Skip to main content

Advertisement

Log in

Exposures to Synthetic Estrogens at Different Times During the Life, and Their Effect on Breast Cancer Risk

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Women are using estrogens for many purposes, such as to prevent pregnancy or miscarriage, or to treat menopausal symptoms. Estrogens also have been used to treat breast cancer which seems puzzling, since there is convincing evidence to support a link between high lifetime estrogen exposure and increased breast cancer risk. In this review, we discuss the findings that maternal exposure to the synthetic estrogen diethylstilbestrol during pregnancy increases breast cancer risk in both exposed mothers and their daughters. In addition, we review data regarding the use of estrogens in oral contraceptives and as postmenopausal hormone therapy and discuss the opposing effects on breast cancer risk based upon timing of exposure. We place particular emphasis on studies investigating how maternal estrogenic exposures during pregnancy increase breast cancer risk among daughters. New data suggest that these exposures induce epigenetic modifications in the mammary gland and germ cells, thereby causing an inheritable increase in breast cancer risk for multiple generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BIRADS:

breast imaging reporting and data system

BMP4:

bone morphogenic protein 4

CCA:

clear cell adenocarcinoma

CEE :

conjugated equine estrogens

DES:

diethylstilbestrol

DMBA:

9,12-dimethylbenz[a]anthracene

DNMT:

DNA methyltransferase

E2:

17-β estradiol

EE2:

ethinyl estradiol

EPIC:

european prospective investigation into cancer and nutrition

ERα :

estrogen receptor α

ERβ:

estrogen receptor β

EZH2:

enhancer of zeste-2

FGF:

fibroblast growth factors

HF:

high fat

HDAC:

histone deacetylase

HT:

hormone therapy

hESC:

human embryonic stem cells

IGF:

insulin-like growth factor

MNU:

methylnitrosourea

NSABP:

national surgical adjuvant breast and bowel project

MPA:

medroxyprogesterone acetate

miRNA:

microRNAs

OC:

oral contraceptives

PTHrP:

parathyroid hormone-related protein

PTH1R:

parathyroid hormone 1 receptor

PcTG :

polycomb target genes

P:

progesterone

RPFNA:

random periareolar fine-needle aspiration

STAR:

study of tamoxifen and raloxifene

TAM:

tamoxifen

TDLU:

terminal ductal lobular unit

TEB:

terminal end buds

TSG:

tumor suppressor gene

WHI:

women’s health initiative

References

  1. Burns KA, Korach KS. Estrogen receptors and human disease: an update. Arch Toxicol. 2012;86:1491–504.

    Article  PubMed  CAS  Google Scholar 

  2. Deroo BJ, Korach KS. Estrogen receptors and human disease. J Clin Invest. 2006;116:561–70.

    Article  PubMed  CAS  Google Scholar 

  3. Lovejoy JC. The menopause and obesity. Prim Care. 2003;30:317–25.

    Article  PubMed  Google Scholar 

  4. Davis SR, Castelo-Branco C, Chedraui P, et al. Understanding weight gain at menopause. Climacteric. 2012;15:419–29.

    Article  PubMed  CAS  Google Scholar 

  5. Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s health initiative randomized controlled trial. JAMA. 2002;288:321–33.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson GL, Limacher M, Assaf AR, et al. Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s health initiative randomized controlled trial. JAMA. 2004;291:1701–12.

    Article  PubMed  CAS  Google Scholar 

  7. Samaras K, Hayward CS, Sullivan D, Kelly RP, Campbell LV. Effects of postmenopausal hormone replacement therapy on central abdominal fat, glycemic control, lipid metabolism, and vascular factors in type 2 diabetes: a prospective study. Diabetes Care. 1999;22:1401–7.

    Article  PubMed  CAS  Google Scholar 

  8. American Cancer Society. Breast cancer: facts and figures 2011–2012. Atlanta: American Cancer Society; 2012.

    Google Scholar 

  9. Henderson BE, Ross R, Bernstein L. Estrogens as a cause of human cancer. Cancer Res. 1988;48:246–53.

    PubMed  CAS  Google Scholar 

  10. Vogel VG. The NSABP Study of Tamoxifen and Raloxifene (STAR) trial. Expert Rev Anticancer Ther. 2009;9:51–60.

    Article  PubMed  CAS  Google Scholar 

  11. Sestak I, Cuzick J. Preventive Therapy for Breast Cancer. Curr Oncol Rep. 2012;14:568–73.

    Google Scholar 

  12. Guzman RC, Yang J, Rajkumar L, Thordarson G, Chen X, Nandi S. Hormonal prevention of breast cancer: mimicking the protective effect of pregnancy. Proc Natl Acad Sci USA. 1999;96:2520–5.

    Article  PubMed  CAS  Google Scholar 

  13. Ariazi EA, Cunliffe HE, Lewis-Wambi JS, et al. Estrogen induces apoptosis in estrogen deprivation-resistant breast cancer through stress responses as identified by global gene expression across time. Proc Natl Acad Sci U S A. 2011;108:18879–86.

    Article  PubMed  Google Scholar 

  14. Clarke R, Dickson RB, Lippman ME. Hormonal aspects of breast cancer. Growth factors, drugs and stromal interactions. Crit Rev Oncol Hematol. 1992;12:1–23.

    Article  PubMed  CAS  Google Scholar 

  15. Hilakivi-Clarke L, Onojafe I, Raygada M, Cho E, Clarke R, Lippman M. Breast cancer risk in rats fed a diet high in n-6 polyunsaturated fatty acids during pregnancy. J Natl Cancer Inst. 1996;88:1821–7.

    Article  PubMed  CAS  Google Scholar 

  16. Hilakivi-Clarke L, Clarke R, Onojafe I, Raygada M, Cho E, Lippman ME. A maternal diet high in n-6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci USA. 1997;94:9372–7.

    Article  PubMed  CAS  Google Scholar 

  17. de Assis S, Warri A, Cruz MI, et al. High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring. Nat Commun. 2012;3:1053.

    Article  PubMed  CAS  Google Scholar 

  18. Bernstein L, Ross RK. Endogenous hormones and breast cancer risk. Epidemiological Reviews. 1993;15:48–65.

    CAS  Google Scholar 

  19. Cleary MP, Grossmann ME. Minireview: obesity and breast cancer: the estrogen connection. Endocrinology. 2009;150:2537–42.

    Article  PubMed  CAS  Google Scholar 

  20. Cecchini RS, Costantino JP, Cauley JA, et al. Body mass index and the risk for developing invasive breast cancer among high-risk women in NSABP P-1 and STAR breast cancer prevention trials. Cancer Prev Res (Phila). 2012;4:583–92.

    Article  CAS  Google Scholar 

  21. Ritte R, Lukanova A, Tjonneland A et al. Height, age at menarche and risk of hormone receptor positive and negative breast cancer: A cohort study. Int J Cancer 2012.

  22. The Collaborative Group on Hormonal Factors in Breast Cancer. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol. 2012;13:1141–51.

    Google Scholar 

  23. Olsson H, Landin-Olsson M, Gullberg B. Retrospective assessment of menstrual cycle length in patients with breast cancer, in patients with benign breast disease, and in women without breast disease. J Natl Cancer Inst. 1983;70:17–20.

    PubMed  CAS  Google Scholar 

  24. Kelsey JL, Gammon MD, John EM. Reproductive factors and breast cancer. Epidemiol Rev. 1993;15:36–47.

    PubMed  CAS  Google Scholar 

  25. Whelan EA, Sandler DP, Root JL, Smith KR, Weinberg CR. Menstrual cycle patterns and risk of breast cancer. Am J Epidemiol. 1994;140:1081–90.

    PubMed  CAS  Google Scholar 

  26. Terry KL, Willett WC, Rich-Edwards JW, Hunter DJ, Michels KB. Menstrual cycle characteristics and incidence of premenopausal breast cancer. Cancer Epidemiol Biomarkers Prev. 2005;14:1509–13.

    Article  PubMed  Google Scholar 

  27. Butler LM, Potischman NA, Newman B, et al. Menstrual risk factors and early-onset breast cancer. Cancer Causes Control. 2000;11:451–8.

    Article  PubMed  CAS  Google Scholar 

  28. Orgeas CC, Hall P, Rosenberg LU, Czene K. The influence of menstrual risk factors on tumor characteristics and survival in postmenopausal breast cancer. Breast Cancer Res. 2008;10:R107.

    Article  PubMed  Google Scholar 

  29. Key TJ, Appleby PN, Reeves GK, et al. Body mass index, serum sex hormones, and breast cancer risk in postmenopausal women. J Natl Cancer Inst. 2003;95:1218–26.

    Article  PubMed  CAS  Google Scholar 

  30. Diorio C, Lemieux J, Provencher L, Hogue JC, Vachon E. Aromatase inhibitors in obese breast cancer patients are not associated with increased plasma Estradiol levels. Breast Cancer Res Treat. 2012;136:573–9.

    Article  PubMed  CAS  Google Scholar 

  31. Dorgan JF, Reichman ME, Judd JT, et al. The relation of body size to plasma levels of estrogens and androgens in premenopausal women (Maryland, United States). Cancer Causes Control. 1995;6:3–8.

    Article  PubMed  CAS  Google Scholar 

  32. van den Brandt PA, Spiegelman D, Yaun SS, et al. Pooled analysis of prospective cohort studies on height, weight, and breast cancer risk. Am J Epidemiol. 2000;152:514–27.

    Article  PubMed  Google Scholar 

  33. Lahmann PH, Lissner L, Gullberg B, Olsson H, Berglund G. A prospective study of adiposity and postmenopausal breast cancer risk: the Malmo diet and cancer study. Int J Cancer. 2003;103:246–52.

    Article  PubMed  CAS  Google Scholar 

  34. Lahmann PH, Hoffmann K, Allen N, et al. Body size and breast cancer risk: findings from the European Prospective Investigation into Cancer and Nutrition (EPIC). Int J Cancer. 2004;111:762–71.

    Article  PubMed  CAS  Google Scholar 

  35. Li CI, Malone KE, Daling JR. Interactions between body mass index and hormone therapy and postmenopausal breast cancer risk (United States). Cancer Causes Control. 2006;17:695–703.

    Article  PubMed  Google Scholar 

  36. Modugno F, Kip KE, Cochrane B, et al. Obesity, hormone therapy, estrogen metabolism and risk of postmenopausal breast cancer. Int J Cancer. 2006;118:1292–301.

    Article  PubMed  CAS  Google Scholar 

  37. Poehlman ET, Toth MJ, Gardner AW. Changes in energy balance and body composition at menopause: a controlled longitudinal study. Ann Intern Med. 1995;123:673–5.

    PubMed  CAS  Google Scholar 

  38. Vona-Davis L, Howard-McNatt M, Rose DP. Adiposity, type 2 diabetes and the metabolic syndrome in breast cancer. Obes Rev. 2007;8:395–408.

    Article  PubMed  CAS  Google Scholar 

  39. Boyd NF, Martin LJ, Stone J, Greenberg C, Minkin S, Yaffe MJ. Mammographic densities as a marker of human breast cancer risk and their use in chemoprevention. Curr Oncol Rep. 2001;3:314–21.

    Article  PubMed  CAS  Google Scholar 

  40. Boyd NF, Martin LJ, Yaffe MJ, Minkin S. Mammographic density and breast cancer risk: current understanding and future prospects. Breast Cancer Res. 2011;13:223.

    Article  PubMed  Google Scholar 

  41. Kerlikowske K, Cook AJ, Buist DS, et al. Breast cancer risk by breast density, menopause, and postmenopausal hormone therapy use. J Clin Oncol. 2010;28:3830–7.

    Article  PubMed  Google Scholar 

  42. Becker S, Kaaks R. Exogenous and endogenous hormones, mammographic density and breast cancer risk: can mammographic density be considered an intermediate marker of risk? Recent Results Cancer Res. 2009;181:135–57.

    Article  PubMed  CAS  Google Scholar 

  43. Martin LJ, Minkin S, Boyd NF. Hormone therapy, mammographic density, and breast cancer risk. Maturitas. 2009;64:20–6.

    Article  PubMed  CAS  Google Scholar 

  44. Cuzick J, Warwick J, Pinney E, et al. Tamoxifen-induced reduction in mammographic density and breast cancer risk reduction: a nested case–control study. J Natl Cancer Inst. 2011;103:744–52.

    Article  PubMed  CAS  Google Scholar 

  45. Decensi A, Robertson C, Guerrieri-Gonzaga A, et al. Randomized double-blind 2 × 2 trial of low-dose tamoxifen and fenretinide for breast cancer prevention in high-risk premenopausal women. J Clin Oncol. 2009;27:3749–56.

    Article  PubMed  CAS  Google Scholar 

  46. Pearman L, Kagan R, Arsenault J, Muram D. The effects of raloxifene on mammographic breast density: a review of clinical trials. Menopause. 2010;17:654–9.

    PubMed  Google Scholar 

  47. Huggins C, Moon RC, Morii S. Extinction of experimental mammary cancer.I. Estradiol-17beta and progesterone. Proc Natl Acad Sci USA. 1962;48:379–86.

    Article  PubMed  CAS  Google Scholar 

  48. Cabanes A, Wang M, Olivo S, et al. Prepubertal estradiol and genistein exposures up-regulate BRCA1 mRNA and reduce mammary tumorigenesis. Carcinogenesis. 2004;25:741–8.

    Article  PubMed  CAS  Google Scholar 

  49. Grubbs CJ, Peckham JC, McDonough KD. Effect of ovarian hormones on the induction of l-methyl-l-nitrosurea-induced mammary cancer. Carcinogenesis. 1983;4:495–7.

    Article  PubMed  CAS  Google Scholar 

  50. LaCroix AZ, Chlebowski RT, Manson JE, et al. Health outcomes after stopping conjugated equine estrogens among postmenopausal women with prior hysterectomy: a randomized controlled trial. JAMA. 2011;305:1305–14.

    Article  PubMed  CAS  Google Scholar 

  51. Nelson HD, Walker M, Zakher B, Mitchell J. Menopausal hormone therapy for the primary prevention of chronic conditions: a systematic review to update the U.S. Preventive services task force recommendations. Ann Intern Med. 2012;157:104–13.

    PubMed  Google Scholar 

  52. Bernstein L. Epidemiology of endocrine-related risk factors for breast cancer. J Mammary Gland Biol Neoplasia. 2002;7:3–15.

    Article  PubMed  Google Scholar 

  53. Grubbs CJ, Farneli DR, Hill DL, McDonough KC. Chemoprevention of n-nitro-n-methylurea-induced mammary cancers by pretreatment with 17beta-estradiol and progesterone. J Natl Cancer Inst. 1985;74:927–31.

    PubMed  CAS  Google Scholar 

  54. Sivaraman L, Stephens LC, Markaverich BM, et al. Hormone-induced refractoriness to mammary carcinogenesis in wistar-furth rats. Carcinogenesis. 1998;19:1573–81.

    Article  PubMed  CAS  Google Scholar 

  55. Rajkumar L, Guzman RC, Yang J, Thordarson G, Talamantes F, Nandi S. Short-term exposure to pregnancy levels of estrogen prevents mammary carcinogenesis. Proc Natl Acad Sci U S A. 2001;98:11755–9.

    Article  PubMed  CAS  Google Scholar 

  56. Britt K, Ashworth A, Smalley M. Pregnancy and the risk of breast cancer. Endocr Relat Cancer. 2007;14:907–33.

    Article  PubMed  CAS  Google Scholar 

  57. Russo IH, Russo J. Pregnancy-induced changes in breast cancer risk. J Mammary Gland Biol Neoplasia. 2011;16:221–33.

    Article  PubMed  Google Scholar 

  58. Siwko SK, Dong J, Lewis MT, Liu H, Hilsenbeck SG, Li Y. Evidence that an early pregnancy causes a persistent decrease in the number of functional mammary epithelial stem cells–implications for pregnancy-induced protection against breast cancer. Stem Cells. 2008;26:3205–9.

    Article  PubMed  Google Scholar 

  59. D'Cruz CM, Moody SE, Master SR, et al. Persistent parity-induced changes in growth factors, TGF-beta3, and differentiation in the rodent mammary gland. Mol Endocrinol. 2002;16:2034–51.

    Article  PubMed  CAS  Google Scholar 

  60. Blakely CM, Stoddard AJ, Belka GK, et al. Hormone-induced protection against mammary tumorigenesis is conserved in multiple rat strains and identifies a core gene expression signature induced by pregnancy. Cancer Res. 2006;66:6421–31.

    Article  PubMed  CAS  Google Scholar 

  61. Belitskaya-Levy I, Zeleniuch-Jacquotte A, Russo J, et al. Characterization of a genomic signature of pregnancy identified in the breast. Cancer Prev Res (Phila). 2011;4:1457–64.

    Article  Google Scholar 

  62. Twombly R. Estrogen’s dual nature? studies highlight effects on breast cancer. J Natl Cancer Inst. 2011;103:920–1.

    Article  PubMed  Google Scholar 

  63. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet 2005; 365:1687–717.

  64. Mahtani RL, Stein A, Vogel CL. High-dose estrogen as salvage hormonal therapy for highly refractory metastatic breast cancer: a retrospective chart review. Clin Ther. 2009;31(Pt 2):2371–8.

    Article  PubMed  CAS  Google Scholar 

  65. Ellis MJ, Gao F, Dehdashti F, et al. Lower-dose vs high-dose oral estradiol therapy of hormone receptor-positive, aromatase inhibitor-resistant advanced breast cancer: a phase 2 randomized study. JAMA. 2009;302:774–80.

    Article  PubMed  CAS  Google Scholar 

  66. Dieckmann WJ, Davis ME, Rynkiewitz LM, Pottinger RE. Does the administration of diethylstilbestrol during pregnancy have therapeutic value? Am J Obstet Gynecol. 1953;66:1062–81.

    PubMed  CAS  Google Scholar 

  67. Hoover RN, Hyer M, Pfeiffer RM, et al. Adverse health outcomes in women exposed in utero to diethylstilbestrol. N Engl J Med. 2011;365:1304–14.

    Article  PubMed  CAS  Google Scholar 

  68. Physicians desk reference to pharmaceutical specialties and biologicals, 15th Edition, 1961: 625.

  69. Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med. 1971;284:878–81.

    Article  PubMed  CAS  Google Scholar 

  70. Palmer JR, Wise LA, Hatch EE, et al. Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 2006;15:1509–14.

    Article  PubMed  CAS  Google Scholar 

  71. Troisi R, Hatch EE, Titus-Ernstoff L, et al. Cancer risk in women prenatally exposed to diethylstilbestrol. Int J Cancer. 2007;121:356–60.

    Article  PubMed  CAS  Google Scholar 

  72. Colton T, Greenberg R, Noller K, et al. Breast cancer in mothers prescribed diethylstilbestrol in pregnancy. JAMA. 1993;269:2096–100.

    Article  PubMed  CAS  Google Scholar 

  73. Hatch EE, Palmer JR, Titus-Ernstoff L, et al. Cancer risk in women exposed to diethylstilbestrol in utero. JAMA. 1998;280:630–4.

    Article  PubMed  CAS  Google Scholar 

  74. Palmer JR, Hatch EE, Rosenberg CL, et al. Risk of breast cancer in women exposed to diethylstilbestrol in utero: preliminary results (United States). Cancer Causes Control. 2002;13:753–8.

    Article  PubMed  Google Scholar 

  75. Verloop J, van Leeuwen FE, Helmerhorst TJ, van Boven HH, Rookus MA. Cancer risk in DES daughters. Cancer Causes Control. 2010;21:999–1007.

    Article  PubMed  Google Scholar 

  76. Boylan ES, Calhoon RE. Mammary tumorigenesis in the rat following prenatal exposure to diethylstilbestrol and postnatal treatment with 7,12-dimethylbenz[a]anthracene. J Toxicol Environ Health. 1979;5:1059–71.

    Article  PubMed  CAS  Google Scholar 

  77. Boylan ES, Calhoon RE. Prenatal exposure to diethylstilbestrol: ovarian-independent growth of mammary tumors induced by 7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst. 1981;66:649–52.

    PubMed  CAS  Google Scholar 

  78. Boylan ES, Calhoon RE. Transplacental action of diethylstilbestrol on mammary carcinogenesis in female rats given one or two doses of 7,12-dimethylbenz(a)anthracene. Cancer Res. 1983;43:4879–84.

    PubMed  CAS  Google Scholar 

  79. Rothschild TC, Boylan ES, Calhoon RE, Vonderhaar BK. Transplacental effects of diethylstilbestrol on mammary development and tumorigenesis in female ACI rats. Cancer Res. 1987;47:4508–16.

    PubMed  CAS  Google Scholar 

  80. Vassilacopoulou D, Boylan ES. Mammary gland morphology and responsiveness to regulatory molecules following prenatal exposure to diethylstilbestrol. Teratog Carcinog Mutagen. 1993;13:59–74.

    Article  PubMed  CAS  Google Scholar 

  81. Kawaguchi H, Miyoshi N, Miyamoto Y, et al. Effects of exposure period and dose of diethylstilbestrol on pregnancy in rats. J Vet Med Sci. 2009;71:1309–15.

    Article  PubMed  CAS  Google Scholar 

  82. Ninomiya K, Kawaguchi H, Souda M, et al. Effects of neonatally administered diethylstilbestrol on induction of mammary carcinomas induced by 7, 12-dimethylbenz(a)anthracene in female rats. Toxicol Pathol. 2007;35:813–8.

    Article  PubMed  CAS  Google Scholar 

  83. Stark AH, Kossoy G, Zusman I, Yarden G, Madar Z. Olive oil consumption during pregnancy and lactation in rats influences mammary cancer development in female offspring. Nutr Cancer. 2003;46:59–65.

    Article  PubMed  CAS  Google Scholar 

  84. Walker BE. Tumors in female offspring of control and diethylstilbestrol-exposed mice fed high-fat diets. J Nat Cancer Inst. 1990;82:50–4.

    Article  PubMed  CAS  Google Scholar 

  85. Luijten M, Thomsen AR, van den Berg JA, et al. Effects of soy-derived isoflavones and a high-fat diet on spontaneous mammary tumor development in Tg.NK (MMTV/c-neu) mice. Nutr Cancer. 2004;50:46–54.

    Article  PubMed  CAS  Google Scholar 

  86. Raun AP, Preston RL. History of diethystilbestrol use in cattle. American Society of Animal Science 2001;1–7.

  87. Preston RL, Byers F, Stevens KR. Estrogenic activity and growth stimulation in steers fed varying protein levels. J Anim Sci. 1978;46:541–6.

    PubMed  CAS  Google Scholar 

  88. Sakakura T. Mammary embryogenesis. In: Neville MC, Daniel CW, editors. Mammary gland: development, regulation, and function. New York: Plenum Press; 1987. p. 37.

    Google Scholar 

  89. Robinson GW, Karpf AB, Kratochwil K. Regulation of mammary gland development by tissue interaction. J Mammary Gland Biol Neoplasia. 1999;4:9–19.

    Article  PubMed  CAS  Google Scholar 

  90. Cowin P, Wysolmerski J. Molecular mechanisms guiding embryonic mammary gland development. Cold Spring Harb Perspect Biol. 2010;2:a003251.

    Article  PubMed  CAS  Google Scholar 

  91. Hens JR, Wysolmerski JJ. Key stages of mammary gland development: molecular mechanisms involved in the formation of the embryonic mammary gland. Breast Cancer Res. 2005;7:220–4.

    Article  PubMed  CAS  Google Scholar 

  92. Vandenberg LN, Maffini MV, Wadia PR, Sonnenschein C, Rubin BS, Soto AM. Exposure to environmentally relevant doses of the xenoestrogen bisphenol-a alters development of the fetal mouse mammary gland. Endocrinology. 2007;148:116–27.

    Article  PubMed  CAS  Google Scholar 

  93. Keeling JW, Ozer E, King G, Walker F. Oestrogen receptor alpha in female fetal, infant, and child mammary tissue. J Pathol. 2000;191:449–51.

    Article  PubMed  CAS  Google Scholar 

  94. Naccarato AG, Viacava P, Vignati S, et al. Bio-morphological events in the development of the human female mammary gland from fetal age to puberty. Virchows Arch. 2000;436:431–8.

    Article  PubMed  CAS  Google Scholar 

  95. Bocchinfuso WP, Lindzey JK, Hewitt SC, et al. Induction of mammary gland development in estrogen receptor-alpha knockout mice. Endocrinology. 2000;141:2982–94.

    Article  PubMed  CAS  Google Scholar 

  96. Sinkevicius KW, Burdette JE, Woloszyn K, et al. An estrogen receptor-alpha knock-in mutation provides evidence of ligand-independent signaling and allows modulation of ligand-induced pathways in vivo. Endocrinology. 2008;149:2970–9.

    Article  PubMed  CAS  Google Scholar 

  97. Vrettos AS, Fotiou S, Papaharalampus N. Development of the breasts of the fetus. Effects of the administration of hormonal preparations during pregnancy. J Gynecol Obstet Biol Reprod (Paris). 1976;5:561–6.

    CAS  Google Scholar 

  98. Tomooka Y, Bern HA. Growth of mouse mammary glands after neonatal sex hormone treatment. J Natl Cancer Inst. 1982;69:1347–52.

    PubMed  CAS  Google Scholar 

  99. Varea O, Garrido JJ, Dopazo A, Mendez P, Garcia-Segura LM, Wandosell F. Estradiol activates beta-catenin dependent transcription in neurons. PLoS One. 2009;4:e5153.

    Article  PubMed  CAS  Google Scholar 

  100. Zhang L, Kharbanda S, Hanfelt J, Kern FG. Both autocrine and paracrine effects of transfected acidic fibroblast growth factor are involved in the estrogen-independent and antiestrogen-resistant growth of MCF-7 breast cancer cells. Cancer Res. 1998;58:352–61.

    PubMed  CAS  Google Scholar 

  101. Nallasamy S, Li Q, Bagchi MK, Bagchi IC. Msx homeobox genes critically regulate embryo implantation by controlling paracrine signaling between uterine stroma and epithelium. PLoS Genet. 2012;8:e1002500.

    Article  PubMed  CAS  Google Scholar 

  102. Fagan DH, Yee D. Crosstalk between IGF1R and estrogen receptor signaling in breast cancer. J Mammary Gland Biol Neoplasia. 2008;13:423–9.

    Article  PubMed  Google Scholar 

  103. Fillmore CM, Gupta PB, Rudnick JA, et al. Estrogen expands breast cancer stem-like cells through paracrine FGF/Tbx3 signaling. Proc Natl Acad Sci U S A. 2010;107:21737–42.

    Article  PubMed  CAS  Google Scholar 

  104. Rabbani SA, Khalili P, Arakelian A, Pizzi H, Chen G, Goltzman D. Regulation of parathyroid hormone-related peptide by estradiol: effect on tumor growth and metastasis in vitro and in vivo. Endocrinology. 2005;146:2885–94.

    Article  PubMed  CAS  Google Scholar 

  105. Funk JL, Wei H. Regulation of parathyroid hormone-related protein expression in MCF-7 breast carcinoma cells by estrogen and antiestrogens. Biochem Biophys Res Commun. 1998;251:849–54.

    Article  PubMed  CAS  Google Scholar 

  106. Kajitani T, Tamamori-Adachi M, Okinaga H, Chikamori M, Iizuka M, Okazaki T. Negative regulation of parathyroid hormone-related protein expression by steroid hormones. Biochem Biophys Res Commun. 2011;407:472–8.

    Article  PubMed  CAS  Google Scholar 

  107. Giacomini D, Paez-Pereda M, Stalla J, Stalla GK, Arzt E. Molecular interaction of BMP-4, TGF-beta, and estrogens in lactotrophs: impact on the PRL promoter. Mol Endocrinol. 2009;23:1102–14.

    Article  PubMed  CAS  Google Scholar 

  108. Hilakivi-Clarke LA, Raygada M, Stoica A, Martin M-B. Consumption of a high-fat diet during pregnancy alters estrogen receptor content, protein kinase C activity and morphology of mammary gland in the mother and her female offspring. Cancer Res. 1998;58:654–60.

    PubMed  CAS  Google Scholar 

  109. Cabanes A, de Assis S, Gustafsson JA, Hilakivi-Clarke L. Maternal high n-6 polyunsaturated fatty acid intake during pregnancy increases voluntary alcohol intake and hypothalamic estrogen receptor alpha and beta levels among female offspring. Dev Neurosci. 2000;22:488–93.

    Article  PubMed  CAS  Google Scholar 

  110. Bern HA, Edery M, Mills KT, Kohrman AF, Mori T, Larson L. Long-term alterations in histology and steroid receptor levels of the genital tract and mammary gland following neonatal exposure of female BALB/cCrgl mice to various doses of diethylstilbestrol. Cancer Res. 1987;47:4165–72.

    PubMed  CAS  Google Scholar 

  111. Shajahan A, Goel S, de Assis S, Yu B, Clarke R, Hilakivi-Clarke L. Changes in mammary caveolin-1 signaling pathways are associated with breast cancer risk in rats exposed to estradiol in utero or during prepuberty. Hormone Molecular Biology and Clinical Investigation. 2010;2:227–34.

    Article  Google Scholar 

  112. Hilakivi-Clarke L. Cabanes A, de AS et al. In utero alcohol exposure increases mammary tumorigenesis in rats Br J Cancer. 2004;90:2225–31.

    CAS  Google Scholar 

  113. Hovey RC. sai-Sato M, Warri A et al. Effects of neonatal exposure to diethylstilbestrol, tamoxifen, and toremifene on the BALB/c mouse mammary gland. Biol Reprod. 2005;72:423–35.

    Article  PubMed  CAS  Google Scholar 

  114. Jones LA, Bern HA. Long-term effects of neonatal treatment with progesterone, alone and in combination with estrogen, on the mammary gland and reproductive tract of female BALB/cfC3H mice. Cancer Res. 1977;37:67–75.

    PubMed  CAS  Google Scholar 

  115. Mori T, Nagasawa H, Bern HA. Long-term effects of perinatal exposure to hormones on normal and neoplastic mammary growth in rodents: a review. J Environ Pathol Toxicol. 1979;3:191–205.

    PubMed  CAS  Google Scholar 

  116. Hilakivi-Clarke L. Nutritional modulation of terminal end buds: its relevance to breast cancer prevention. Curr Cancer Drug Targets. 2007;7:465–74.

    Article  PubMed  CAS  Google Scholar 

  117. Russo J, Russo IH. Biological and molecular bases of mammary carcinogenesis. Lab Investig. 1987;57:112–37.

    PubMed  CAS  Google Scholar 

  118. Russo J, Hu YF, Yang X, Russo IH. Developmental, cellular, and molecular basis of human breast cancer. J Natl Cancer Inst Monogr 2000;17–37.

  119. Russo J, Russo IH. Influence of differentiation and cell kinetics on the susceptibility of the rat mammary gland to carcinogenesis. Cancer Res. 1980;40:2677–87.

    PubMed  CAS  Google Scholar 

  120. Telang NT, Suto A, Wong GY, Osborne MP, Bradlow HL. Induction by estrogen metabolite 16 alpha-hydroxyestrone of genotoxic damage and aberrant proliferation in mouse mammary epithelial cells. J Natl Cancer Inst. 1992;84:634–8.

    Article  PubMed  CAS  Google Scholar 

  121. Umekita Y, Souda M, Hatanaka K, et al. Gene expression profile of terminal end buds in rat mammary glands exposed to diethylstilbestrol in neonatal period. Toxicol Lett. 2011;205:15–25.

    Article  PubMed  CAS  Google Scholar 

  122. Zhang B, Tian Y, Jin L, et al. DDN: a caBIG(R) analytical tool for differential network analysis. Bioinformatics. 2011;27:1036–8.

    Article  PubMed  CAS  Google Scholar 

  123. Connelly L, Barham W, Onishko HM, et al. Inhibition of NF-kappa B activity in mammary epithelium increases tumor latency and decreases tumor burden. Oncogene. 2011;30:1402–12.

    Article  PubMed  CAS  Google Scholar 

  124. Biswas DK, Shi Q, Baily S, et al. NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci U S A. 2004;101:10137–42.

    Article  PubMed  CAS  Google Scholar 

  125. Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet Jr RJ, Sledge Jr GW. Constitutive activation of NF-kappaB during progression of breast cancer to hormone-independent growth. Mol Cell Biol. 1997;17:3629–39.

    PubMed  CAS  Google Scholar 

  126. Santos F, Dean W. Epigenetic reprogramming during early development in mammals. Reproduction. 2004;127:643–51.

    Article  PubMed  CAS  Google Scholar 

  127. Sato K, Fukata H, Kogo Y, Ohgane J, Shiota K, Mori C. Neonatal exposure to diethylstilbestrol alters expression of DNA methyltransferases and methylation of genomic DNA in the mouse uterus. Endocr J. 2009;56:131–9.

    Article  PubMed  CAS  Google Scholar 

  128. Sato K, Fukata H, Kogo Y, Ohgane J, Shiota K, Mori C. Neonatal exposure to diethylstilbestrol alters the expression of DNA methyltransferases and methylation of genomic DNA in the epididymis of mice. Endocr J. 2006;53:331–7.

    Article  PubMed  CAS  Google Scholar 

  129. Rhee I, Bachman KE, Park BH, et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature. 2002;416:552–6.

    Article  PubMed  CAS  Google Scholar 

  130. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28:1057–68.

    Article  PubMed  CAS  Google Scholar 

  131. Biniszkiewicz D, Gribnau J, Ramsahoye B, et al. Dnmt1 overexpression causes genomic hypermethylation, loss of imprinting, and embryonic lethality. Mol Cell Biol. 2002;22:2124–35.

    Article  PubMed  CAS  Google Scholar 

  132. Ting AH, McGarvey KM, Baylin SB. The cancer epigenome–components and functional correlates. Genes Dev. 2006;20:3215–31.

    Article  PubMed  CAS  Google Scholar 

  133. Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr. 2002;132:2393S–400S.

    PubMed  CAS  Google Scholar 

  134. Tang WY, Newbold R, Mardilovich K et al. Persistent hypomethylation in the promoter of nucleosomal binding protein 1 (Nsbp1) correlates with overexpression of Nsbp1 in mouse uteri neonatally exposed to diethylstilbestrol or genistein. Endocrinology 2008;149:5922–31.

    Google Scholar 

  135. Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL. Maternal genistein alters coat color and protects avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect. 2006;114:567–72.

    Article  PubMed  CAS  Google Scholar 

  136. Ho SM, Tang WY. Belmonte dF, Prins GS. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 2006;66:5624–32.

    Article  PubMed  CAS  Google Scholar 

  137. Block K, Kardana A, Igarashi P, Taylor HS. In utero diethylstilbestrol (DES) exposure alters Hox gene expression in the developing mullerian system. FASEB J. 2000;14:1101–8.

    PubMed  CAS  Google Scholar 

  138. Bromer JG, Wu J, Zhou Y, Taylor HS. Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology. 2009;150:3376–82.

    Article  PubMed  CAS  Google Scholar 

  139. Li S, Hansman R, Newbold R, Davis B, McLachlan JA, Barrett JC. Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus. Mol Carcinog. 2003;38:78–84.

    Article  PubMed  CAS  Google Scholar 

  140. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128:635–8.

    Article  PubMed  CAS  Google Scholar 

  141. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693–705.

    Article  PubMed  CAS  Google Scholar 

  142. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.

    Article  PubMed  CAS  Google Scholar 

  143. Li H, Fischle W, Wang W, et al. Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger. Mol Cell. 2007;28:677–91.

    Article  PubMed  CAS  Google Scholar 

  144. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K. Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev. 2006;20:1123–36.

    Article  PubMed  CAS  Google Scholar 

  145. Herranz N, Pasini D, Diaz VM, et al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol. 2008;28:4772–81.

    Article  PubMed  CAS  Google Scholar 

  146. Doherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS. In utero exposure to Diethylstilbestrol (DES) or Bisphenol-A (BPA) increases EZH2 expression in the mammary gland: an epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 2010; 15 May.

  147. Lee TI, Jenner RG, Boyer LA, et al. Control of developmental regulators by Polycomb in human embryonic stem cells. Cell. 2006;125:301–13.

    Article  PubMed  CAS  Google Scholar 

  148. Meissner A, Mikkelsen TS, Gu H, et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature. 2008;454:766–70.

    PubMed  CAS  Google Scholar 

  149. Vasilatos SN, Broadwater G, Barry WT, et al. CpG island tumor suppressor promoter methylation in non-BRCA-associated early mammary carcinogenesis. Cancer Epidemiol Biomarkers Prev. 2009;18:901–14.

    Article  PubMed  CAS  Google Scholar 

  150. Easwaran H, Johnstone SE, Van NL, et al. A DNA hypermethylation module for the stem/progenitor cell signature of cancer. Genome Res. 2012;22:837–49.

    Article  PubMed  CAS  Google Scholar 

  151. Gao J, Wang J, Wang Y, Dai W, Lu L. Regulation of Pax6 by CTCF during induction of mouse ES cell differentiation. PLoS One. 2011;6:e20954.

    Article  PubMed  CAS  Google Scholar 

  152. Mohn F, Weber M, Rebhan M, et al. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell. 2008;30:755–66.

    Article  PubMed  CAS  Google Scholar 

  153. Cheng AS, Culhane AC, Chan MW, et al. Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome. Cancer Res. 2008;68:1786–96.

    Article  PubMed  CAS  Google Scholar 

  154. Moelans CB, Verschuur-Maes AH, van Diest PJ. Frequent promoter hypermethylation of BRCA2, CDH13, MSH6, PAX5, PAX6 and WT1 in ductal carcinoma in situ and invasive breast cancer. J Pathol. 2011;225:222–31.

    Article  PubMed  CAS  Google Scholar 

  155. Jiang Y, Tong D, Lou G, Zhang Y, Geng J. Expression of RUNX3 gene, methylation status and clinicopathological significance in breast cancer and breast cancer cell lines. Pathobiology. 2008;75:244–51.

    Article  PubMed  CAS  Google Scholar 

  156. Park SY, Kwon HJ, Lee HE, et al. Promoter CpG island hypermethylation during breast cancer progression. Virchows Arch. 2011;458:73–84.

    Article  PubMed  CAS  Google Scholar 

  157. Suter MA, Chen A, Burdine MS et al. A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates. FASEB J. 2012;26:5106-14.

    Google Scholar 

  158. Yang KF, Cai W, Xu JL, Shi W. Maternal high-fat diet programs Wnt genes through histone modification in the liver of neonatal rats. J Mol Endocrinol. 2012;49:107–14.

    PubMed  CAS  Google Scholar 

  159. Zheng S, Li Q, Zhang Y, Balluff Z, Pan YX. Histone deacetylase 3 (HDAC3) participates in the transcriptional repression of the p16 (INK4a) gene in mammary gland of the female rat offspring exposed to an early-life high-fat diet. Epigenetics. 2012;7:183–90.

    Article  PubMed  CAS  Google Scholar 

  160. Bredfeldt TG, Greathouse KL, Safe SH, Hung MC, Bedford MT, Walker CL. Xenoestrogen-induced regulation of EZH2 and histone methylation via estrogen receptor signaling to PI3K/AKT. Mol Endocrinol. 2010;24:993–1006.

    Article  PubMed  CAS  Google Scholar 

  161. Jackson RJ, Standart N. How do microRNAs regulate gene expression? Sci.STKE. 2007; 2007:re1.

  162. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Kerin MJ. MicroRNAs as Novel Biomarkers for Breast Cancer. J Oncol. 2009;2009:950201.

    PubMed  CAS  Google Scholar 

  163. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article  PubMed  CAS  Google Scholar 

  164. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    Article  PubMed  CAS  Google Scholar 

  165. Maillot G, Lacroix-Triki M, Pierredon S, et al. Widespread estrogen-dependent repression of micrornas involved in breast tumor cell growth. Cancer Res. 2009;69:8332–40.

    Article  PubMed  CAS  Google Scholar 

  166. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ. Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg. 2010;251:499–505.

    Article  PubMed  Google Scholar 

  167. Yamagata K, Fujiyama S, Ito S, et al. Maturation of microRNA is hormonally regulated by a nuclear receptor. Mol Cell. 2009;36:340–7.

    Article  PubMed  CAS  Google Scholar 

  168. Cheng C, Fu X, Alves P, Gerstein M. mRNA expression profiles show differential regulatory effects of microRNAs between estrogen receptor-positive and estrogen receptor-negative breast cancer. Genome Biol. 2009;10:R90.

    Article  PubMed  CAS  Google Scholar 

  169. Adams BD, Claffey KB, White BA. Argonaute-2 expression is regulated by epidermal growth factor receptor and mitogen-activated protein kinase signaling and correlates with a transformed phenotype in breast cancer cells. Endocrinology. 2009;150:14–23.

    Article  PubMed  CAS  Google Scholar 

  170. Hilakivi-Clarke, L., de Assis, S., Clarke, R., Warri, A., Marian, C., Zwart, A., Jin, L., Kim, D. J., Tian, Y., Zhang, B., Wang, Y., and Xuan, J. Elevated in utero estrogenic environment may increase later breast cancer risk by down-regulating miRNAs. American Association for Cancer Research 102. 2011.

  171. Weber B, Stresemann C, Brueckner B, Lyko F. Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle. 2007;6:1001–5.

    Article  PubMed  CAS  Google Scholar 

  172. Neves R, Scheel C, Weinhold S, et al. Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC Res Notes. 2010;3:219.

    Article  PubMed  CAS  Google Scholar 

  173. Lujambio A, Calin GA, Villanueva A, et al. A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A. 2008;105:13556–61.

    Article  PubMed  CAS  Google Scholar 

  174. Cao Q, Mani RS, Ateeq B, et al. Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell. 2011;20:187–99.

    Article  PubMed  CAS  Google Scholar 

  175. Zheng F, Liao YJ, Cai MY, et al. The putative tumour suppressor microRNA-124 modulates hepatocellular carcinoma cell aggressiveness by repressing ROCK2 and EZH2. Gut. 2012;61:278–89.

    Article  PubMed  CAS  Google Scholar 

  176. Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11:1487–95.

    Article  PubMed  CAS  Google Scholar 

  177. Rijnkels M, Kabotyanski E, Montazer-Torbati MB, et al. The epigenetic landscape of mammary gland development and functional differentiation. J Mammary Gland Biol Neoplasia. 2010;15:85–100.

    Article  PubMed  Google Scholar 

  178. Huang TH, Esteller M. Chromatin remodeling in mammary gland differentiation and breast tumorigenesis. Cold Spring Harb Perspect Biol. 2010;2:a004515.

    Article  PubMed  CAS  Google Scholar 

  179. Schuettengruber B, Cavalli G. Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development. 2009;136:3531–42.

    Article  PubMed  CAS  Google Scholar 

  180. Maruyama R, Choudhury S, Kowalczyk A, et al. Epigenetic regulation of cell type-specific expression patterns in the human mammary epithelium. PLoS Genet. 2011;7:e1001369.

    Article  PubMed  CAS  Google Scholar 

  181. Lee HJ, Hinshelwood RA, Bouras T, et al. Lineage specific methylation of the Elf5 promoter in mammary epithelial cells. Stem Cells. 2011;29:1611–9.

    Article  PubMed  CAS  Google Scholar 

  182. Cao H, Yang CS, Rana TM. Evolutionary emergence of microRNAs in human embryonic stem cells. PLoS One. 2008;3:e2820.

    Article  PubMed  CAS  Google Scholar 

  183. Gunaratne PH. Embryonic stem cell microRNAs: defining factors in induced pluripotent (iPS) and cancer (CSC) stem cells? Curr Stem Cell Res Ther. 2009;4:168–77.

    Article  PubMed  CAS  Google Scholar 

  184. Avril-Sassen S, Goldstein LD, Stingl J, et al. Characterisation of microRNA expression in post-natal mouse mammary gland development. BMC Genomics. 2009;10:548.

    Article  PubMed  CAS  Google Scholar 

  185. Greene SB, Gunaratne PH, Hammond SM, Rosen JM. A putative role for microRNA-205 in mammary epithelial cell progenitors. J Cell Sci. 2010;123:606–18.

    Article  PubMed  CAS  Google Scholar 

  186. Savarese TM, Strohsnitter WC, Low HP, et al. Correlation of umbilical cord blood hormones and growth factors with stem cell potential: implications for the prenatal origin of breast cancer hypothesis. Breast Cancer Res. 2007;9:R29.

    Article  PubMed  CAS  Google Scholar 

  187. Lukanova A, Surcel HM, Lundin E, et al. Circulating estrogens and progesterone during primiparous pregnancies and risk of maternal breast cancer. Int J Cancer. 2012;130:910–20.

    Article  PubMed  CAS  Google Scholar 

  188. Peck JD, Hulka BS, Poole C, Savitz DA, Baird D, Richardson BE. Steroid hormone levels during pregnancy and incidence of maternal breast cancer. Cancer Epidemiol Biomarkers Prev. 2002;11:361–8.

    PubMed  CAS  Google Scholar 

  189. Enger SM, Ross RK, Henderson B, Bernstein L. Breastfeeding history, pregnancy experience and risk of breast cancer. Br J Cancer. 1997;76:118–23.

    Article  PubMed  CAS  Google Scholar 

  190. Wohlfahrt J, Melbye M. Maternal risk of breast cancer and birth characteristics of offspring by time since birth. Edidemiology. 1999;10:441–4.

    Article  CAS  Google Scholar 

  191. Depue RH, Bernstein L, Ross RK, Judd HL, Henderson BE. Hyperemesis gravidarum in relation to estradiol levels, pregnancy outcome, amd other maternal factors: a seroepidemiologic study. Am J Obstet Gynecol. 1987;156:1137–41.

    PubMed  CAS  Google Scholar 

  192. Nagata C, Iwasa S, Shiraki M, Shimizu H. Estrogen and alpha-fetoprotein levels in maternal and umbilical cord blood samples in relation to birth weight. Cancer Epidemiol Biomarkers Prev. 2006;15:1469–72.

    Article  PubMed  CAS  Google Scholar 

  193. Asztalos S, Gann PH, Hayes MK, et al. Gene expression patterns in the human breast after pregnancy. Cancer Prev Res (Phila). 2010;3:301–11.

    Article  CAS  Google Scholar 

  194. Russo J, Rivera R, Russo IH. Influence of age and parity on the development of the human breast. Breast Cancer Res Treat. 1992;23:211–8.

    Article  PubMed  CAS  Google Scholar 

  195. Hilakivi-Clarke L, de Assis S, Warri A, Luoto R. Pregnancy hormonal environment and mother’s breast cancer risk. Horm Mol Biol Clin Investig. 2012;9:11–23.

    Article  Google Scholar 

  196. Britt KL, Kendrick H, Regan JL, et al. Pregnancy in the mature adult mouse does not alter the proportion of mammary epithelial stem/progenitor cells. Breast Cancer Res. 2009;11:R20.

    Article  PubMed  CAS  Google Scholar 

  197. Tiede BJ, Owens LA, Li F, DeCoste C, Kang Y. A novel mouse model for non-invasive single marker tracking of mammary stem cells in vivo reveals stem cell dynamics throughout pregnancy. PLoS One. 2009;4:e8035.

    Article  PubMed  CAS  Google Scholar 

  198. Bronson RA. Oral contraception: mechanism of action. Clin Obstet Gynecol. 1981;24:869–77.

    Article  PubMed  CAS  Google Scholar 

  199. Mishell Jr DR. State of the art in hormonal contraception: an overview. Am J Obstet Gynecol. 2004;190:S1–4.

    Article  PubMed  CAS  Google Scholar 

  200. Gaspard UJ, Romus MA, Gillain D, Duvivier J, Mey-Ponsart E, Franchimont P. Plasma hormone levels in women receiving new oral contraceptives containing ethinyl estradiol plus levonorgestrel or desogestrel. Contraception. 1983;27:577–90.

    Article  PubMed  CAS  Google Scholar 

  201. Collaborative Group on Hormonal Factors in Breast Cancer. Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 53 297 women with breast cancer and 100 239 women without breast cancer from 54 epidemiological studies. Lancet. 1996;347:1713–27.

    Article  Google Scholar 

  202. Burkman R, Schlesselman JJ, Zieman M. Safety concerns and health benefits associated with oral contraception. Am J Obstet Gynecol. 2004;190:S5–S22.

    Article  PubMed  CAS  Google Scholar 

  203. Kumle M, Weiderpass E, Braaten T, Persson I, Adami HO, Lund E. Use of oral contraceptives and breast cancer risk: The Norwegian-Swedish Women’s Lifestyle and Health Cohort Study. Cancer Epidemiol Biomarkers Prev. 2002;11:1375–81.

    PubMed  CAS  Google Scholar 

  204. Hunter DJ, Colditz GA, Hankinson SE, et al. Oral contraceptive use and breast cancer: a prospective study of young women. Cancer Epidemiol Biomarkers Prev. 2010;19:2496–502.

    Article  PubMed  Google Scholar 

  205. Nelson HD, Zakher B, Cantor A, et al. Risk factors for breast cancer for women aged 40 to 49 years: a systematic review and meta-analysis. Ann Intern Med. 2012;156:635–48.

    PubMed  Google Scholar 

  206. Marchbanks PA, Curtis KM, Mandel MG, et al. Oral contraceptive formulation and risk of breast cancer. Contraception. 2012;85:342–50.

    Article  PubMed  CAS  Google Scholar 

  207. Greendale GA, Reboussin BA, Hogan P, et al. Symptom relief and side effects of postmenopausal hormones: results from the Postmenopausal Estrogen/Progestin Interventions Trial. Obstet Gynecol. 1998;92:982–8.

    Article  PubMed  CAS  Google Scholar 

  208. Barrett-Connor E, Grady D. Hormone replacement therapy, heart disease, and other considerations. Annu Rev Public Health. 1998;19:55–72.

    Article  PubMed  CAS  Google Scholar 

  209. Bain C, Willett W, Hennekens CH, Rosner B, Belanger C, Speizer FE. Use of postmenopausal hormones and risk of myocardial infarction. Circulation. 1981;64:42–6.

    Article  PubMed  CAS  Google Scholar 

  210. The Writing Group for the PEPI Trial. Effects of estrogen or estrogen/progestin regimens on heart disease risk factors in postmenopausal women. The Postmenopausal Estrogen/Progestin Interventions (PEPI) Trial. JAMA. 1995;273:199–208.

    Article  Google Scholar 

  211. Heiss G, Wallace R, Anderson GL, et al. Health risks and benefits 3 years after stopping randomized treatment with estrogen and progestin. JAMA. 2008;299:1036–45.

    Article  PubMed  CAS  Google Scholar 

  212. Hulley S, Grady D, Bush T, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group. JAMA. 1998;280:605–13.

    Article  PubMed  CAS  Google Scholar 

  213. Lacey Jr JV, Mink PJ, Lubin JH, et al. Menopausal hormone replacement therapy and risk of ovarian cancer. JAMA. 2002;288:334–41.

    Article  PubMed  CAS  Google Scholar 

  214. Hernan MA, Alonso A, Logan R, et al. Observational studies analyzed like randomized experiments: an application to postmenopausal hormone therapy and coronary heart disease. Edidemiology. 2008;19:766–79.

    Article  Google Scholar 

  215. Cheek J, Lacy J, Toth-Fejel S, Morris K, Calhoun K, Pommier RF. The impact of hormone replacement therapy on the detection and stage of breast cancer. Arch Surg. 2002;137:1015–9.

    Article  PubMed  Google Scholar 

  216. Holli K, Isola J, Cuzick J. Low biologic aggressiveness in breast cancer in women using hormone replacement therapy. J Clin Oncol. 1998;16:3115–20.

    PubMed  CAS  Google Scholar 

  217. Stefanick ML, Anderson GL, Margolis KL, et al. Effects of conjugated equine estrogens on breast cancer and mammography screening in postmenopausal women with hysterectomy. JAMA. 2006;295:1647–57.

    Article  PubMed  CAS  Google Scholar 

  218. Hersh AL, Stefanick ML, Stafford RS. National use of postmenopausal hormone therapy: annual trends and response to recent evidence. JAMA. 2004;291:47–53.

    Article  PubMed  CAS  Google Scholar 

  219. Ravdin PM, Cronin KA, Howlader N, et al. The decrease in breast-cancer incidence in 2003 in the United States. N Engl J Med. 2007;356:1670–4.

    Article  PubMed  CAS  Google Scholar 

  220. Chlebowski RT, Anderson G, Pettinger M, et al. Estrogen plus progestin and breast cancer detection by means of mammography and breast biopsy. Arch Intern Med. 2008;168:370–7.

    Article  PubMed  CAS  Google Scholar 

  221. Gierach GL, Ichikawa L, Kerlikowske K, et al. Relationship between mammographic density and breast cancer death in the Breast Cancer Surveillance Consortium. J Natl Cancer Inst. 2012;104:1218–27.

    Article  PubMed  Google Scholar 

  222. Davey DA. Update: estrogen and estrogen plus progestin therapy in the care of women at and after the menopause. Womens Health (Lond Engl). 2012;8:169–89.

    Article  CAS  Google Scholar 

Download references

Disclosure

L. Hilakivi-Clarke has served as an expert witness in a case concerning breast cancer risk in daughters of DES-exposed mothers on behalf of the plaintiffs

Funding support

This study was supported by the National Cancer Institute (R01 CA164384-01A1, U54 CA100970, U54CA149147, and P30 CA051668)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena Hilakivi-Clarke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilakivi-Clarke, L., de Assis, S. & Warri, A. Exposures to Synthetic Estrogens at Different Times During the Life, and Their Effect on Breast Cancer Risk. J Mammary Gland Biol Neoplasia 18, 25–42 (2013). https://doi.org/10.1007/s10911-013-9274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-013-9274-8

Keywords

Navigation