Skip to main content

Advertisement

Log in

CSF-1R Signaling in Health and Disease: A Focus on the Mammary Gland

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Colony-stimulating factor-1 (CSF-1), also known as macrophage-colony stimulating factor (M-CSF), is the primary growth factor regulating survival, proliferation and differentiation of macrophages. It is also a potent chemokine for macrophages and monocytes. Signaling via the CSF-1 receptor (CSF-1R) is necessary for the production of almost all tissue resident macrophage populations and these macrophages participate, via trophic mechanisms, in the normal development and homeostasis of tissues and organs in which they reside, including the mammary gland. The drawback of this close interaction between macrophages and parenchymal cells is that dysregulation of macrophage trophic functions assists in the development and progression of many cancers, including breast cancer. Furthermore, tumour cells secrete CSF-1 to attract more macrophages to the tumour microenvironment where CSF-1R signaling frequently drives the behaviour of these tumour-associated macrophages (TAMs) to promote tumour progression and metastasis. Evidence is mounting that treated tumours secrete more CSF-1 and the increased recruitment of TAMs limits treatment efficacy. Thus, therapeutic targeting of the CSF-1R to inhibit TAM function is likely to enhance tumour response and improve patient outcomes in the treatment of cancer, including breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BMM:

Bone marrow macrophage

CSF-1:

Colony-stimulating factor-1

CSF-1R:

Colony-stimulating factor-1 receptor

DCIS:

Ductal carcinoma in situ

EGF:

Epidermal growth factor

GM-CSF:

Granulocyte/macrophage-colony stimulating factor

HSC:

Hematopoietic stem cell

IL-34:

Interleukin-34

IFN:

Interferon

M-CSF:

Macrophage-colony-stimulating factor

MNP:

Mononuclear phagocyte

OP:

Osteopetrotic

PI3K:

Phosphatidylinositol 3-kinase

PIP3 :

Phosphatidylinositol 3,4,5 triphosphate

PyMT:

Polyoma middle T antigen

RANKL:

Receptor activator of nuclear factor (NF)-κB ligand

RTK:

Receptor tyrosine kinase

TAM:

Tumour-associated macrophage

TEB:

Terminal end bud

References

  1. Aharinejad S, Abraham D, Paulus P, et al. Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice. Cancer Res. 2002;62:5317–24.

    CAS  PubMed  Google Scholar 

  2. Aharinejad S, Paulus P, Sioud M, et al. Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res. 2004;64:5378–84.

    CAS  PubMed  Google Scholar 

  3. Ahn GO, Tseng D, Liao CH, Dorie MJ, Czechowicz A, Brown JM. Inhibition of Mac-1 (CD11b/CD18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci U S A. 2010;107:8363–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Arpa L, Valledor AF, Lloberas J, Celada A. IL-4 blocks M-CSF-dependent macrophage proliferation by inducing p21Waf1 in a STAT6-dependent way. Eur J Immunol. 2009;39:514–26.

    CAS  PubMed  Google Scholar 

  5. Bartocci A, Mastrogiannis DS, Migliorati G, Stockert RJ, Wolkoff AW, Stanley ER. Macrophages specifically regulate the concentration of their own growth factor in the circulation. Proc Natl Acad Sci U S A. 1987;84:6179–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Beck AH, Espinosa I, Edris B, et al. The macrophage colony-stimulating factor 1 response signature in breast carcinoma. Clin Cancer Res. 2009;15:778–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Bingle L, Brown NJ, Lewis CE. The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol. 2002;196:254–65.

    CAS  PubMed  Google Scholar 

  8. Bingle L, Lewis CE, Corke KP, Reed MW, Brown NJ. Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Br J Cancer. 2006;94:101–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Biswas SK, Allavena P, Mantovani A. Tumor-associated macrophages: functional diversity, clinical significance, and open questions. Semin Immunopathol. 2013.

  10. Boocock CA, Jones GE, Stanley ER, Pollard JW. Colony-stimulating factor-1 induces rapid behavioural responses in the mouse macrophage cell line, BAC1.2 F5. J Cell Sci. 1989;93:447–56.

    CAS  PubMed  Google Scholar 

  11. Burns CJ, Wilks AF. c-FMS inhibitors: a patent review. Expert Opin Ther Pat. 2011;21:147–65.

    CAS  PubMed  Google Scholar 

  12. Carey B, Trapnell BC. The molecular basis of pulmonary alveolar proteinosis. Clin Immunol. 2010;135:223–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Cecchini MG, Dominguez MG, Mocci S, et al. Role of colony stimulating factor-1 in the establishment and regulation of tissue macrophages during postnatal development of the mouse. Development. 1994;120:1357–72.

    CAS  PubMed  Google Scholar 

  14. Chihara T, Suzu S, Hassan R, et al. IL-34 and M-CSF share the receptor Fms but are not identical in biological activity and signal activation. Cell Death Differ. 2010;17:1917–27.

    CAS  PubMed  Google Scholar 

  15. Chitu V, Stanley ER. Colony-stimulating factor-1 in immunity and inflammation. Curr Opin Immunol. 2006;18:39–48.

    CAS  PubMed  Google Scholar 

  16. Chow A, Huggins M, Ahmed J, et al. CD169 (+) macrophages provide a niche promoting erythropoiesis under homeostasis and stress. Nat Med. 2013;19:429–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Cohen PE, Zhu L, Nishimura K, Pollard JW. Colony-stimulating factor 1 regulation of neuroendocrine pathways that control gonadal function in mice. Endocrinology. 2002;143:1413–22.

    CAS  PubMed  Google Scholar 

  18. Comalada M, Xaus J, Sanchez E, Valledor AF, Celada A. Macrophage colony-stimulating factor-, granulocyte-macrophage colony-stimulating factor-, or IL-3-dependent survival of macrophages, but not proliferation, requires the expression of p21 (Waf1) through the phosphatidylinositol 3-kinase/Akt pathway. Eur J Immunol. 2004;34:2257–67.

    CAS  PubMed  Google Scholar 

  19. Dai XM, Ryan GR, Hapel AJ, et al. Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood. 2002;99:111–20.

    CAS  PubMed  Google Scholar 

  20. Dai XM, Zong XH, Sylvestre V, Stanley ER. Incomplete restoration of colony-stimulating factor 1 (CSF-1) function in CSF-1-deficient Csf1op/Csf1op mice by transgenic expression of cell surface CSF-1. Blood. 2004;103:1114–23.

    CAS  PubMed  Google Scholar 

  21. Davies LC, Jenkins SJ, Allen JE, Taylor PR. Tissue-resident macrophages. Nat Immunol. 2013;14:986–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. De Palma M, Lewis CE. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell. 2013;23:277–86.

    PubMed  Google Scholar 

  23. DeNardo DG, Barreto JB, Andreu P, et al. CD4 (+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009;16:91–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. DeNardo DG, Brennan DJ, Rexhepaj E, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011;1:54–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Fantin A, Vieira JM, Gestri G, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 2010;116:829–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Feng R, Desbordes SC, Xie H et al. PU.1 and C/EBPalpha/beta convert fibroblasts into macrophage-like cells. Proceedings of the National Academy of Sciences USA. 2008;105:6057–6062.

  27. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9:162–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Gautier EL, Shay T, Miller J, et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat Immunol. 2012;13:1118–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Gemma C, Bachstetter AD. The role of microglia in adult hippocampal neurogenesis. Front Cell Neurosci. 2013;7:229.

    PubMed Central  PubMed  Google Scholar 

  30. Ginhoux F, Greter M, Leboeuf M, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Gomez Perdiguero E, Schulz C, Geissmann F. Development and homeostasis of “resident” myeloid cells: the case of the microglia. Glia. 2013;61:112–20.

    PubMed  Google Scholar 

  32. Gordon S. Alternative activation of macrophages. Nat Rev Immunol. 2003;3:23–35.

    CAS  PubMed  Google Scholar 

  33. Goswami S, Sahai E, Wyckoff JB, et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res. 2005;65:5278–83.

    CAS  PubMed  Google Scholar 

  34. Gouon-Evans V, Lin EY, Pollard JW. Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res. 2002;4:155–64.

    PubMed Central  PubMed  Google Scholar 

  35. Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000;127:2269–82.

    CAS  PubMed  Google Scholar 

  36. Guleria I, Pollard JW. Aberrant macrophage and neutrophil population dynamics and impaired Th1 response to Listeria monocytogenes in colony-stimulating factor 1-deficient mice. Infect Immun. 2001;69:1795–807.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Guo C, Buranych A, Sarkar D, Fisher PB, Wang XY. The role of tumor-associated macrophages in tumor vascularization. Vasc Cell. 2013;5:20.

    PubMed Central  PubMed  Google Scholar 

  38. Hamilton JA. Colony-stimulating factors in inflammation and autoimmunity. Nat Rev Immunol. 2008;8:533–44.

    CAS  PubMed  Google Scholar 

  39. Hamilton JA, Achuthan A. Colony stimulating factors and myeloid cell biology in health and disease. Trends Immunol. 2013;34:81–9.

    CAS  PubMed  Google Scholar 

  40. Hamilton JA, Whitty G, Masendycz P, et al. The critical role of the colony-stimulating factor-1 receptor in the differentiation of myeloblastic leukemia cells. Mol Cancer Res. 2008;6:458–67.

    CAS  PubMed  Google Scholar 

  41. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22.

    CAS  PubMed  Google Scholar 

  42. Hashimoto D, Chow A, Noizat C, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38:792–804.

    CAS  PubMed  Google Scholar 

  43. Herbomel P, Thisse B, Thisse C. Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol. 2001;238:274–88.

    CAS  PubMed  Google Scholar 

  44. Hume DA, Macdonald KP. Therapeutic applications of macrophage colony-stimulating factor (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood. 2011.

  45. Ingman WV, Wyckoff J, Gouon-Evans V, Condeelis J, Pollard JW. Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn. 2006;235:3222–9.

    CAS  PubMed  Google Scholar 

  46. Jenkins SJ, Ruckerl D, Cook PC, et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science. 2011;332:1284–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Kacinski BM. CSF-1 and its receptor in breast carcinomas and neoplasms of the female reproductive tract. Mol Reprod Dev. 1997;46:71–4.

    CAS  PubMed  Google Scholar 

  48. Kirma N, Luthra R, Jones J, et al. Overexpression of the colony-stimulating factor (CSF-1) and/or its receptor c-fms in mammary glands of transgenic mice results in hyperplasia and tumor formation. Cancer Res. 2004;64:4162–70.

    CAS  PubMed  Google Scholar 

  49. Koh TJ, DiPietro LA. Inflammation and wound healing: the role of the macrophage. Expert Rev Mol Med. 2011;13:e23.

    PubMed Central  PubMed  Google Scholar 

  50. Koschmieder S, Rosenbauer F, Steidl U, Owens BM, Tenen DG. Role of transcription factors C/EBPalpha and PU.1 in normal hematopoiesis and leukemia. Int J Hematol. 2005;81:368–77.

    CAS  PubMed  Google Scholar 

  51. Leek RD, Harris AL. Tumor-associated macrophages in breast cancer. J Mammary Gland Biol Neoplasia. 2002;7:177–89.

    PubMed  Google Scholar 

  52. Lichanska AM, Hume DA. Origins and functions of phagocytes in the embryo. Exp Hematol. 2000;28:601–11.

    CAS  PubMed  Google Scholar 

  53. Lin H, Lee E, Hestir K, et al. Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. Science. 2008;320:807–11.

    CAS  PubMed  Google Scholar 

  54. Lin EY, Li JF, Gnatovskiy L, et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 2006;66:11238–46.

    CAS  PubMed  Google Scholar 

  55. Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med. 2001;193:727–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. MacDonald KP, Palmer JS, Cronau S, et al. An antibody against the colony-stimulating factor 1 receptor depletes the resident subset of monocytes and tissue- and tumor-associated macrophages but does not inhibit inflammation. Blood. 2010;116:3955–63.

    CAS  PubMed  Google Scholar 

  57. Mantovani A, Sica A. Macrophages, innate immunity and cancer: balance, tolerance, and diversity. Curr Opin Immunol. 2010;22:231–7.

    CAS  PubMed  Google Scholar 

  58. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.

    CAS  PubMed  Google Scholar 

  59. Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 2014;6:13.

  60. Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006;177:7303–11.

    CAS  PubMed  Google Scholar 

  61. McDermott RS, Deneux L, Mosseri V, et al. Circulating macrophage colony stimulating factor as a marker of tumour progression. Eur Cytokine Netw. 2002;13:121–7.

    CAS  PubMed  Google Scholar 

  62. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–35.

    CAS  PubMed  Google Scholar 

  63. Mok S, Koya RC, Tsui C, et al. Inhibition of CSF-1 receptor improves the antitumor efficacy of adoptive cell transfer immunotherapy. Cancer Res. 2014;74:153–61.

    CAS  PubMed  Google Scholar 

  64. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8:958–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Mouchemore KA, Pixley FJ. CSF-1 signaling in macrophages: pleiotrophy through phosphotyrosine-based signaling pathways. Crit Rev Clin Lab Sci. 2012;49:49–61.

    CAS  PubMed  Google Scholar 

  66. Mouchemore KA, Sampaio NG, Murrey MW, Stanley ER, Lannutti BJ, Pixley FJ. Specific inhibition of PI3K p110delta inhibits CSF-1-induced macrophage spreading and invasive capacity. FEBS J. 2013;280:5228–36.

    CAS  PubMed  Google Scholar 

  67. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Nakahama K. Cellular communications in bone homeostasis and repair. Cell Mol Life Sci. 2010;67:4001–9.

    CAS  PubMed  Google Scholar 

  69. Nandi S, Akhter MP, Seifert MF, Dai XM, Stanley ER. Developmental and functional significance of the CSF-1 proteoglycan chondroitin sulfate chain. Blood. 2006;107:786–95.

    CAS  PubMed Central  PubMed  Google Scholar 

  70. O’Brien J, Martinson H, Durand-Rougely C, Schedin P. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development. 2012;139:269–75.

    PubMed  Google Scholar 

  71. Ojalvo LS, Whittaker CA, Condeelis JS, Pollard JW. Gene expression analysis of macrophages that facilitate tumor invasion supports a role for Wnt-signaling in mediating their activity in primary mammary tumors. J Immunol. 2010;184:702–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–8.

    CAS  PubMed  Google Scholar 

  73. Patsialou A, Wyckoff J, Wang Y, Goswami S, Stanley ER, Condeelis JS. Invasion of human breast cancer cells in vivo requires both paracrine and autocrine loops involving the colony-stimulating factor-1 receptor. Cancer Res. 2009;69:9498–506.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Paulus P, Stanley ER, Schafer R, Abraham D, Aharinejad S. Colony-stimulating factor-1 antibody reverses chemoresistance in human MCF-7 breast cancer xenografts. Cancer Res. 2006;66:4349–56.

    CAS  PubMed  Google Scholar 

  75. Pixley FJ. Macrophage migration and its regulation by CSF-1. International Journal of Cell Biology. 20121–12.

  76. Pixley FJ, Lee PS, Condeelis JS, Stanley ER. Protein tyrosine phosphatase phi regulates paxillin tyrosine phosphorylation and mediates colony-stimulating factor 1-induced morphological changes in macrophages. Molecular and Cellular Biology. 2001;21:1795–809.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Pixley FJ, Stanley ER. CSF-1 regulation of the wandering macrophage: complexity in action. Trends in Cell Biology. 2004;14:628–38.

    CAS  PubMed  Google Scholar 

  78. Pixley FJ, Xiong Y, Yu RY, Sahai EA, Stanley ER, Ye BH. BCL6 suppresses RhoA activity to alter macrophage morphology and motility. Journal of Cell Science. 2005;118:1873–83.

    CAS  PubMed  Google Scholar 

  79. Pollard JW. Trophic macrophages in development and disease. Nat Rev Immunol. 2009;9:259–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci U S A. 1994;91:9312–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Pridans C, Sauter KA, Baer K, Kissel H, Hume DA. CSF1R mutations in hereditary diffuse leukoencephalopathy with spheroids are loss of function. Sci Rep. 2013;3:3013.

    PubMed Central  PubMed  Google Scholar 

  82. Pyonteck SM, Akkari L, Schuhmacher AJ, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med. 2013;19:1264–72.

    CAS  PubMed  Google Scholar 

  83. Qian B, Deng Y, Im JH, et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One. 2009;4:e6562.

    PubMed Central  PubMed  Google Scholar 

  84. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141:39–51.

    CAS  PubMed  Google Scholar 

  85. Rademakers R, Baker M, Nicholson AM, et al. Mutations in the colony stimulating factor 1 receptor (CSF1R) gene cause hereditary diffuse leukoencephalopathy with spheroids. Nat Genet. 2012;44:200–5.

    CAS  Google Scholar 

  86. Rae F, Woods K, Sasmono T, et al. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev Biol. 2007;308:232–46.

    CAS  PubMed  Google Scholar 

  87. Ridge SA, Worwood M, Oscier D, Jacobs A, Padua RA. FMS mutations in myelodysplastic, leukemic, and normal subjects. Proc Natl Acad Sci U S A. 1990;87:1377–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Roussos ET, Condeelis JS, Patsialou A. Chemotaxis in cancer. Nat Rev Cancer. 2011;11:573–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Ryan GR, Dai XM, Dominguez MG, et al. Rescue of the colony-stimulating factor 1 (CSF-1)-nullizygous mouse (Csf1 (op)/Csf1 (op)) phenotype with a CSF-1 transgene and identification of sites of local CSF-1 synthesis. Blood. 2001;98:74–84.

    CAS  PubMed  Google Scholar 

  90. Sampaio NG, Yu W, Cox D, et al. Phosphorylation of CSF-1R Y721 mediates its association with PI3K to regulate macrophage motility and enhancement of tumor cell invasion. J Cell Sci. 2011;124:2021–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Sasmono RT, Oceandy D, Pollard JW, et al. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood. 2003;101:1155–63.

    CAS  PubMed  Google Scholar 

  92. Sauter KA, Pridans C, Sehgal A et al. Pleiotropic effects of extended blockade of CSF1R signaling in adult mice. J Leukoc Biol. 2014.

  93. Scholl SM, Bascou CH, Mosseri V, et al. Circulating levels of colony-stimulating factor 1 as a prognostic indicator in 82 patients with epithelial ovarian cancer. Br J Cancer. 1994;69:342–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Scholl SM, Pallud C, Beuvon F, et al. Anti-colony-stimulating factor-1 antibody staining in primary breast adenocarcinomas correlates with marked inflammatory cell infiltrates and prognosis. J Natl Cancer Inst. 1994;86:120–6.

    CAS  PubMed  Google Scholar 

  95. Schulz C, Gomez Perdiguero E, Chorro L, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336:86–90.

    CAS  PubMed  Google Scholar 

  96. Sharma M, Beck AH, Webster JA, et al. Analysis of stromal signatures in the tumor microenvironment of ductal carcinoma in situ. Breast Cancer Res Treat. 2010;123:397–404.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11:762–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Shimada-Hiratsuka M, Naito M, Kaizu C. Shuying, Hasegawa G, LD S. Defective macrophage recruitment and clearance of apoptotic cells in the uterus of osteopetrotic mutant mice lacking macrophage colony-stimulating factor (M-CSF). J Submicrosc Cytol Pathol. 2000;32:297–307.

    CAS  PubMed  Google Scholar 

  99. Stanley E, Lieschke GJ, Grail D, et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci U S A. 1994;91:5592–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Stefater JA, Ren S, Lang RA, Duffield JS. Metchnikoff’s policemen: macrophages in development, homeostasis and regeneration. Trends Mol Med. 2011.

  101. Stein M, Keshav S, Harris N, Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med. 1992;176:287–92.

    CAS  PubMed  Google Scholar 

  102. Such E, Cervera J, Valencia A, et al. Absence of mutations in the tyrosine kinase and juxtamembrane domains of C-FMS gene in chronic myelomonocytic leukemia (CMML). Leuk Res. 2009;33:e162–3.

    CAS  PubMed  Google Scholar 

  103. Tang R, Beuvon F, Ojeda M, Mosseri V, Pouillart P, Scholl S. M-CSF (monocyte colony stimulating factor) and M-CSF receptor expression by breast tumour cells: M-CSF mediated recruitment of tumour infiltrating monocytes? J Cell Biochem. 1992;50:350–6.

    CAS  PubMed  Google Scholar 

  104. Teitelbaum R, Schubert W, Gunther L, et al. The M cell as a portal of entry to the lung for the bacterial pathogen Mycobacterium tuberculosis. Immunity. 1999;10:641–50.

    CAS  PubMed  Google Scholar 

  105. Tessem JS, Jensen JN, Pelli H, et al. Critical roles for macrophages in islet angiogenesis and maintenance during pancreatic degeneration. Diabetes. 2008;57:1605–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Trapnell BC, Whitsett JA. Gm-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu Rev Physiol. 2002;64:775–802.

    CAS  PubMed  Google Scholar 

  107. van Furth R, Cohn ZA. The origin and kinetics of mononuclear phagocytes. J Exp Med. 1968;128:415–35.

    PubMed Central  PubMed  Google Scholar 

  108. Van Nguyen A, Pollard JW. Colony stimulating factor-1 is required to recruit macrophages into the mammary gland to facilitate mammary ductal outgrowth. Dev Biol. 2002;247:11–25.

    PubMed  Google Scholar 

  109. van Ravenswaay Claasen HH, Kluin PM, Fleuren GJ. Tumor infiltrating cells in human cancer. On the possible role of CD16+ macrophages in antitumor cytotoxicity. Lab Invest. 1992;67:166–74.

    PubMed  Google Scholar 

  110. Vereyken EJ, Heijnen PD, Baron W, de Vries EH, Dijkstra CD, Teunissen CE. Classically and alternatively activated bone marrow derived macrophages differ in cytoskeletal functions and migration towards specific CNS cell types. J Neuroinflammation. 2011;8:58.

    PubMed Central  PubMed  Google Scholar 

  111. Wang Y, Szretter KJ, Vermi W, et al. IL-34 is a tissue-restricted ligand of CSF1R required for the development of Langerhans cells and microglia. Nat Immunol. 2012;13:753–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Wang W, Wyckoff JB, Goswami S, et al. Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res. 2007;67:3505–11.

    CAS  PubMed  Google Scholar 

  113. Wei S, Nandi S, Chitu V, et al. Functional overlap but differential expression of CSF-1 and IL-34 in their CSF-1 receptor-mediated regulation of myeloid cells. J Leukoc Biol. 2010;88:495–505.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Weidenbusch M, Anders HJ. Tissue microenvironments define and get reinforced by macrophage phenotypes in homeostasis or during inflammation, repair and fibrosis. J Innate Immun. 2012;4:463–77.

    CAS  PubMed  Google Scholar 

  115. Wiktor-Jedrzejczak W, Bartocci A, Ferrante AWJ, et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A. 1990;87:4828–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Wood W, Turmaine M, Weber R, et al. Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development. 2000;127:5245–52.

    CAS  PubMed  Google Scholar 

  117. Wyckoff J, Wang W, Lin EY, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res. 2004;64:7022–9.

    CAS  PubMed  Google Scholar 

  118. Wyckoff JB, Wang Y, Lin EY, et al. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res. 2007;67:2649–56.

    CAS  PubMed  Google Scholar 

  119. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496:445–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Xu J, Escamilla J, Mok S, et al. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 2013;73:2782–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Xue J, Schmidt SV, Sander J, et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity. 2014;40:274–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A. 1998;95:3597–602.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Yeung YG, Stanley ER. Proteomic approaches to the analysis of early events in colony-stimulating factor-1 signal transduction. Mol Cell Proteomics. 2003;2:1143–55.

    CAS  PubMed  Google Scholar 

  124. Yona S, Kim KW, Wolf Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38:79–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Yoshida H, Hayashi S, Kunisada T, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990;345:442–4.

    CAS  PubMed  Google Scholar 

  126. Yu W, Chen J, Xiong Y, Pixley FJ, Yeung YG, Stanley ER. Macrophage proliferation is regulated through CSF-1 receptor tyrosines 544, 559, and 807. J Biol Chem. 2012;287:13694–704.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Yu W, Chen J, Xiong Y, et al. CSF-1 receptor structure/function in MacCsf1r−/− macrophages: regulation of proliferation, differentiation, and morphology. Journal of Leukocyte Biology. 2008;84:852–63.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona Jane Pixley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sullivan, A.R., Pixley, F.J. CSF-1R Signaling in Health and Disease: A Focus on the Mammary Gland. J Mammary Gland Biol Neoplasia 19, 149–159 (2014). https://doi.org/10.1007/s10911-014-9320-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-014-9320-1

Keywords

Navigation