growth and metastasis of 4T1 murine mammary carcinoma cells and mortality in obesity-resistant BALB/c mice. Breast Cancer Res. 2011;13(4):R78.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Pérez-Matute P, Pérez-Echarri N, Martínez JA, Marti A, Moreno-Aliaga MJ. Eicosapentaenoic acid actions on adiposity and insulin resistance in control and high-fat-fed rats: role of apoptosis, adiponectin and tumour necrosis factor-α. Br J Nutr. 2007;97(2):389–98.

    PubMed  Google Scholar 

  68. 68.

    Neschen S, Morino K, Rossbacher JC, Pongratz RL, Cline GW, Sono S, et al. Fish oil regulates adiponectin secretion by a peroxisome proliferator-activated receptor-gamma-dependent mechanism in mice. Diabetes. 2006;55(4):924–8.

    CAS  PubMed  Google Scholar 

  69. 69.

    Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengman ML, Wang DJ, et al. Leptin regulates proinflammatory immune responses. FASEB J. 1998;12(1):57–65.

    CAS  PubMed  Google Scholar 

  70. 70.

    Hu X, et al. Leptin--a growth factor in normal and malignant breast cells and for normal mammary gland development. J Natl Cancer Inst. 2002;94(22):1704–11.

    CAS  PubMed  Google Scholar 

  71. 71.

    Sjögren K, et al. Liver-derived insulin-like growth factor I (IGF-I) is the principal source of IGF-I in blood but is not required for postnatal body growth in mice. Proc Natl Acad Sci U S A. 1999;96(12):7088–92.

    PubMed  PubMed Central  Google Scholar 

  72. 72.

    Chang HR, Kim HJ, Xu X, Ferrante AW Jr. Macrophage and adipocyte IGF1 maintain adipose tissue homeostasis during metabolic stresses. Obesity (Silver Spring). 2016;24(1):172–83.

    CAS  Google Scholar 

  73. 73.

    Spadaro O, et al. IGF1 Shapes Macrophage Activation in Response to Immunometabolic Challenge. Cell Rep. 19(2):225–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Richert MM, Wood TL. The insulin-like growth factors (IGF) and IGF type I receptor during postnatal growth of the murine mammary gland: sites of messenger ribonucleic acid expression and potential functions. Endocrinology. 1999;140(1):454–61.

    CAS  PubMed  Google Scholar 

  75. 75.

    Jones RA, Campbell CI, Gunther EJ, Chodosh LA, Petrik JJ, Khokha R, et al. Transgenic overexpression of IGF-IR disrupts mammary ductal morphogenesis and induces tumor formation. Oncogene. 2007;26(11):1636–44.

    CAS  PubMed  Google Scholar 

  76. 76.

    Tamimi RM, Colditz GA, Wang Y, Collins LC, Hu R, Rosner B, et al. Expression of IGF1R in normal breast tissue and subsequent risk of breast cancer. Breast Cancer Res Treat. 2011;128(1):243–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000;127(11):2269–82.

    CAS  PubMed  Google Scholar 

  78. 78.

    Iyengar NM, Brown KA, Zhou XK, Gucalp A, Subbaramaiah K, Giri DD, et al. Metabolic obesity, adipose inflammation and elevated breast aromatase in women with normal body mass index. Cancer Prev Res. 2017;10(4):235–43.

    CAS  Google Scholar 

  79. 79.

    Iyengar NM, Morris PG, Zhou XK, Gucalp A, Giri D, Harbus MD, et al. Menopause is a determinant of breast adipose inflammation. Cancer Prev Res. 2015;8(5):349–58.

    CAS  Google Scholar 

  80. 80.

    Monk JM, Liddle DM, de Boer AA, Brown MJ, Power KA, Ma DWL, et al. Fish-oil–derived n–3 PUFAs reduce inflammatory and chemotactic Adipokine-mediated cross-talk between co-cultured murine splenic CD8+ T cells and adipocytes. J Nutr. 2015;145(4):829–38.

    CAS  PubMed  Google Scholar 

  81. 81.

    Sun X, Glynn DJ, Hodson LJ, Huo C, Britt K, Thompson EW, et al. CCL2-driven inflammation increases mammary gland stromal density and cancer susceptibility in a transgenic mouse model. Breast Cancer Res: BCR. 2017;19:4.

    PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to James E. Talmadge.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Support

We gratefully acknowledge funding from the Fred & Pamela Buffett Cancer Center’s NIH Cancer Center Support Grant (P30CA036727) for this project. Also, funding from the UNMC College of Medicine (LWK) Endowed Chair.

Additional information

Highlights

• Dietary long-chain omega-3 fatty acids (Lc-ω-3FAs) modulate mammary ductal end-point density and branching density in adult mice compared to mice receiving a high ω-6 FA containing diet.

• Dietary Lc-ω-3FAs downregulate the levels of proinflammatory cytokines, adipokines and growth factors and their receptors in association with decreased epithelial cell proliferation as compared to mice maintained on a high omega-6 (ω −6) FA containing diet

• Dietary Lc-ω-3FAs regulate the mammary fat pad (MFP) FA profile and is associated with adipocyte hypertrophy

• Dietary Lc-ω-3FAs decrease MG and abdominal adipose tissue inflammation relative to mice receiving a high ω-6 FA containing diet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khadge, S., Thiele, G.M., Sharp, J.G. et al. Long-Chain Omega-3 Polyunsaturated Fatty Acids Modulate Mammary Gland Composition and Inflammation. J Mammary Gland Biol Neoplasia 23, 43–58 (2018). https://doi.org/10.1007/s10911-018-9391-5

Download citation

Keywords

  • Diet
  • PUFA
  • Omega-3
  • Mammary gland
  • Fish oil
  • Mammary gland-density