Variation of Human Milk Glucocorticoids over 24 hour Period

Abstract

Human milk (HM) contains a complex array of hormones, including members of the glucocorticoid family. The predominant glucocorticoids, cortisol and cortisone may influence the growth and behaviour of the breastfed infant. However, little is understood of the factors regulating the levels of these hormones within HM. The aim of the study was to examine HM cortisol and cortisone concentration, measured in samples collected at each feed during a 24 hour period. Twenty three exclusively breastfeeding mothers collected milk, prior to and after each breastfeeding session over 24 hour period at 3.2(1.60) months. HM cortisol and cortisone levels were measured using high pressure liquid chromatography mass spectroscopy. Cortisone was the predominant glucocorticoid (3.40 ng/ml), and cortisol was detected in all samples (1.62 ng/ml). A positive correlation was found between cortisone and cortisol (r = 0.61, y = 1.93 ± 0.24, p < 0.0001). Cortisol and cortisone concentrations were significantly higher in feeds in the morning (2.97 ng/ml and 4.88 ng/ml), compared to afternoon (1.20 ng/ml and 3.54 ng/ml), evening (0.69 ng/ml and 2.13 ng/ml) and night (1.59 and 3.27 ng/ml). No difference was found between glucocorticoids level of the milk expressed for collection either before or immediately after the breastfeed, or between milk collected from the left or right breast. This study shows that HM glucocorticoid concentrations exhibit a 24 hour pattern, with highest peak levels in the early morning, reflecting the circadian pattern as previously reported in plasma. Thus, HM glucocorticoid concentrations are likely to reflect those in the maternal circulation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin N Am. 2013;60(1):49–74.

    Article  Google Scholar 

  2. 2.

    Hinde K, Skibiel AL, Foster AB, Del Rosso L, Mendoza SP, Capitanio JP. Cortisol in mother’s milk across lactation reflects maternal life history and predicts infant temperament. Behav Ecol. 2015;26(1):269–81.

    Article  PubMed  Google Scholar 

  3. 3.

    Neville MC, Allen JC, Archer PC, Casey CE, Seacat J, Keller RP, et al. Studies in human lactation: milk volume and nutrient composition during weaning and lactogenesis. Am J Clin Nutr. 1991;54(1):81–92.

    CAS  PubMed  Google Scholar 

  4. 4.

    German JB, Freeman SL, Lebrilla CB, Mills DA. Human milk oligosaccharides: evolution, structures and bioselectivity as substrates for intestinal bacteria. Nestle Nutr Workshop Ser Pediatr Program. 2008;62:205–22.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Chan S, Debono M. Replication of cortisol circadian rhythm: new advances in hydrocortisone replacement therapy. Ther Adv Endocrinol Metab. 2010;1(3):129–38.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Grosvenor CE, Picciano MF, Baumrucker CR. Hormones and growth factors in milk. Endocr Rev. 1993;14(6):710–28.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Grey KR, Davis EP, Sandman CA, Glynn LM. Human milk cortisol is associated with infant temperament. Psychoneuroendocrinology. 2013;38(7):1178–85.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Tucker HA. Hormones, mammary growth, and lactation: a 41-year perspective. J Dairy Sci. 2000;83(4):874–84.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Brisken C, O’Malley B. Hormone action in the mammary gland. Cold Spring Harb Perspect Biol. 2010;2(12):3178.

    Article  Google Scholar 

  10. 10.

    Khani S, Tayek JA. Cortisol increases gluconeogenesis in humans: its role in the metabolic syndrome. Clin Sci. 2001;101:739–47.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Catalani A, Casolini P, Cigliana G, Scaccianoce S, Consoli C, Cinque C, et al. Maternal corticosterone influences behavior, stress response and corticosteroid receptors in the female rat. Pharmacol Biochem Behav. 2002;73(1):105–14.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Hahn-Holbrook J, Le TB, Chung A, Davis EP, Glynn LM. Cortisol in human milk predicts child BMI. Obesity. 2016;24(12):2471–4.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Sullivan EC, Hinde K, Mendoza SP, Capitanio JP. Cortisol concentrations in the milk of rhesus monkey mothers are associated with confident temperament in sons, but not daughters. Dev Psychobiol. 2011;53(1):96–104.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Hart S, Boylan LM, Border B, Carroll SR, McGunegle D, Lampe RM. Breast milk levels of cortisol and secretory immunoglobulin a (SIgA) differ with maternal mood and infant neuro-behavioral functioning. Infant Behav Dev. 2004;27(1):101–6.

    Article  Google Scholar 

  15. 15.

    Cubero J, Valero V, Sánchez J, Rivero M, Parvez H, Rodríguez AB, et al. The circadian rhythm of tryptophan in breast milk affects the rhythms of 6-sulfatoxymelatonin and sleep in newborn. Neuro Endocrinol Lett. 2005;26(6):657–61.

    CAS  PubMed  Google Scholar 

  16. 16.

    Mitoulas LR, Kent JC, Cox DB, Owens RA, Sherriff JL, Hartmann PE. Variation in fat, lactose and protein in human milk over 24 h and throughout the first year of lactation. Br J Nutr. 2002;88(1):29–37.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Khan S, Hepworth AR, Prime DK, Lai CT, Trengove NJ, Hartmann PE. Variation in fat, lactose, and protein composition in breast milk over 24 hours: associations with infant feeding patterns. J Hum Lact. 2013;29(1):81–9.

    Article  PubMed  Google Scholar 

  18. 18.

    Kent JC, Mitoulas LR, Cregan MD, Ramsay DT, Doherty DA, Hartmann PE. Volume and frequency of breastfeedings and fat content of breast milk throughout the day. Pediatrics. 2006;117(3):387–95.

    Article  Google Scholar 

  19. 19.

    Katzer D, Pauli L, Mueller A, Reutter H, Reinsberg J, Fimmers R, et al. Melatonin concentrations and antioxidative capacity of human breast milk according to gestational age and the time of day. J Hum Lact. 2016;32(4):NP105–110.

  20. 20.

    Van der voorn B, de Waard M, van Goudoever JB, Rotteveel J, Heijboer AC, Finken MJ. Breast-milk cortisol and cortisone concentrations follow the diurnal rhythm of maternal hypothalamus-pituitary-adrenal axis activity. J Nutr. 2016;146(11):2174–9.

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Copinschi G, Challet E. Endocrine rhythms, the sleep-wake cycle, and biological clocks. In: Jameson JL, De Groot LJ, de Kretser DM, Giudice LC, Grossman AB, Melmed S, Potts JT, Weir GC WBS, editors. Endocrinology: adult and pediatric. 7th ed. Philadelphia: Elsevier; 2016. p. 147–173.

  22. 22.

    Dickmeis T. Glucocorticoids and the circadian clock. J Endocrinol. 2009;200(1):3–22.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism. 2011;60:1500–10.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Hausman Kedem M, Mandel D, Domani KA, Mimouni FB, Shay V, Marom R, et al. The effect of advanced maternal age upon human milk fat content. Breastfeed Med. 2013;8(1):116–9.

    Article  PubMed  Google Scholar 

  25. 25.

    Barrett KE, Ganong WF. Ganong’s review of medical physiology. 15th ed. New York: McGraw-Hill Medical; 2012.

    Google Scholar 

  26. 26.

    Verkerk GA, Phipps AM, Matthews LR. Milk cortisol concentrations as an indicator of stress in lactating dairy cows. Proc N Z Soc Anim Prod. 1996;56:77–9.

    Google Scholar 

  27. 27.

    Engstrom JL, Meier PP, Jegier B, Motykowski JE, Zuleger JL. Comparison of milk output from the right and left breasts during simultaneous pumping in mothers of very low birthweight infants. Breastfeed Med. 2007;2(2):83–91.

    Article  PubMed  Google Scholar 

  28. 28.

    Cannon AM, Kakulas F, Hepworth AR, Lai CT, Hartmann PE, Geddes DT. The effects of leptin on breastfeeding behaviour. Int J Environ Res Public Health. 2015;12(10):12340–55.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Heinrichs M, Neumann I, Ehlert U. Lactation and stress: protective effects of breast-feeding in humans. Stress. 2002;5(3):195–203.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Nissen E, Uvnäs-Moberg K, Svensson K, Stock S, Widström AM, Winberg J. Different patterns of oxytocin, prolactin but not cortisol release during breastfeeding in women delivered by caesarean section or by the vaginal route. Early Hum Dev. 1996;45(1–2):103–18.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Amico JA, Johnston JM, Vagnucci AH. Suckling-induced attenuation of plasma cortisol concentrations in postpartum lactating women. Endocr Res. 1994;20(1):79–87.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Ramsay DT, Hartmann PE. Milk removal from the breast. Breastfeed Rev. 2005;13(1):5–7.

    PubMed  Google Scholar 

  33. 33.

    Khan S, Prime DK, Hepworth AR, Lai CT, Trengove NJ, Hartmann PE. Investigation of short-term variations in term breast milk composition during repeated breast expression sessions. J Hum Lact. 2013;29(2):196–204.

    Article  PubMed  Google Scholar 

  34. 34.

    Ettyang GA, van Marken Lichtenbelt WD, Esamai F, Saris WHM, Westerterp KR. Assessment of body composition and breast milk volume in lactating mothers in pastoral communities in Pokot, Kenya, using deuterium oxide. Ann Nutr Metab. 2005;49(2):110–7.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Miller EM, Aiello MO, Fujita M, Hinde K, Milligan L, Quinn EA. Field and laboratory methods in human milk research. Am J Hum Biol. 2013;25(1):1–11.

    Article  PubMed  Google Scholar 

  36. 36.

    Gong S, Miao YL, Jiao GZ, Sun MJ, Li H, Lin J, et al. Dynamics and correlation of serum cortisol and corticosterone under different physiological or stressful conditions in mice. PLoS One. 2015;10(2):117503.

    Google Scholar 

  37. 37.

    Morita H, Isomura Y, Mune T, Daido H, Takami R, Yamakita N, et al. Plasma cortisol and cortisone concentrations in normal subjects and patients with adrenocortical disorders. Metabolism. 2004;53(1):89–94.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Chen DC, Nommsen-Rivers L, Dewey KG, Lönnerdal B. Stress during labor and delivery and early lactation performance. Am J Clin Nutr. 1998;68(4):335–44.

    CAS  PubMed  Google Scholar 

  39. 39.

    Chida D, Miyoshi K, Sato T, Yoda T, Kikusui T, Iwakura Y. The role of glucocorticoids in pregnancy, parturition, lactation, and nurturing in melanocortin receptor 2-deficient mice. Endocrinology. 2011;152(4):1652–60.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Powe CE, Knott CD, Conklin-Brittain N. Infant sex predicts breast milk energy content. Am J Hum Biol. 2010;22(1):50–4.

    Article  PubMed  Google Scholar 

  41. 41.

    Hinde K. Lactational programming of infant behavioral phenotype. In: Clancy KBH, Hinde K, Rutherford JN, editors. Building babies. New York: Springer New York; 2013. p. 187–207.

    Google Scholar 

  42. 42.

    Van Cauter E, Leproult R, Kupfer DJ. Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J Clin Endocrinol Metab. 1996;81(7):2468–73.

    CAS  PubMed  Google Scholar 

  43. 43.

    Kajantie E, Phillips DIW. The effects of sex and hormonal status on the physiological response to acute psychosocial stress. Psychoneuroendocrinology. 2006;31(2):151–78.

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Van der Voorn B, Martens F, Peppelman NS, Rotteveel J, Blankenstein MA, Finken MJJ, et al. Determination of cortisol and cortisone in human mother’s milk. Clin Chim Acta. 2015;444(0):154–5.

    Article  PubMed  Google Scholar 

  45. 45.

    Ju Bae Y, Gaudl A, Jaeger S, Stadelmann S, Hiemisch A, Kiess W, et al. Immunoassay or LC-MS/MS for the measurement of salivary cortisol in children? Clin Chem Lab Med. 2016;54(5):811–22.

    PubMed  Google Scholar 

  46. 46.

    Matsui F, Koh E, Yamamoto K, Sugimoto K, Sin H-S, Maeda Y, et al. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for simultaneous measurement of salivary testosterone and cortisol in healthy men for utilization in the diagnosis of late-onset hypogonadism in males. Endocr J. 2009;56(9):1083–93.

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Guo T, Chan M, Soldin SJ. Steroid profiles using liquid chromatography-tandem mass spectrometry with atmospheric pressure photoionization source. Arch Pathol Lab Med. 2004;128(4):469–75.

    PubMed  Google Scholar 

  48. 48.

    Carrozza C, Lapolla R, Gervasoni J, Rota CA, Locantore P, Pontecorvi A, et al. Assessment of salivary free cortisol levels by liquid chromatography with tandemass spectrometry (LC-MS/MS) in patients treated with mitotane. Hormones. 2012;11(3):344–9.

    Article  PubMed  Google Scholar 

  49. 49.

    Panda S, Hogenesch JB, Kay SA. Circadian rhythms from flies to human. Nature. 2002;417(6886):329–35.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank the research team and mothers for the kind donation of breast milk used in the current study.

S.P. carried out laboratory analysis and data interpretation and drafted manuscript. E.B.T developed the MS method and oversaw the laboratory work. C.R.W and C.J.M assisted with statistical analysis and contributed to the manuscript development. D.T.G and C.T.L provided samples and contributed to the manuscript development. D.C.S designed research question and supervised all aspects of the study. All authors approve the submission of this manuscript for peer review.

Author information

Affiliations

Authors

Corresponding author

Correspondence to David Cameron-Smith.

Ethics declarations

Funding

This study was funded by the Liggins Institute, University of Auckland, Philanthropic trust, the Riddet Institute, Massey University.

Conflict of Interest

CRW is employed through, Faculty of Medical and Health Science, University of Auckland. CJM, EBT and DCS are employed through Liggins Institute, University of Auckland. CTL and DG receive a salary from an unrestricted research grant from Medela AG, administered by University of Western Australia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pundir, S., Wall, C.R., Mitchell, C.J. et al. Variation of Human Milk Glucocorticoids over 24 hour Period. J Mammary Gland Biol Neoplasia 22, 85–92 (2017). https://doi.org/10.1007/s10911-017-9375-x

Download citation

Keywords

  • Glucocorticoids
  • Human milk
  • Cortisol
  • Cortisone
  • High-performance liquid chromatography