Advertisement

Journal of Mammary Gland Biology and Neoplasia

, Volume 16, Issue 4, pp 383–407 | Cite as

Mastitis Therapy and Antimicrobial Susceptibility: a Multispecies Review with a Focus on Antibiotic Treatment of Mastitis in Dairy Cattle

  • John BarlowEmail author
Article

Abstract

Mastitis occurs in numerous species. Antimicrobial agents are used for treatment of infectious mastitis in dairy cattle, other livestock, companion animals, and humans. Mastitis is an economically important disease of dairy cattle and most mastitis research has focused on epidemiology and control of bovine mastitis. Antibiotic treatment of clinical and subclinical mastitis in dairy cattle is an established component of mastitis control programs. Research on the treatment of clinical and subclinical mastitis in other dairy species such as sheep and goats has been less frequent, although the general principles of mastitis therapy in small ruminants are similar to those of dairy cattle. Research on treatment of clinical mastitis in humans is limited and as for other species empirical treatment of mastitis appears to be common. While antimicrobial susceptibility testing is recommended to direct treatment decisions in many clinical settings, the use of susceptibility testing for antibiotic selection for mastitis treatments of dairy cattle has been challenged in a number of publications. The principle objective of this review is to summarize the literature evaluating the question, “Does antimicrobial susceptibility predict treatment outcome for intramammary infections caused by common bacterial pathogens?” This review also addresses current issues related to antimicrobial use and treatment decisions for mastitis in dairy cattle. Information on treatment of mastitis in other species, including humans, is included although research appears to be limited. Issues related to study design, gaps in current knowledge and opportunities for future research are identified for bovine mastitis therapy.

Keywords

Mastitis Therapy Antimicrobial susceptibility 

Abbreviations

ADD

agar disc diffusion

AMDUCA

Animal Medicinal Drug Use Clarification Act

CNS

coagulase negative staphylococci

FARAD

Food Animal Residue Avoidance Database

DDD

defined daily dose

IMI

intramammary infection

IMM

intramammary

MIC

minimum inhibitory concentration

MLST

multilocus sequence typing

OTC

over-the-counter

PDS

post-partum dysgalactiae syndrome

RM

restriction modification

SCC

somatic cell count

SSTI

skin and soft tissue infection

ST

strain type

Notes

Acknowledgements

The author would like to acknowledge the contributions of the anonymous reviewers in suggesting improvements to this manuscript. Thanks to Dr. Brian Lubbers, DVM PhD and Director of the Microbiology Laboratory, Kansas State Veterinary Diagnostic Laboratory, for critical comments and recommendations regarding presentation of information on antimicrobial susceptibility testing.

References

  1. 1.
    Aryeetey RN, Marquis GS, Timms L, Lartey A, Brakohiapa L. Subclinical mastitis is common among Ghanaian women lactating 3 to 4 months postpartum. J Hum Lact. 2008;24(3):263–7.PubMedGoogle Scholar
  2. 2.
    Hillerton JE, Berry EA. Treating mastitis in the cow—a tradition or an archaism. J Appl Microbiol. 2005;98(6):1250–5.PubMedGoogle Scholar
  3. 3.
    Seegers H, Fourichon C, Beaudeau F. Production effects related to mastitis and mastitis economics in dairy cattle herds. Vet Res. 2003;34(5):475–91.PubMedGoogle Scholar
  4. 4.
    Gerjets I, Kemper N. Coliform mastitis in sows: a review. J Swine Health Prod. 2009;17(2):97–105.Google Scholar
  5. 5.
    Oliver SP, Murinda SE, Jayarao BM. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: a comprehensive review. Foodborne Pathog Dis. 2011;8(3):337–55.PubMedGoogle Scholar
  6. 6.
    Kvist LJ, Larsson BW, Hall-Lord ML, Steen A, Schalen C. The role of bacteria in lactational mastitis and some considerations of the use of antibiotic treatment. Int Breastfeed J. 2008;3:6.PubMedGoogle Scholar
  7. 7.
    Jahanfar S, Ng CJ, Teng CL. Antibiotics for mastitis in breastfeeding women. Cochrane Database Syst Rev. 2009;1:CD005458.PubMedGoogle Scholar
  8. 8.
    Watts JL. Etiological agents of bovine mastitis. Vet Microbiol. 1988;16(1):41–66.PubMedGoogle Scholar
  9. 9.
    Delgado S, Arroyo R, Martin R, Rodriguez JM. PCR-DGGE assessment of the bacterial diversity of breast milk in women with lactational infectious mastitis. BMC Infect Dis. 2008;8:51.PubMedGoogle Scholar
  10. 10.
    Woodward WD, Ward AC, Fox LK, Corbeil LB. Teat skin normal flora and colonization with mastitis pathogen inhibitors. Vet Microbiol. 1988;17(4):357–65.PubMedGoogle Scholar
  11. 11.
    Jonsson S, Pulkkinen MO. Mastitis today: incidence, prevention and treatment. Ann Chir Gynaecol Suppl. 1994;208:84–7.PubMedGoogle Scholar
  12. 12.
    Michie C, Lockie F, Lynn W. The challenge of mastitis. Arch Dis Child. 2003;88(9):818–21.PubMedGoogle Scholar
  13. 13.
    Kvist LJ. Toward a clarification of the concept of mastitis as used in empirical studies of breast inflammation during lactation. J Hum Lact. 2010;26(1):53–9.PubMedGoogle Scholar
  14. 14.
    Fetherston C. Mastitis in lactating women: physiology or pathology? Breastfeed Rev. 2001;9(1):5–12.PubMedGoogle Scholar
  15. 15.
    Lago A, Godden SM, Bey R, Ruegg PL, Leslie K. The selective treatment of clinical mastitis based on on-farm culture results: I. Effects on antibiotic use, milk withholding time, and short-term clinical and bacteriological outcomes. J Dairy Sci. 2011;94(9):4441–56.PubMedGoogle Scholar
  16. 16.
    Roberson JR. Establishing treatment protocols for clinical mastitis. Vet Clin North Am Food Anim Pract. 2003;19(1):223–34. viii.PubMedGoogle Scholar
  17. 17.
    Taponen S, Salmikivi L, Simojoki H, Koskinen MT, Pyorala S. Real-time polymerase chain reaction-based identification of bacteria in milk samples from bovine clinical mastitis with no growth in conventional culturing. J Dairy Sci. 2009;92(6):2610–7.PubMedGoogle Scholar
  18. 18.
    Smith KL, Todhunter DA, Schoenberger PS. Environmental mastitis: cause, prevalence, prevention. J Dairy Sci. 1985;68(6):1531–53.PubMedGoogle Scholar
  19. 19.
    van den Borne BH, van Schaik G, Lam TJ, Nielen M. Therapeutic effects of antimicrobial treatment during lactation of recently acquired bovine subclinical mastitis: two linked randomized field trials. J Dairy Sci. 2010;93(1):218–33.PubMedGoogle Scholar
  20. 20.
    Sandgren CH, Waller KP, Emanuelson U. Therapeutic effects of systemic or intramammary antimicrobial treatment of bovine subclinical mastitis during lactation. Vet J. 2008;175(1):108–17.PubMedGoogle Scholar
  21. 21.
    Oliver SP, Gillespie BE, Headrick SJ, Moorehead H, Lunn P, Dowlen HH, et al. Efficacy of extended ceftiofur intramammary therapy for treatment of subclinical mastitis in lactating dairy cows. J Dairy Sci. 2004;87(8):2393–400.PubMedGoogle Scholar
  22. 22.
    Deluyker HA, Van Oye SN, Boucher JF. Factors affecting cure and somatic cell count after pirlimycin treatment of subclinical mastitis in lactating cows. J Dairy Sci. 2005;88(2):604–14.PubMedGoogle Scholar
  23. 23.
    Apparao D, Oliveira L, Ruegg PL. Relationship between results of in vitro susceptibility tests and outcomes following treatment with pirlimycin hydrochloride in cows with subclinical mastitis associated with gram-positive pathogens. J Am Vet Med Assoc. 2009;234(11):1437–46.PubMedGoogle Scholar
  24. 24.
    McDougall S, Parkinson TJ, Leyland M, Anniss FM, Fenwick SG. Duration of infection and strain variation in Streptococcus uberis isolated from cows’ milk. J Dairy Sci. 2004;87(7):2062–72.PubMedGoogle Scholar
  25. 25.
    Pankey JW, Barker RM, Twomey A, Duirs G. A note on effectiveness of dry cow therapy in New Zealand dairy herds. N Z Vet J. 1982;30(4):50–2.PubMedGoogle Scholar
  26. 26.
    Pankey JW, Barker RM, Twomey A, Duirs G. Comparative efficacy of dry-cow treatment regimens against Staphylococcus aureus. N Z Vet J. 1982;30(1–2):13–5.PubMedGoogle Scholar
  27. 27.
    Martin R, Heilig HG, Zoetendal EG, Jimenez E, Fernandez L, Smidt H, et al. Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res Microbiol. 2007;158(1):31–7.PubMedGoogle Scholar
  28. 28.
    De Vliegher S, Laevens H, Devriese LA, Opsomer G, Leroy JL, Barkema HW, et al. Prepartum teat apex colonization with Staphylococcus chromogenes in dairy heifers is associated with low somatic cell count in early lactation. Vet Microbiol. 2003;92(3):245–52.PubMedGoogle Scholar
  29. 29.
    White DG, Harmon RJ, Matos JE, Langlois BE. Isolation and identification of coagulase-negative Staphylococcus species from bovine body sites and streak canals of nulliparous heifers. J Dairy Sci. 1989;72(7):1886–92.PubMedGoogle Scholar
  30. 30.
    Piccinini R, Cesaris L, Dapra V, Borromeo V, Picozzi C, Secchi C, et al. The role of teat skin contamination in the epidemiology of Staphylococcus aureus intramammary infections. J Dairy Res. 2009;76(1):36–41.PubMedGoogle Scholar
  31. 31.
    Andersen S, Dohoo IR, Olde Riekerink R, Stryhn H. Diagnosing intramammary infections: evaluating expert opinions on the definition of intramammary infection using conjoint analysis. J Dairy Sci. 2010;93(7):2966–75.PubMedGoogle Scholar
  32. 32.
    Dohoo IR, Smith J, Andersen S, Kelton DF, Godden S. Diagnosing intramammary infections: evaluation of definitions based on a single milk sample. J Dairy Sci. 2011;94(1):250–61.PubMedGoogle Scholar
  33. 33.
    Steeneveld W, van Werven T, Barkema HW, Hogeveen H. Cow-specific treatment of clinical mastitis: an economic approach. J Dairy Sci. 2011;94(1):174–88.PubMedGoogle Scholar
  34. 34.
    Barkema HW, Schukken YH, Zadoks RN. Invited Review: the role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. J Dairy Sci. 2006;89(6):1877–95.PubMedGoogle Scholar
  35. 35.
    Owens WE, Ray CH, Watts JL, Yancey RJ. Comparison of success of antibiotic therapy during lactation and results of antimicrobial susceptibility tests for bovine mastitis. J Dairy Sci. 1997;80(2):313–7.PubMedGoogle Scholar
  36. 36.
    Pyorala S. Letter to the editor: concerning an article comparing the efficacy of local and systemic treatment of clinical mastitis. J Dairy Sci. 2005;88(5):1617.PubMedGoogle Scholar
  37. 37.
    Taponen S, Jantunen A, Pyorala E, Pyorala S. Efficacy of targeted 5-day combined parenteral and intramammary treatment of clinical mastitis caused by penicillin-susceptible or penicillin-resistant Staphylococcus aureus. Acta Vet Scand. 2003;44(1–2):53–62.PubMedGoogle Scholar
  38. 38.
    Taponen S, Simojoki H, Haveri M, Larsen HD, Pyorala S. Clinical characteristics and persistence of bovine mastitis caused by different species of coagulase-negative staphylococci identified with API or AFLP. Vet Microbiol. 2006;115(1–3):199–207.PubMedGoogle Scholar
  39. 39.
    Sol J, Sampimon OC, Snoep JJ, Schukken YH. Factors associated with bacteriological cure during lactation after therapy for subclinical mastitis caused by Staphylococcus aureus. J Dairy Sci. 1997;80(11):2803–8.PubMedGoogle Scholar
  40. 40.
    Sol J, Sampimon OC, Barkema HW, Schukken YH. Factors associated with cure after therapy of clinical mastitis caused by Staphylococcus aureus. J Dairy Sci. 2000;83(2):278–84.PubMedGoogle Scholar
  41. 41.
    Osteras O, Edge VL, Martin SW. Determinants of success or failure in the elimination of major mastitis pathogens in selective dry cow therapy. J Dairy Sci. 1999;82(6):1221–31.PubMedGoogle Scholar
  42. 42.
    Ziv G, Storper M. Intramuscular treatment of subclinical staphylococcal mastitis in lactating cows with penicillin G, methicillin and their esters. J Vet Pharmacol Ther. 1985;8(3):276–83.PubMedGoogle Scholar
  43. 43.
    Pyorala SH, Pyorala EO. Efficacy of parenteral administration of three antimicrobial agents in treatment of clinical mastitis in lactating cows: 487 cases (1989–1995). J Am Vet Med Assoc. 1998;212(3):407–12.PubMedGoogle Scholar
  44. 44.
    Erskine RJ, Wagner S, DeGraves FJ. Mastitis therapy and pharmacology. Vet Clin North Am Food Anim Pract. 2003;19(1):109–38. vi.PubMedGoogle Scholar
  45. 45.
    Sanderson CJ. The treatment of mastitis with intramammary infusions. Aust Vet J. 1966;42(2):47–53.PubMedGoogle Scholar
  46. 46.
    Erskine RJ, Bartlett PC, VanLente JL, Phipps CR. Efficacy of systemic ceftiofur as a therapy for severe clinical mastitis in dairy cattle. J Dairy Sci. 2002;85(10):2571–5.PubMedGoogle Scholar
  47. 47.
    Wagner S, Erskine R. Antimicrobial drug use in bovine mastitis. Antimicrobial Therapy in Veterinary Medicine. Ames, Iowa: Blackwell; 2006.Google Scholar
  48. 48.
    Wenz JR, Garry FB, Lombard JE, Elia R, Prentice D, Dinsmore RP. Short communication: efficacy of parenteral ceftiofur for treatment of systemically mild clinical mastitis in dairy cattle. J Dairy Sci. 2005;88(10):3496–9.PubMedGoogle Scholar
  49. 49.
    Hogan J, Larry Smith K. Coliform mastitis. Vet Res. 2003;34(5):507–19.PubMedGoogle Scholar
  50. 50.
    Pol M, Ruegg PL. Treatment practices and quantification of antimicrobial drug usage in conventional and organic dairy farms in Wisconsin. J Dairy Sci. 2007;90(1):249–61.PubMedGoogle Scholar
  51. 51.
    Lipsitch M, Singer RS, Levin BR. Antibiotics in agriculture: when is it time to close the barn door? Proc Natl Acad Sci U S A. 2002;99(9):5752–4.PubMedGoogle Scholar
  52. 52.
    Sischo WM. Stakeholder position paper: dairy producer. Prev Vet Med. 2006;73(2–3):203–8.PubMedGoogle Scholar
  53. 53.
    Grignon-Boutet R, Ireland MJ, Adewoye L, Mehrotra M, Russell S, Alexander I. Health Canada’s policy on extra-label drug use in food-producing animals in Canada. Can Vet J. 2008;49(7):689–93.PubMedGoogle Scholar
  54. 54.
    Stafford RS. Regulating off-label drug use–rethinking the role of the FDA. N Engl J Med. 2008;358(14):1427–9.PubMedGoogle Scholar
  55. 55.
    Kairuz TE, Gargiulo D, Bunt C, Garg S. Quality, safety and efficacy in the 'off-label' use of medicines. Curr Drug Saf. 2007;2(1):89–95.PubMedGoogle Scholar
  56. 56.
    Tollefson L, Morris D, Boland C, Kaartinen L. Regulation of antibiotic use in animals. 4th ed. Antimicrobial Therapy in Veterinary Medicine. Ames, Iowa: Blackwell; 2006.Google Scholar
  57. 57.
    Wenz JR, Barrington GM, Garry FB, McSweeney KD, Dinsmore RP, Goodell G, et al. Bacteremia associated with naturally occuring acute coliform mastitis in dairy cows. J Am Vet Med Assoc. 2001;219(7):976–81.PubMedGoogle Scholar
  58. 58.
    Sampimon OC, Lam TJ, Mevius DJ, Schukken YH, Zadoks RN. Antimicrobial susceptibility of coagulase-negative staphylococci isolated from bovine milk samples. Vet Microbiol. 2011;150(1–2):173–9.PubMedGoogle Scholar
  59. 59.
    Thorberg BM, Danielsson-Tham ML, Emanuelson U, Persson Waller K. Bovine subclinical mastitis caused by different types of coagulase-negative staphylococci. J Dairy Sci. 2009;92(10):4962–70.PubMedGoogle Scholar
  60. 60.
    Owens WE, Watts JL. Antimicrobial susceptibility and beta-lactamase testing of staphylococci isolated from dairy herds. J Dairy Sci. 1988;71(7):1934–9.PubMedGoogle Scholar
  61. 61.
    Dowling PM. Antimicrobial Drug Residues in Foods of Animal Origin. 4th ed. Antimicrobial Therapy in Veterinary Medicine. Ames, Iowa: Blackwell; 2006.Google Scholar
  62. 62.
    Weese JS. Prudent use of antimicrobials. 4th ed. Antimicrobial Therapy in Veterinary Medicine. Ames, Iowa: Blackwell; 2006.Google Scholar
  63. 63.
    Call DR, Davis MA, Sawant AA. Antimicrobial resistance in beef and dairy cattle production. Anim Health Res Rev. 2008;9(2):159–67.PubMedGoogle Scholar
  64. 64.
    Sawant AA, Sordillo LM, Jayarao BM. A survey on antibiotic usage in dairy herds in Pennsylvania. J Dairy Sci. 2005;88(8):2991–9.PubMedGoogle Scholar
  65. 65.
    Raymond MJ, Wohrle RD, Call DR. Assessment and promotion of judicious antibiotic use on dairy farms in Washington State. J Dairy Sci. 2006;89(8):3228–40.PubMedGoogle Scholar
  66. 66.
    Friedman DB, Kanwat CP, Headrick ML, Patterson NJ, Neely JC, Smith LU. Importance of prudent antibiotic use on dairy farms in South Carolina: a pilot project on farmers' knowledge, attitudes and practices. Zoonoses Public Health. 2007;54(9–10):366–75.PubMedGoogle Scholar
  67. 67.
    Hill AE, Green AL, Wagner BA, Dargatz DA. Relationship between herd size and annual prevalence of and primary antimicrobial treatments for common diseases on dairy operations in the United States. Prev Vet Med. 2009;88(4):264–77.PubMedGoogle Scholar
  68. 68.
    USDA. Dairy 2007, Part III: Reference of Dairy Cattle Health and Management Practices in the United States, 2007. In: USDA–APHIS–VS C, editor. Fort Collins, CO 2008Google Scholar
  69. 69.
    Pol M, Ruegg PL. Relationship between antimicrobial drug usage and antimicrobial susceptibility of gram-positive mastitis pathogens. J Dairy Sci. 2007;90(1):262–73.PubMedGoogle Scholar
  70. 70.
    Hurd HS, Vaughn MB, Holtkamp D, Dickson J, Warnick L. Quantitative risk from fluoroquinolone-resistant Salmonella and Campylobacter due to treatment of dairy heifers with enrofloxacin for bovine respiratory disease. Foodborne Pathog Dis. 2010;7(11):1305–22.PubMedGoogle Scholar
  71. 71.
    Grave K, Jensen VF, McEwen S, Kruse H. Monitoring of antimicrobial drug usage in animals: methods and applications. In: Aarestrup FM, editor. Antimicrobial Resistance in Bacteria of Animal Origin. Washington, D.C.: American Society of Microbiology; 2006. p. 375–95.Google Scholar
  72. 72.
    Jensen VF, Jacobsen E, Bager F. Veterinary antimicrobial-usage statistics based on standardized measures of dosage. Prev Vet Med. 2004;64(2–4):201–15.PubMedGoogle Scholar
  73. 73.
    Morley PS, Apley MD, Besser TE, Burney DP, Fedorka-Cray PJ, Papich MG, et al. Antimicrobial drug use in veterinary medicine. J Vet Intern Med. 2005;19(4):617–29.PubMedGoogle Scholar
  74. 74.
    Erskine R, Cullor JS, Schaellibaum M, Yancey RJ, Zecconi A, editors. Bovine mastitis pathogens and trends in resistance to antibacterial drugs. NMC 43rd Annual Meeting; 2004; Charlotte, North Carolina: NMC.Google Scholar
  75. 75.
    Erskine RJ, Walker RD, Bolin CA, Bartlett PC, White DG. Trends in antibacterial susceptibility of mastitis pathogens during a seven-year period. J Dairy Sci. 2002;85(5):1111–8.PubMedGoogle Scholar
  76. 76.
    Makovec JA, Ruegg PL. Antimicrobial resistance of bacteria isolated from dairy cow milk samples submitted for bacterial culture: 8,905 samples (1994–2001). J Am Vet Med Assoc. 2003;222(11):1582–9.PubMedGoogle Scholar
  77. 77.
    Mackie DP, Logan EF, Pollock DA, Rodgers SP. Antibiotic sensitivity of bovine staphylococcal and coliform mastitis isolates over four years. Vet Rec. 1988;123(20):515–7.PubMedGoogle Scholar
  78. 78.
    Myllys V, Asplund K, Brofeldt E, Hirvela-Koski V, Honkanen-Buzalski T, Junttila J, et al. Bovine mastitis in Finland in 1988 and 1995–changes in prevalence and antimicrobial resistance. Acta Vet Scand. 1998;39(1):119–26.PubMedGoogle Scholar
  79. 79.
    Myllys V, Honkanen-Buzalski T, Huovinen P, Sandholm M, Nurmi E. Association af changes in the bacterial ecology of bovine mastitis with changes in the use of milking machines and antibacterial drugs. Acta Vet Scand. 1994;35(4):363–9.PubMedGoogle Scholar
  80. 80.
    Persson Y, Nyman AK, Gronlund-Andersson U. Etiology and antimicrobial susceptibility of udder pathogens from cases of subclinical mastitis in dairy cows in Sweden. Acta Vet Scand. 2011;53(1):36.PubMedGoogle Scholar
  81. 81.
    Walker RD. Antimicrobial susceptibility testing methods and interpretation of results. 4th ed. Antimicrobial Therapy in Veterinary Medicine. Ames, Iowa: Blackwell; 2006.Google Scholar
  82. 82.
    Levy SB, FitzGerald GB, Macone AB. Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man. Nature. 1976;260(5546):40–2.PubMedGoogle Scholar
  83. 83.
    Rajala-Schultz PJ, Smith KL, Hogan JS, Love BC. Antimicrobial susceptibility of mastitis pathogens from first lactation and older cows. Vet Microbiol. 2004;102(1–2):33–42.PubMedGoogle Scholar
  84. 84.
    Tikofsky LL, Barlow JW, Santisteban C, Schukken YH. A comparison of antimicrobial susceptibility patterns for Staphylococcus aureus in organic and conventional dairy herds. Microb Drug Resist. 2003;9 Suppl 1:S39–45.PubMedGoogle Scholar
  85. 85.
    Bennedsgaard TW, Thamsborg SM, Aarestrup FM, Enevoldsen C, Vaarst M, Christoffersen AB. Resistance to penicillin of Staphylococcus aureus isolates from cows with high somatic cell counts in organic and conventional dairy herds in Denmark. Acta Vet Scand. 2006;48:24.PubMedGoogle Scholar
  86. 86.
    Wilhelm B, Rajic A, Waddell L, Parker S, Harris J, Roberts KC, et al. Prevalence of zoonotic or potentially zoonotic bacteria, antimicrobial resistance, and somatic cell counts in organic dairy production: current knowledge and research gaps. Foodborne Pathog Dis. 2009;6(5):525–39.PubMedGoogle Scholar
  87. 87.
    Singer RS, Ward MP, Maldonado G. Can landscape ecology untangle the complexity of antibiotic resistance? Nat Rev Microbiol. 2006;4(12):943–52.PubMedGoogle Scholar
  88. 88.
    Bramley AJ, Dodd FH. Reviews of the progress of dairy science: mastitis control–progress and prospects. J Dairy Res. 1984;51(3):481–512.PubMedGoogle Scholar
  89. 89.
    Barlow JW, White LJ, Zadoks RN, Schukken YH. A mathematical model demonstrating indirect and overall effects of lactation therapy targeting subclinical mastitis in dairy herds. Prev Vet Med. 2009;90(1–2):31–42.PubMedGoogle Scholar
  90. 90.
    Dodd FH, Westgarth DR, Neave FK, Kingwill RG. Mastitis–the strategy of control. J Dairy Sci. 1969;52(5):689–95.PubMedGoogle Scholar
  91. 91.
    Bradley AJ, Green MJ. Aetiology of clinical mastitis in six Somerset dairy herds. Vet Rec. 2001;148(22):683–6.PubMedGoogle Scholar
  92. 92.
    McDougall S. Bovine mastitis: epidemiology, treatment and control. N Z Vet J. 2002;50(3 Suppl):81–4.PubMedGoogle Scholar
  93. 93.
    Pitkala A, Haveri M, Pyorala S, Myllys V, Honkanen-Buzalski T. Bovine mastitis in Finland 2001–prevalence, distribution of bacteria, and antimicrobial resistance. J Dairy Sci. 2004;87(8):2433–41.PubMedGoogle Scholar
  94. 94.
    Piepers S, De Meulemeester L, de Kruif A, Opsomer G, Barkema HW, De Vliegher S. Prevalence and distribution of mastitis pathogens in subclinically infected dairy cows in Flanders, Belgium. J Dairy Res. 2007;74(4):478–83.PubMedGoogle Scholar
  95. 95.
    Bradley A. Bovine mastitis: an evolving disease. Vet J. 2002;164(2):116–28.PubMedGoogle Scholar
  96. 96.
    Osteras O, Solverod L, Reksen O. Milk culture results in a large Norwegian survey–effects of season, parity, days in milk, resistance, and clustering. J Dairy Sci. 2006;89(3):1010–23.PubMedGoogle Scholar
  97. 97.
    Dogan B, Klaessig S, Rishniw M, Almeida RA, Oliver SP, Simpson K, et al. Adherent and invasive Escherichia coli are associated with persistent bovine mastitis. Vet Microbiol. 2006;116(4):270–82.PubMedGoogle Scholar
  98. 98.
    Pyorala S, Taponen S. Coagulase-negative staphylococci-emerging mastitis pathogens. Vet Microbiol. 2009;134(1–2):3–8.PubMedGoogle Scholar
  99. 99.
    Kampa J, Sukolapong V, Buttasri A, Charoenchai A. Prevalence of Mycoplasma bovis and other contagious bovine mastitis pathogens in bulk tank milk of dairy cattle herds in Khon Kaen Province, Thailand. Thai J Vet Med. 2009;39(3):275–80.Google Scholar
  100. 100.
    Kampa J, Sukolapong V, Chaiyotwittakun A, Rerk-u-suke S, Polpakdee A. Chronic mastitis in small dairy cattle herds in Muang Khon Kaen. Thai J Vet Med. 2010;40(3):265–72.Google Scholar
  101. 101.
    Dego OK, Tareke F. Bovine mastitis in selected areas of southern Ethiopia. Trop Anim Health Prod. 2003;35(3):197–205.PubMedGoogle Scholar
  102. 102.
    Almaw G, Zerihun A, Asfaw Y. Bovine mastitis and its association with selected risk factors in smallholder dairy farms in and around Bahir Dar, Ethiopia. Trop Anim Health Prod. 2008;40(6):427–32.PubMedGoogle Scholar
  103. 103.
    Taponen S, Pyorala S. Coagulase-negative staphylococci as cause of bovine mastitis- not so different from Staphylococcus aureus? Vet Microbiol. 2009;134(1–2):29–36.PubMedGoogle Scholar
  104. 104.
    Dingwell RT, Leslie KE, Sabour P, Lepp D, Pacan J. Influence of the genotype of Staphylococcus aureus, determined by pulsed-field gel electrophoresis, on dry-period elimination of subclinical mastitis in Canadian dairy herds. Can J Vet Res. 2006;70(2):115–20.PubMedGoogle Scholar
  105. 105.
    Haveri M, Taponen S, Vuopio-Varkila J, Salmenlinna S, Pyorala S. Bacterial genotype affects the manifestation and persistence of bovine Staphylococcus aureus intramammary infection. J Clin Microbiol. 2005;43(2):959–61.PubMedGoogle Scholar
  106. 106.
    van den Borne BH, Nielen M, van Schaik G, Melchior MB, Lam TJ, Zadoks RN. Host adaptation of bovine Staphylococcus aureus seems associated with bacteriological cure after lactational antimicrobial treatment. J Dairy Sci. 2010;93(6):2550–8.PubMedGoogle Scholar
  107. 107.
    Sung JM, Lindsay JA. Staphylococcus aureus strains that are hypersusceptible to resistance gene transfer from enterococci. Antimicrob Agents Chemother. 2007;51(6):2189–91.PubMedGoogle Scholar
  108. 108.
    Sakwinska O, Morisset D, Madec JY, Waldvogel A, Moreillon P, Haenni M. Link between genotype and antimicrobial resistance in bovine mastitis-related Staphylococcus aureus strains, determined by comparing Swiss and French isolates from the Rhone Valley. Appl Environ Microbiol. 2011;77(10):3428–32.PubMedGoogle Scholar
  109. 109.
    Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol. 2000;38(3):1008–15.PubMedGoogle Scholar
  110. 110.
    Garcia-Alvarez L, Holden MT, Lindsay H, Webb CR, Brown DF, Curran MD, et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis. 2011;11(8):595–603.PubMedGoogle Scholar
  111. 111.
    van Loo I, Huijsdens X, Tiemersma E, de Neeling A, van de Sande-Bruinsma N, Beaujean D, et al. Emergence of methicillin-resistant Staphylococcus aureus of animal origin in humans. Emerg Infect Dis. 2007;13(12):1834–9.PubMedGoogle Scholar
  112. 112.
    Vanderhaeghen W, Cerpentier T, Adriaensen C, Vicca J, Hermans K, Butaye P. Methicillin-resistant Staphylococcus aureus (MRSA) ST398 associated with clinical and subclinical mastitis in Belgian cows. Vet Microbiol. 2010;144(1–2):166–71.PubMedGoogle Scholar
  113. 113.
    Catry B, Van Duijkeren E, Pomba MC, Greko C, Moreno MA, Pyorala S, et al. Reflection paper on MRSA in food-producing and companion animals: epidemiology and control options for human and animal health. Epidemiol Infect. 2010;138(5):626–44.PubMedGoogle Scholar
  114. 114.
    Fessler A, Scott C, Kadlec K, Ehricht R, Monecke S, Schwarz S. Characterization of methicillin-resistant Staphylococcus aureus ST398 from cases of bovine mastitis. J Antimicrob Chemother. 2010;65(4):619–25.PubMedGoogle Scholar
  115. 115.
    Roberson JR, Warnick LD, Moore G. Mild to moderate clinical mastitis: efficacy of intramammary amoxicillin, frequent milk-out, a combined intramammary amoxicillin, and frequent milk-out treatment versus no treatment. J Dairy Sci. 2004;87(3):583–92.PubMedGoogle Scholar
  116. 116.
    Kromker V, Zinke C, Paduch JH, Klocke D, Reimann A, Eller G. Evaluation of increased milking frequency as an additional treatment for cows with clinical mastitis. J Dairy Res. 2010;77(1):90–4.PubMedGoogle Scholar
  117. 117.
    Pinzon-Sanchez C, Cabrera VE, Ruegg PL. Decision tree analysis of treatment strategies for mild and moderate cases of clinical mastitis occurring in early lactation. J Dairy Sci. 2011;94(4):1873–92.PubMedGoogle Scholar
  118. 118.
    Neeser NL, Hueston WD, Godden SM, Bey RF. Evaluation of the use of an on-farm system for bacteriologic culture of milk from cows with low-grade mastitis. J Am Vet Med Assoc. 2006;228(2):254–60.PubMedGoogle Scholar
  119. 119.
    Schukken YH, Wilson DJ, Welcome F, Garrison-Tikofsky L, Gonzalez RN. Monitoring udder health and milk quality using somatic cell counts. Vet Res. 2003;34(5):579–96.PubMedGoogle Scholar
  120. 120.
    van den Borne BH, Halasa T, van Schaik G, Hogeveen H, Nielen M. Bioeconomic modeling of lactational antimicrobial treatment of new bovine subclinical intramammary infections caused by contagious pathogens. J Dairy Sci. 2010;93(9):4034–44.PubMedGoogle Scholar
  121. 121.
    Keefe GP. Streptococcus agalactiae mastitis: a review. Can Vet J. 1997;38(7):429–37.PubMedGoogle Scholar
  122. 122.
    Yamagata M, Goodger WJ, Weaver L, Franti C. The economic benefit of treating subclinical Streptococcus agalactiae mastitis in lactating cows. J Am Vet Med Assoc. 1987;191(12):1556–61.PubMedGoogle Scholar
  123. 123.
    Edmondson PW. An economic justification of “blitz” therapy to eradicate Streptococcus agalactiae from a dairy herd. Vet Rec. 1989;125(24):591–3.PubMedGoogle Scholar
  124. 124.
    Zadoks RN, Allore HG, Barkema HW, Sampimon OC, Wellenberg GJ, Grohn YT, et al. Cow- and quarter-level risk factors for Streptococcus uberis and Staphylococcus aureus mastitis. J Dairy Sci. 2001;84(12):2649–63.PubMedGoogle Scholar
  125. 125.
    Zadoks RN, Allore HG, Hagenaars TJ, Barkema HW, Schukken YH. A mathematical model of Staphylococcus aureus control in dairy herds. Epidemiol Infect. 2002;129(2):397–416.PubMedGoogle Scholar
  126. 126.
    Halasa T, Osteras O, Hogeveen H, van Werven T, Nielen M. Meta-analysis of dry cow management for dairy cattle. Part 1. Protection against new intramammary infections. J Dairy Sci. 2009;92(7):3134–49.PubMedGoogle Scholar
  127. 127.
    Berry EA, Hillerton JE. The effect of selective dry cow treatment on new intramammary infections. J Dairy Sci. 2002;85(1):112–21.PubMedGoogle Scholar
  128. 128.
    Berry EA, Hillerton JE. The effect of an intramammary teat seal on new intramammary infections. J Dairy Sci. 2002;85(10):2512–20.PubMedGoogle Scholar
  129. 129.
    Whist AC, Osteras O, Solverod L. Clinical mastitis in Norwegian herds after a combined selective dry-cow therapy and teat-dipping trial. J Dairy Sci. 2006;89(12):4649–59.PubMedGoogle Scholar
  130. 130.
    Whist AC, Osteras O, Solverod L. Staphylococcus aureus and Streptococcus dysgalactiae in Norwegian herds after introduction of selective dry cow therapy and teat dipping. J Dairy Res. 2007;74(1):1–8.PubMedGoogle Scholar
  131. 131.
    Bergonier D, de Cremoux R, Rupp R, Lagriffoul G, Berthelot X. Mastitis of dairy small ruminants. Vet Res. 2003;34(5):689–716.PubMedGoogle Scholar
  132. 132.
    Mavrogianni VS, Menzies PI, Fragkou IA, Fthenakis GC. Principles of mastitis treatment in sheep and goats. Vet Clin North Am Food Anim Pract. 2011;27(1):115–20.PubMedGoogle Scholar
  133. 133.
    Menzies PI, Ramanoon SZ. Mastitis of sheep and goats. Vet Clin North Am Food Anim Pract. 2001;17(2):333–58. vii.PubMedGoogle Scholar
  134. 134.
    Contreras A, Sierra D, Sanchez A, Corrales JC, Marco JC, Paape MJ, et al. Mastitis in small ruminants. Small Ruminant Res. 2007;68(1–2):145–53.Google Scholar
  135. 135.
    Poutrel B, de Cremoux R, Ducelliez M, Verneau D. Control of intramammary infections in goats: impact on somatic cell counts. J Anim Sci. 1997;75(2):566–70.PubMedGoogle Scholar
  136. 136.
    Gonzalo C, Tardaguila JA, De La Fuente LF, San Primitivo F. Effects of selective and complete dry therapy on prevalence of intramammary infection and on milk yield in the subsequent lactation in dairy ewes. J Dairy Res. 2004;71(1):33–8.PubMedGoogle Scholar
  137. 137.
    Linage B, Gonzalo C. Influence of an intramammary infusion at drying-off of combined penethamate hydriodide, benethamine penicillin, and framycetin sulfate on intramammary infections and somatic cell counts in dairy sheep. J Dairy Sci. 2008;91(9):3459–66.PubMedGoogle Scholar
  138. 138.
    McDougall S, Supre K, De Vliegher S, Haesebrouck F, Hussein H, Clausen L, et al. Diagnosis and treatment of subclinical mastitis in early lactation in dairy goats. J Dairy Sci. 2010;93(10):4710–21.PubMedGoogle Scholar
  139. 139.
    Ahmad S, Yaqoob M, Bilal MQ, Muhammad G, Yang LG, Khan MK et al. Risk factors associated with prevalence and major bacterial causes of mastitis in dromedary camels (Camelus dromedarius) under different production systems. Trop Anim Health Prod. 2011.Google Scholar
  140. 140.
    Ng L, Jost C, Robyn M, Dhakal IP, Bett B, Dhakal P, et al. Impact of livestock hygiene education programs on mastitis in smallholder water buffalo (Bubalus bubalis) in Chitwan, Nepal. Prev Vet Med. 2010;96(3–4):179–85.PubMedGoogle Scholar
  141. 141.
    El-Khodery SA, Osman SA. Acute coliform mastitis in buffaloes (Bubalus bubalis): clinical findings and treatment outcomes. Trop Anim Health Prod. 2008;40(2):93–9.PubMedGoogle Scholar
  142. 142.
    Moroni P, Sgoifo Rossi C, Pisoni G, Bronzo V, Castiglioni B, Boettcher PJ. Relationships between somatic cell count and intramammary infection in buffaloes. J Dairy Sci. 2006;89(3):998–1003.PubMedGoogle Scholar
  143. 143.
    Unal N, Askar S, Macun HC, Sakarya F, Altun B. Yildirim M. Trop Anim Health Prod: Panton-Valentine leukocidin and some exotoxins of Staphylococcus aureus and antimicrobial susceptibility profiles of staphylococci isolated from milks of small ruminants; 2011.Google Scholar
  144. 144.
    Virdis S, Scarano C, Cossu F, Spanu V, Spanu C, De Santis EP. Antibiotic Resistance in Staphylococcus aureus and coagulase negative staphylococci isolated from goats with subclinical mastitis. Vet Med Int. 2010;2010:517060.PubMedGoogle Scholar
  145. 145.
    Moroni P, Pisoni G, Antonini M, Ruffo G, Carli S, Varisco G, et al. Subclinical mastitis and antimicrobial susceptibility of Staphylococcus caprae and Staphylococcus epidermidis isolated from two Italian goat herds. J Dairy Sci. 2005;88(5):1694–704.PubMedGoogle Scholar
  146. 146.
    Moroni P, Vellere F, Antonini M, Pisoni G, Ruffo G, Carli S. Antibiotic susceptibility of coagulase-negative staphylococci isolated from goats’ milk. Int J Antimicrob Agents. 2004;23(6):637–40.PubMedGoogle Scholar
  147. 147.
    Onni T, Sanna G, Larsen J, Tola S. Antimicrobial susceptibilities and population structure of Staphylococcus epidermidis associated with ovine mastitis. Vet Microbiol. 2011;148(1):45–50.PubMedGoogle Scholar
  148. 148.
    Development DoCaAHa. Mastitis: causes and management. World Health Organization, Geneva, Switzerland. 2000. http://whqlibdoc.who.int/hq/2000/WHO_FCH_CAH_00.13.pdf. Accessed June 22, 2011.
  149. 149.
    Barbosa-Cesnik C, Schwartz K, Foxman B. Lactation mastitis. JAMA. 2003;289(13):1609–12.PubMedGoogle Scholar
  150. 150.
    Foxman B, D’Arcy H, Gillespie B, Bobo JK, Schwartz K. Lactation mastitis: occurrence and medical management among 946 breastfeeding women in the United States. Am J Epidemiol. 2002;155(2):103–14.PubMedGoogle Scholar
  151. 151.
    Vogel A, Hutchison BL, Mitchell EA. Mastitis in the first year postpartum. Birth. 1999;26(4):218–25.PubMedGoogle Scholar
  152. 152.
    Amir LH, Forster DA, Lumley J, McLachlan H. A descriptive study of mastitis in Australian breastfeeding women: incidence and determinants. BMC Public Health. 2007;7:62.PubMedGoogle Scholar
  153. 153.
    Kinlay JR, O’Connell DL, Kinlay S. Incidence of mastitis in breastfeeding women during the six months after delivery: a prospective cohort study. Med J Aust. 1998;169(6):310–2.PubMedGoogle Scholar
  154. 154.
    Osterman KL, Rahm VA. Lactation mastitis: bacterial cultivation of breast milk, symptoms, treatment, and outcome. J Hum Lact. 2000;16(4):297–302.PubMedGoogle Scholar
  155. 155.
    Delgado S, Arroyo R, Jimenez E, Marin ML, del Campo R, Fernandez L, et al. Staphylococcus epidermidis strains isolated from breast milk of women suffering infectious mastitis: potential virulence traits and resistance to antibiotics. BMC Microbiol. 2009;9:82.PubMedGoogle Scholar
  156. 156.
    Spencer JP. Management of mastitis in breastfeeding women. Am Fam Physician. 2008;78(6):727–31.PubMedGoogle Scholar
  157. 157.
    Riordan JM, Nichols FH. A descriptive study of lactation mastitis in long-term breastfeeding women. J Hum Lact. 1990;6(2):53–8.PubMedGoogle Scholar
  158. 158.
    Amir LH, Harris H, Andriske L. An audit of mastitis in the emergency department. J Hum Lact. 1999;15(3):221–4.PubMedGoogle Scholar
  159. 159.
    Berens P, Swaim L, Peterson B. Incidence of methicillin-resistant Staphylococcus aureus in postpartum breast abscesses. Breastfeed Med. 2010;5(3):113–5.PubMedGoogle Scholar
  160. 160.
    Schoenfeld EM, McKay MP. Mastitis and methicillin-resistant Staphylococcus aureus (MRSA): the calm before the storm? J Emerg Med. 2010;38(4):e31–4.PubMedGoogle Scholar
  161. 161.
    Stafford I, Hernandez J, Laibl V, Sheffield J, Roberts S, Wendel Jr G. Community-acquired methicillin-resistant Staphylococcus aureus among patients with puerperal mastitis requiring hospitalization. Obstet Gynecol. 2008;112(3):533–7.PubMedGoogle Scholar
  162. 162.
    Montalto M, Lui B. MRSA as a cause of postpartum breast abscess in infant and mother. J Hum Lact. 2009;25(4):448–50.PubMedGoogle Scholar
  163. 163.
    Moazzez A, Kelso RL, Towfigh S, Sohn H, Berne TV, Mason RJ. Breast abscess bacteriologic features in the era of community-acquired methicillin-resistant Staphylococcus aureus epidemics. Arch Surg. 2007;142(9):881–4.PubMedGoogle Scholar
  164. 164.
    Delgado S, Garcia P, Fernandez L, Jimenez E, Rodriguez-Banos M, Del Campo R, et al. Characterization of Staphylococcus aureus strains involved in human and bovine mastitis. FEMS Immunol Med Microbiol. 2011;62(2):225–35.PubMedGoogle Scholar
  165. 165.
    Odell CA. Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) skin infections. Curr Opin Pediatr. 2010;22(3):273–7.PubMedGoogle Scholar
  166. 166.
    Rowan LL, Morin DE, Hurley WL, Shanks RD, Kakoma I, Hoffmann WE, et al. Evaluation of udder health and mastitis in llamas. J Am Vet Med Assoc. 1996;209(8):1457–63.PubMedGoogle Scholar
  167. 167.
    McCue PM, Wilson WD. Equine mastitis—a review of 28 cases. Equine Vet J. 1989;21(5):351–3.PubMedGoogle Scholar
  168. 168.
    Johnston SD, Hatden DW. Non-neoplastic disorders of the mammary gland. Current Veterinary Therapy VII, Small Animal Practice. Philadelphia: W.B. Saunders Co; 1980.Google Scholar
  169. 169.
    Johnston SD. Managment of the post-partum bitch and queen. Current Veterinary Therapy VIII, Small Animal Practice. Philadelphia: W.B. Saunders; 1983.Google Scholar
  170. 170.
    Wiebe VJ, Howard JP. Pharmacologic advances in canine and feline reproduction. Top Companion Anim Med. 2009;24(2):71–99.PubMedGoogle Scholar
  171. 171.
    Gerjets I, Traulsen I, Reiners K. Kemper N. Vet Microbiol: Comparison of virulence gene profiles of Escherichia coli isolates from sows with coliform mastitis and healthy sows; 2011.Google Scholar
  172. 172.
    Gerjets I, Traulsen I, Reiners K, Kemper N. Assessing individual sow risk factors for coliform mastitis: a case-control study. Prev Vet Med. 2011;100(3–4):248–51.PubMedGoogle Scholar
  173. 173.
    Weese JS. Methicillin-resistant Staphylococcus aureus in animals. ILAR J. 2010;51(3):233–44.PubMedGoogle Scholar
  174. 174.
    Kottler S, Middleton JR, Perry J, Weese JS, Cohn LA. Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus carriage in three populations. J Vet Intern Med. 2010;24(1):132–9.PubMedGoogle Scholar
  175. 175.
    Sol J, Sampimon OC, Snoep JJ, Schukken YH. Factors associated with bacteriological cure after dry cow treatment of subclinical staphylococcal mastitis with antibiotics. J Dairy Sci. 1994;77(1):75–9.PubMedGoogle Scholar
  176. 176.
    Dingwell RT, Leslie KE, Duffield TF, Schukken YH, DesCoteaux L, Keefe GP, et al. Efficacy of intramammary tilmicosin and risk factors for cure of Staphylococcus aureus infection in the dry period. J Dairy Sci. 2003;86(1):159–68.PubMedGoogle Scholar
  177. 177.
    Oliver SP, Almeida RA, Gillespie BE, Headrick SJ, Dowlen HH, Johnson DL, et al. Extended ceftiofur therapy for treatment of experimentally-induced Streptococcus uberis mastitis in lactating dairy cattle. J Dairy Sci. 2004;87(10):3322–9.PubMedGoogle Scholar
  178. 178.
    Oliver SP, Almeida RA, Gillespie BE, Ivey SJ, Moorehead H, Lunn P, et al. Efficacy of extended pirlimycin therapy for treatment of experimentally induced Streptococcus uberis intramammary infections in lactating dairy cattle. Vet Ther. 2003;4(3):299–308.PubMedGoogle Scholar
  179. 179.
    Gillespie BE, Moorehead H, Lunn P, Dowlen HH, Johnson DL, Lamar KC, et al. Efficacy of extended pirlimycin hydrochloride therapy for treatment of environmental Streptococcus spp. and Staphylococcus aureus intramammary infections in lactating dairy cows. Vet Ther. 2002;3(4):373–80.PubMedGoogle Scholar
  180. 180.
    Graber HU, Naskova J, Studer E, Kaufmann T, Kirchhofer M, Brechbuhl M, et al. Mastitis-related subtypes of bovine Staphylococcus aureus are characterized by different clinical properties. J Dairy Sci. 2009;92(4):1442–51.PubMedGoogle Scholar
  181. 181.
    Supre K, Haesebrouck F, Zadoks RN, Vaneechoutte M, Piepers S, De Vliegher S. Some coagulase-negative Staphylococcus species affect udder health more than others. J Dairy Sci. 2011;94(5):2329–40.PubMedGoogle Scholar
  182. 182.
    Schukken YH, Deluyker HA. Design of field trials for the evaluation of antibacterial products for therapy of bovine clinical mastitis. J Vet Pharmacol Ther. 1995;18(4):274–83.PubMedGoogle Scholar
  183. 183.
    Thorburn MA. General principles for the design of clinical trials with special reference to mastitis therapy. IDF Bull. 1990;247:39–48.Google Scholar
  184. 184.
    US-FDA-CVM. CVM GFI #49 Target Animal Safety And Drug Effectiveness Studies for Anti-Microbial Bovine Mastitis Products (Lactating and Non-Lactating Cow Products). 1996.Google Scholar
  185. 185.
    Schukken YH, Grohn YT, McDermott B, McDermott JJ. Analysis of correlated discrete observations: background, examples and solutions. Prev Vet Med. 2003;59(4):223–40.PubMedGoogle Scholar
  186. 186.
    Dohoo IR, Martin ML, Stryhn H. Veterinary Epidemiologic Research. Charlottetown: AVC Inc.; 2003.Google Scholar
  187. 187.
    Apparao MD, Ruegg PL, Lago A, Godden S, Bey R, Leslie K. Relationship between in vitro susceptibility test results and treatment outcomes for gram-positive mastitis pathogens following treatment with cephapirin sodium. J Dairy Sci. 2009;92(6):2589–97.PubMedGoogle Scholar
  188. 188.
    Stegeman JA, Vernooij JC, Khalifa OA, Van den Broek J, Mevius DJ. Establishing the change in antibiotic resistance of Enterococcus faecium strains isolated from Dutch broilers by logistic regression and survival analysis. Prev Vet Med. 2006;74(1):56–66.PubMedGoogle Scholar
  189. 189.
    Cattell MB, Dinsmore RP, Belschner AP, Carmen J, Goodell G. Environmental gram-positive mastitis treatment: in vitro sensitivity and bacteriologic cure. J Dairy Sci. 2001;84(9):2036–43.PubMedGoogle Scholar
  190. 190.
    Constable PD, Morin DE. Use of antimicrobial susceptibility testing of bacterial pathogens isolated from the milk of dairy cows with clinical mastitis to predict response to treatment with cephapirin and oxytetracycline. J Am Vet Med Assoc. 2002;221(1):103–8.PubMedGoogle Scholar
  191. 191.
    Hoe FG, Ruegg PL. Relationship between antimicrobial susceptibility of clinical mastitis pathogens and treatment outcome in cows. J Am Vet Med Assoc. 2005;227(9):1461–8.PubMedGoogle Scholar
  192. 192.
    Shpigel NY, Winkler M, Ziv G, Saran A. Relationship between in vitro sensitivity of coliform pathogens in the udder and the outcome of treatment for clinical mastitis. Vet Rec. 1998;142(6):135–7.PubMedGoogle Scholar
  193. 193.
    Pyorala S, Syvajarvi J. Bovine acute mastitis. Part II. Effect of mastitis pathogen, initial inflammatory reaction and therapy on the outcome of the disease. Zentralbl Veterinarmed B. 1987;34(9):629–39.PubMedGoogle Scholar
  194. 194.
    Suojala L, Pohjanvirta T, Simojoki H, Myllyniemi AL, Pitkala A, Pelkonen S, et al. Phylogeny, virulence factors and antimicrobial susceptibility of Escherichia coli isolated in clinical bovine mastitis. Vet Microbiol. 2011;147(3–4):383–8.PubMedGoogle Scholar
  195. 195.
    Salas M, Hofman A, Stricker BH. Confounding by indication: an example of variation in the use of epidemiologic terminology. Am J Epidemiol. 1999;149(11):981–3.PubMedGoogle Scholar
  196. 196.
    Thornsberry C, Burton PJ, Yee YC, Watts JL, Yancey Jr RJ. The activity of a combination of penicillin and novobiocin against bovine mastitis pathogens: development of a disk diffusion test. J Dairy Sci. 1997;80(2):413–21.PubMedGoogle Scholar
  197. 197.
    Luby CD, Middleton JR. Efficacy of vaccination and antibiotic therapy against Staphylococcus aureus mastitis in dairy cattle. Vet Rec. 2005;157(3):89–90.PubMedGoogle Scholar
  198. 198.
    Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol. 1995;33(9):2233–9.PubMedGoogle Scholar
  199. 199.
    Goerke C, Matias y Papenberg S, Dasbach S, Dietz K, Ziebach R, Kahl BC. Increased frequency of genomic alterations in Staphylococcus aureus during chronic infection is in part due to phage mobilization. J Infect Dis. 2004;189(4):724–34.PubMedGoogle Scholar
  200. 200.
    Goerke C, Wolz C. Adaptation of Staphylococcus aureus to the cystic fibrosis lung. Int J Med Microbiol. 2010;300(8):520–5.PubMedGoogle Scholar
  201. 201.
    Smith EM, Green LE, Medley GF, Bird HE, Dowson CG. Multilocus sequence typing of Staphylococcus aureus isolated from high-somatic-cell-count cows and the environment of an organic dairy farm in the United Kingdom. J Clin Microbiol. 2005;43(9):4731–6.PubMedGoogle Scholar
  202. 202.
    CLSI. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals: approved standard. M31-A3, 3thd ed. Wayne, PA: CLSI; 2008Google Scholar
  203. 203.
    Singer RS, Johnson WO, Jeffrey JS, Chin RP, Carpenter TE, Atwill ER, et al. A statistical model for assessing sample size for bacterial colony selection: a case study of Escherichia coli and avian cellulitis. J Vet Diagn Invest. 2000;12(2):118–25.PubMedGoogle Scholar
  204. 204.
    Hogan JS, Gonzalez RN, Harmon RJ, Nickerson SC, Oliver SP, Pankey JW, et al. Laboratory Handbook on Bovine Mastitis (revised edition) Madison. WI: National Mastitis Council; 1999.Google Scholar
  205. 205.
    Saini V, Riekerink RG, McClure JT, Barkema HW. Diagnostic accuracy assessment of Sensititre and agar disk diffusion for determining antimicrobial resistance profiles of bovine clinical mastitis pathogens. J Clin Microbiol. 2011;49(4):1568–77.PubMedGoogle Scholar
  206. 206.
    Owens WE, Watts JL. Effects of milk on activity of antimicrobics against Staphylococcus aureus isolated from bovine udders. J Dairy Sci. 1987;70(9):1946–51.PubMedGoogle Scholar
  207. 207.
    Myllys V, Louhi M, Ali-Vehmas T. Comparison of penicillin-G susceptibility testing methods of staphylococci isolated from bovine mastitis. Zentralbl Veterinarmed B. 1992;39(10):723–31.PubMedGoogle Scholar
  208. 208.
    Constable PD, Morin DE. Treatment of clinical mastitis. Using antimicrobial susceptibility profiles for treatment decisions. Vet Clin North Am Food Anim Pract. 2003;19(1):139–55.PubMedGoogle Scholar
  209. 209.
    Apley MD. Susceptibility testing for bovine respiratory and enteric disease. Vet Clin North Am Food Anim Pract. 2003;19(3):625–46.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Animal ScienceUniversity of VermontBurlingtonUSA

Personalised recommendations