Skip to main content

Advertisement

Log in

Epigenetic Regulation in Estrogen Receptor Positive Breast Cancer—Role in Treatment Response

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Recent advances in breast cancer treatment have allowed increasing numbers of patients with estrogen receptor (ER) positive (+) breast cancer to receive various forms of endocrine therapy. Unfortunately, de novo and acquired resistance to endocrine therapy remains a major challenge in the clinic. A number of possible mechanisms for drug resistance have been described, which include activation of growth factor receptor pathways, overexpression of ER coactivators, and metabolic resistance due to polymorphisms in metabolizing enzymes. While many of these changes are caused by genetic alterations, there is also increasing evidence to implicate epigenetic gene regulatory mechanisms in the development of endocrine resistance. Since epigenetic modifications are easier to reverse than genetic mutations, they are appealing therapeutic targets, and thus future improvements in medical care for breast cancer patients will depend upon a better understanding of the roles epigenetic modifications play in endocrine resistance. In this review we will focus on recent advances made in the understanding of epigenetic gene regulation in estrogen response and endocrine resistance in breast cancer. We will also summarize current clinical-translational advances in epigenetic therapy, and discuss potential future clinical use of epigenetic changes as therapeutic targets, especially with respect to endocrine treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

estrogen receptor

PR:

progesterone receptor

HDAC:

histone deacetylase

SERM:

selective estrogen receptor modulators

AI:

aromatase inhibitor

References

  1. Altundag K, Ibrahim NK. Aromatase inhibitors in breast cancer: an overview. Oncologist. 2006;11:553–62.

    Article  PubMed  CAS  Google Scholar 

  2. Baum M. The ATAC (Arimidex, Tamoxifen, Alone or in Combination) adjuvant breast cancer trial in postmenopausal patients: factors influencing the success of patient recruitment. Eur J Cancer. 2002;38:1984–6.

    Article  PubMed  CAS  Google Scholar 

  3. Crivellari D, Sun Z, Coates AS, et al. Letrozole compared with tamoxifen for elderly patients with endocrine-responsive early breast cancer: the BIG 1-98 trial. J Clin Oncol. 2008;26:1972–9.

    Article  PubMed  CAS  Google Scholar 

  4. Normanno N, Di Maio M, De Maio E, et al. Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer. 2005;12:721–47.

    Article  PubMed  CAS  Google Scholar 

  5. Musgrove EA, Sutherland RL. Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer. 2009;9:631–43.

    Article  PubMed  CAS  Google Scholar 

  6. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365:1687–717.

    Article  CAS  Google Scholar 

  7. Johnston SR, Dowsett M. Aromatase inhibitors for breast cancer: lessons from the laboratory. Nat Rev Cancer. 2003;3:821–31.

    Article  PubMed  CAS  Google Scholar 

  8. MacGregor JI, Jordan VC. Basic guide to the mechanisms of antiestrogen action. Pharmacol Rev. 1998;50:151–96.

    PubMed  CAS  Google Scholar 

  9. Bardou VJ, Arpino G, Elledge RM, Osborne CK, Clark GM. Progesterone receptor status significantly improves outcome prediction over estrogen receptor status alone for adjuvant endocrine therapy in two large breast cancer databases. J Clin Oncol. 2003;21:1973–9.

    Article  PubMed  CAS  Google Scholar 

  10. Cui X, Zhang P, Deng W, et al. Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Mol Endocrinol. 2003;17:575–88.

    Article  PubMed  CAS  Google Scholar 

  11. Hiscox S, Morgan L, Green TP, Barrow D, Gee J, Nicholson RI. Elevated Src activity promotes cellular invasion and motility in tamoxifen resistant breast cancer cells. Breast Cancer Res Treat. 2006;97:263–74.

    Article  PubMed  CAS  Google Scholar 

  12. Britton DJ, Hutcheson IR, Knowlden JM, et al. Bidirectional cross talk between ERalpha and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Res Treat. 2006;96:131–46.

    Article  PubMed  CAS  Google Scholar 

  13. Hutcheson IR, Knowlden JM, Madden TA, et al. Oestrogen receptor-mediated modulation of the EGFR/MAPK pathway in tamoxifen-resistant MCF-7 cells. Breast Cancer Res Treat. 2003;81:81–93.

    Article  PubMed  CAS  Google Scholar 

  14. Shou J, Massarweh S, Osborne CK, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004;96:926–35.

    PubMed  CAS  Google Scholar 

  15. Masamura S, Santner SJ, Heitjan DF, Santen RJ. Estrogen deprivation causes estradiol hypersensitivity in human breast cancer cells. J Clin Endocrinol Metab. 1995;80:2918–25.

    Article  PubMed  CAS  Google Scholar 

  16. Santen RJ, Song RX, Zhang Z, et al. Adaptive hypersensitivity to estrogen: mechanism for superiority of aromatase inhibitors over selective estrogen receptor modulators for breast cancer treatment and prevention. Endocr Relat Cancer. 2003;10:111–30.

    Article  PubMed  CAS  Google Scholar 

  17. Martin LA, Farmer I, Johnston SR, Ali S, Dowsett M. Elevated ERK1/ERK2/estrogen receptor cross-talk enhances estrogen-mediated signaling during long-term estrogen deprivation. Endocr Relat Cancer. 2005;12 Suppl 1:S75–84.

    Article  PubMed  CAS  Google Scholar 

  18. Redmond AM, Bane FT, Stafford AT, et al. Coassociation of estrogen receptor and p160 proteins predicts resistance to endocrine treatment; SRC-1 is an independent predictor of breast cancer recurrence. Clin Cancer Res. 2009;15:2098–106.

    Article  PubMed  CAS  Google Scholar 

  19. Osborne CK, Bardou V, Hopp TA, et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst. 2003;95:353–61.

    PubMed  CAS  Google Scholar 

  20. Girault I, Lerebours F, Amarir S, et al. Expression analysis of estrogen receptor alpha coregulators in breast carcinoma: evidence that NCOR1 expression is predictive of the response to tamoxifen. Clin Cancer Res. 2003;9:1259–66.

    PubMed  CAS  Google Scholar 

  21. Bautista S, Valles H, Walker RL, et al. In breast cancer, amplification of the steroid receptor coactivator gene AIB1 is correlated with estrogen and progesterone receptor positivity. Clin Cancer Res. 1998;4:2925–9.

    PubMed  CAS  Google Scholar 

  22. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.

    Article  PubMed  CAS  Google Scholar 

  23. Riggins RB, Schrecengost RS, Guerrero MS, Bouton AH. Pathways to tamoxifen resistance. Cancer Lett. 2007;256:1–24.

    Article  PubMed  CAS  Google Scholar 

  24. Arpino G, Wiechmann L, Osborne CK, Schiff R. Crosstalk between the estrogen receptor and the HER tyrosine kinase receptor family: molecular mechanism and clinical implications for endocrine therapy resistance. Endocr Rev. 2008;29:217–33.

    Article  PubMed  CAS  Google Scholar 

  25. Pruitt K, Zinn RL, Ohm JE, et al. Inhibition of SIRT1 reactivates silenced cancer genes without loss of promoter DNA hypermethylation. PLoS Genet. 2006;2:e40.

    Article  PubMed  CAS  Google Scholar 

  26. Jones PA, Baylin SB. The epigenomics of cancer. Cell. 2007;128:683–92.

    Article  PubMed  CAS  Google Scholar 

  27. Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum Mol Genet. 2005;14(Spec No 1):R47–58.

    Article  PubMed  CAS  Google Scholar 

  28. Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007;447:407–12.

    Article  PubMed  CAS  Google Scholar 

  29. Harikrishnan KN, Chow MZ, Baker EK, et al. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing. Nat Genet. 2005;37:254–64.

    Article  PubMed  CAS  Google Scholar 

  30. Jones PL, Veenstra GJ, Wade PA, et al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet. 1998;19:187–91.

    Article  PubMed  CAS  Google Scholar 

  31. Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998;393:386–9.

    Article  PubMed  CAS  Google Scholar 

  32. Jones PA, Baylin SB. The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002;3:415–28.

    Article  PubMed  CAS  Google Scholar 

  33. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53.

    Article  PubMed  CAS  Google Scholar 

  34. Widschwendter M, Jones PA. DNA methylation and breast carcinogenesis. Oncogene. 2002;21:5462–82.

    Article  PubMed  CAS  Google Scholar 

  35. Radpour R, Kohler C, Haghighi MM, Fan AX, Holzgreve W, Zhong XY. Methylation profiles of 22 candidate genes in breast cancer using high-throughput MALDI-TOF mass array. Oncogene. 2009;28:2969–78.

    Article  PubMed  CAS  Google Scholar 

  36. Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature. 2001;409:633–7.

    Article  PubMed  CAS  Google Scholar 

  37. Tlsty TD, Romanov SR, Kozakiewicz BK, Holst CR, Haupt LM, Crawford YG. Loss of chromosomal integrity in human mammary epithelial cells subsequent to escape from senescence. J Mammary Gland Biol Neoplasia. 2001;6:235–43.

    Article  PubMed  CAS  Google Scholar 

  38. Mistry AR, Pedersen EW, Solomon E, Grimwade D. The molecular pathogenesis of acute promyelocytic leukaemia: implications for the clinical management of the disease. Blood Rev. 2003;17:71–97.

    Article  PubMed  Google Scholar 

  39. Varambally S, Dhanasekaran SM, Zhou M, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419:624–9.

    Article  PubMed  CAS  Google Scholar 

  40. Pietersen AM, Horlings HM, Hauptmann M, et al. EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer. Breast Cancer Res. 2008;10:R109.

    Article  PubMed  CAS  Google Scholar 

  41. Kleer CG, Cao Q, Varambally S, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA. 2003;100:11606–11.

    Article  PubMed  CAS  Google Scholar 

  42. Reynolds PA, Sigaroudinia M, Zardo G, et al. Tumor suppressor p16INK4A regulates polycomb-mediated DNA hypermethylation in human mammary epithelial cells. J Biol Chem. 2006;281:24790–802.

    Article  PubMed  CAS  Google Scholar 

  43. Li X, Gonzalez ME, Toy K, Filzen T, Merajver SD, Kleer CG. Targeted overexpression of EZH2 in the mammary gland disrupts ductal morphogenesis and causes epithelial hyperplasia. Am J Pathol. 2009;175(3):1246–54.

    Article  PubMed  CAS  Google Scholar 

  44. Elsheikh SE, Green AR, Rakha EA, et al. Global histone modifications in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 2009;69:3802–9.

    Article  PubMed  CAS  Google Scholar 

  45. Pfister S, Rea S, Taipale M, et al. The histone acetyltransferase hMOF is frequently downregulated in primary breast carcinoma and medulloblastoma and constitutes a biomarker for clinical outcome in medulloblastoma. Int J Cancer. 2008;122:1207–13.

    Article  PubMed  CAS  Google Scholar 

  46. Ottaviano YL, Issa JP, Parl FF, Smith HS, Baylin SB, Davidson NE. Methylation of the estrogen receptor gene CpG island marks loss of estrogen receptor expression in human breast cancer cells. Cancer Res. 1994;54:2552–5.

    PubMed  CAS  Google Scholar 

  47. Sogon T, Masamura S, Hayashi S, Santen RJ, Nakachi K, Eguchi H. Demethylation of promoter C region of estrogen receptor alpha gene is correlated with its enhanced expression in estrogen-ablation resistant MCF-7 cells. J Steroid Biochem Mol Biol. 2007;105:106–14.

    Article  PubMed  CAS  Google Scholar 

  48. Yan L, Nass SJ, Smith D, Nelson WG, Herman JG, Davidson NE. Specific inhibition of DNMT1 by antisense oligonucleotides induces re-expression of estrogen receptor-alpha (ER) in ER-negative human breast cancer cell lines. Cancer Biol Ther. 2003;2:552–6.

    PubMed  CAS  Google Scholar 

  49. Rountree MR, Bachman KE, Baylin SB. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet. 2000;25:269–77.

    Article  PubMed  CAS  Google Scholar 

  50. Yang X, Phillips DL, Ferguson AT, Nelson WG, Herman JG, Davidson NE. Synergistic activation of functional estrogen receptor (ER)-alpha by DNA methyltransferase and histone deacetylase inhibition in human ER-alpha-negative breast cancer cells. Cancer Res. 2001;61:7025–9.

    PubMed  CAS  Google Scholar 

  51. Keen JC, Yan L, Mack KM, et al. A novel histone deacetylase inhibitor, scriptaid, enhances expression of functional estrogen receptor alpha (ER) in ER negative human breast cancer cells in combination with 5-aza 2′-deoxycytidine. Breast Cancer Res Treat. 2003;81:177–86.

    Article  PubMed  CAS  Google Scholar 

  52. Zhou Q, Atadja P, Davidson NE. Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation. Cancer Biol Ther. 2007;6:64–9.

    PubMed  CAS  Google Scholar 

  53. Fleury L, Gerus M, Lavigne AC, Richard-Foy H, Bystricky K. Eliminating epigenetic barriers induces transient hormone-regulated gene expression in estrogen receptor negative breast cancer cells. Oncogene. 2008;27:4075–85.

    Article  PubMed  CAS  Google Scholar 

  54. Billam M, Sobolewski MD, Davidson NE. Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells. Breast Cancer Res Treat. 2009;21:1573–7217. Electronic.

    Google Scholar 

  55. Tung L, Abdel-Hafiz H, Shen T, et al. Progesterone receptors (PR)-B and -A regulate transcription by different mechanisms: AF-3 exerts regulatory control over coactivator binding to PR-B. Mol Endocrinol. 2006;20:2656–70.

    Article  PubMed  CAS  Google Scholar 

  56. Hopp TA, Weiss HL, Hilsenbeck SG, et al. Breast cancer patients with progesterone receptor PR-A-rich tumors have poorer disease-free survival rates. Clin Cancer Res. 2004;10:2751–60.

    Article  PubMed  CAS  Google Scholar 

  57. Parrella P, Poeta ML, Gallo AP, et al. Nonrandom distribution of aberrant promoter methylation of cancer-related genes in sporadic breast tumors. Clin Cancer Res. 2004;10:5349–54.

    Article  PubMed  CAS  Google Scholar 

  58. Sunami E, Shinozaki M, Sim MS, et al. Estrogen receptor and HER2/neu status affect epigenetic differences of tumor-related genes in primary breast tumors. Breast Cancer Res. 2008;10:R46.

    Article  PubMed  CAS  Google Scholar 

  59. Suijkerbuijk KP, Fackler MJ, Sukumar S, et al. Methylation is less abundant in BRCA1-associated compared with sporadic breast cancer. Ann Oncol. 2008;19:1870–4.

    Article  PubMed  CAS  Google Scholar 

  60. Widschwendter M, Siegmund KD, Muller HM, et al. Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res. 2004;64:3807–13.

    Article  PubMed  CAS  Google Scholar 

  61. Chang HG, Kim SJ, Chung KW, et al. Tamoxifen-resistant breast cancers show less frequent methylation of the estrogen receptor beta but not the estrogen receptor alpha gene. J Mol Med. 2005;83:132–9.

    Article  PubMed  CAS  Google Scholar 

  62. Martens JW, Nimmrich I, Koenig T, et al. Association of DNA methylation of phosphoserine aminotransferase with response to endocrine therapy in patients with recurrent breast cancer. Cancer Res. 2005;65:4101–17.

    Article  PubMed  CAS  Google Scholar 

  63. Sharma D, Saxena NK, Davidson NE, Vertino PM. Restoration of tamoxifen sensitivity in estrogen receptor-negative breast cancer cells: tamoxifen-bound reactivated ER recruits distinctive corepressor complexes. Cancer Res. 2006;66:6370–8.

    Article  PubMed  CAS  Google Scholar 

  64. Fan J, Yin WJ, Lu JS, et al. ER alpha negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor. J Cancer Res Clin Oncol. 2008;134:883–90.

    Article  PubMed  CAS  Google Scholar 

  65. Sabnis GJ, Goloubeva O, Gilani R, et al. Expression of ER and aromatase in MDA-MB-231 tunors by HDAC inhibitor entinostat leads to growth inhibition by aromatase inhibitor letrozole. San Antonio Breast Cancer Symposium (abstract) 2009.

  66. Fiegl H, Millinger S, Goebel G, et al. Breast cancer DNA methylation profiles in cancer cells and tumor stroma: association with HER-2/neu status in primary breast cancer. Cancer Res. 2006;66:29–33.

    Article  PubMed  CAS  Google Scholar 

  67. Badia E, Duchesne MJ, Semlali A, et al. Long-term hydroxytamoxifen treatment of an MCF-7-derived breast cancer cell line irreversibly inhibits the expression of estrogenic genes through chromatin remodeling. Cancer Res. 2000;60:4130–8.

    PubMed  CAS  Google Scholar 

  68. Oliva J, El Messaoudi S, Pellestor F, et al. Involvement of HP1alpha protein in irreversible transcriptional inactivation by antiestrogens in breast cancer cells. FEBS Lett. 2005;579:4278–86.

    Article  PubMed  CAS  Google Scholar 

  69. Oesterreich S, Zhang P, Guler RL, et al. Re-expression of estrogen receptor alpha in estrogen receptor alpha-negative MCF-7 cells restores both estrogen and insulin-like growth factor-mediated signaling and growth. Cancer Res. 2001;61:5771–7.

    PubMed  CAS  Google Scholar 

  70. Leu YW, Yan PS, Fan M, et al. Loss of estrogen receptor signaling triggers epigenetic silencing of downstream targets in breast cancer. Cancer Res. 2004;64:8184–92.

    Article  PubMed  CAS  Google Scholar 

  71. Fan M, Yan PS, Hartman-Frey C, et al. Diverse gene expression and DNA methylation profiles correlate with differential adaptation of breast cancer cells to the antiestrogens tamoxifen and fulvestrant. Cancer Res. 2006;66:11954–66.

    Article  PubMed  CAS  Google Scholar 

  72. Goetz MP, Suman VJ, Couch FJ, et al. Cytochrome P450 2D6 and homeobox 13/interleukin-17B receptor: combining inherited and tumor gene markers for prediction of tamoxifen resistance. Clin Cancer Res. 2008;14:5864–8.

    Article  PubMed  CAS  Google Scholar 

  73. Jansen MP, Sieuwerts AM, Look MP, et al. HOXB13-to-IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer: a retrospective study. J Clin Oncol. 2007;25:662–8.

    Article  PubMed  CAS  Google Scholar 

  74. Rodriguez BA, Cheng AS, Yan PS, et al. Epigenetic repression of the estrogen-regulated Homeobox B13 gene in breast cancer. Carcinogenesis. 2008;29:1459–65.

    Article  PubMed  CAS  Google Scholar 

  75. Iorns E, Turner NC, Elliott R, et al. Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell. 2008;13:91–104.

    Article  PubMed  CAS  Google Scholar 

  76. Heller G, Ziegler B, Brandstetter A, et al. CDK10 is not a target for aberrant DNA methylation in breast cancer. Anticancer Res. 2009;29:3939–44.

    PubMed  CAS  Google Scholar 

  77. Maier S, Nimmrich I, Koenig T, et al. DNA-methylation of the homeodomain transcription factor PITX2 reliably predicts risk of distant disease recurrence in tamoxifen-treated, node-negative breast cancer patients—Technical and clinical validation in a multi-centre setting in collaboration with the European Organisation for Research and Treatment of Cancer (EORTC) PathoBiology group. Eur J Cancer. 2007;43:1679–86.

    Article  PubMed  CAS  Google Scholar 

  78. Harbeck N, Nimmrich I, Hartmann A, et al. Multicenter study using paraffin-embedded tumor tissue testing PITX2 DNA methylation as a marker for outcome prediction in tamoxifen-treated, node-negative breast cancer patients. J Clin Oncol. 2008;26:5036–42.

    Article  PubMed  CAS  Google Scholar 

  79. Leon SA, Shapiro B, Sklaroff DM, Yaros MJ. Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res. 1977;37:646–50.

    PubMed  CAS  Google Scholar 

  80. Gal S, Fidler C, Lo YM, et al. Quantitation of circulating DNA in the serum of breast cancer patients by real-time PCR. Br J Cancer. 2004;90:1211–5.

    Article  PubMed  CAS  Google Scholar 

  81. Van der Auwera I, Elst HJ, Van Laere SJ, et al. The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. Br J Cancer. 2009;100:1277–86.

    Article  PubMed  CAS  Google Scholar 

  82. Dulaimi E, Hillinck J, Ibanez de Caceres I, Al-Saleem T, Cairns P. Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res. 2004;10:6189–93.

    Article  PubMed  CAS  Google Scholar 

  83. Muller HM, Widschwendter A, Fiegl H, et al. DNA methylation in serum of breast cancer patients: an independent prognostic marker. Cancer Res. 2003;63:7641–5.

    PubMed  Google Scholar 

  84. Martinez-Galan J, Torres B, Del Moral R, et al. Quantitative detection of methylated ESR1 and 14-3-3-sigma gene promoters in serum as candidate biomarkers for diagnosis of breast cancer and evaluation of treatment efficacy. Cancer Biol Ther. 2008;7:958–65.

    Article  PubMed  CAS  Google Scholar 

  85. Fiegl H, Millinger S, Mueller-Holzner E, et al. Circulating tumor-specific DNA: a marker for monitoring efficacy of adjuvant therapy in cancer patients. Cancer Res. 2005;65:1141–5.

    Article  PubMed  CAS  Google Scholar 

  86. Aparicio A, North B, Barske L, et al. LINE-1 methylation in plasma DNA as a biomarker of activity of DNA methylation inhibitors in patients with solid tumors. Epigenetics. 2009;4:176–84.

    Article  PubMed  CAS  Google Scholar 

  87. Stearns V, Zhou Q, Davidson NE. Epigenetic regulation as a new target for breast cancer therapy. Cancer Invest. 2007;25:659–65.

    Article  PubMed  CAS  Google Scholar 

  88. Issa JP, Kantarjian HM. Targeting DNA methylation. Clin Cancer Res. 2009;15:3938–46.

    Article  PubMed  CAS  Google Scholar 

  89. Kantarjian HM, O’Brien S, Huang X, et al. Survival advantage with decitabine versus intensive chemotherapy in patients with higher risk myelodysplastic syndrome: comparison with historical experience. Cancer. 2007;109:1133–7.

    Article  PubMed  CAS  Google Scholar 

  90. Luu TH, Morgan RJ, Leong L, et al. A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin Cancer Res. 2008;14:7138–42.

    Article  PubMed  CAS  Google Scholar 

  91. Stathis A, Hotte S, Hirte H, et al. Phase I study of intravenous decitabine in combination with oral vorinostat in patients with advanced solid tumors and non-Hodgkin’s lymphomas (NHL). J Clin Oncol. 2009;27:15s. suppl; abstr 3528.

    Article  Google Scholar 

  92. Arce C, Perez-Plasencia C, Gonzalez-Fierro A, et al. A proof-of-principle study of epigenetic therapy added to neoadjuvant doxorubicin cyclophosphamide for locally advanced breast cancer. PLoS ONE. 2006;1:e98.

    Article  PubMed  CAS  Google Scholar 

  93. Candelaria M, Gallardo-Rincon D, Arce C, et al. A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. Ann Oncol. 2007;18:1529–38.

    Article  PubMed  CAS  Google Scholar 

  94. Ramaswamy B, Bhalla K, Cohen B, et al. Phase II study of the histone deacetylase inhibitor (HDACi) vorinostat plus paclitaxel and bevacizumab in metastatic breast cancer (MBC): New York Cancer consortium trial P7703. AACR 100th Annual Meeting April 18-22, 09-AB4116-AACR Denver, CO 2009.

  95. Munster P, Lacevic M, Thomas S, et al. Phase II trial of the histone deacetylase inhibitor, vorinostat, to restore hormone sensitivity to the antiestrogen tamoxifen in patients with advanced breast cancer who progressed on prior hormone therapy. J Clin Oncol, ASCO Annual Meeting Proceedings. 2009;27:1075.

    Google Scholar 

  96. Lapidus RG, Ferguson AT, Ottaviano YL, et al. Methylation of estrogen and progesterone receptor gene 5′ CpG islands correlates with lack of estrogen and progesterone receptor gene expression in breast tumors. Clin Cancer Res. 1996;2:805–10.

    PubMed  CAS  Google Scholar 

  97. Falette NS, Fuqua SA, Chamness GC, Cheah MS, Greene GL, McGuire WL. Estrogen receptor gene methylation in human breast tumors. Cancer Res. 1990;50:3974–8.

    PubMed  CAS  Google Scholar 

  98. Lapidus RG, Nass SJ, Butash KA, et al. Mapping of ER gene CpG island methylation-specific polymerase chain reaction. Cancer Res. 1998;58:2515–9.

    PubMed  CAS  Google Scholar 

  99. Iwase H, Omoto Y, Iwata H, et al. DNA methylation analysis at distal and proximal promoter regions of the oestrogen receptor gene in breast cancers. Br J Cancer. 1999;80:1982–6.

    Article  PubMed  CAS  Google Scholar 

  100. Mirza S, Sharma G, Prasad CP, et al. Promoter hypermethylation of TMS1, BRCA1, ERalpha and PRB in serum and tumor DNA of invasive ductal breast carcinoma patients. Life Sci. 2007;81:280–7.

    Article  PubMed  CAS  Google Scholar 

  101. Feng W, Shen L, Wen S, et al. Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res. 2007;9:R57.

    Article  PubMed  CAS  Google Scholar 

  102. Wei M, Xu J, Dignam J, et al. Estrogen receptor alpha, BRCA1, and FANCF promoter methylation occur in distinct subsets of sporadic breast cancers. Breast Cancer Res Treat. 2008;111:113–20.

    Article  PubMed  CAS  Google Scholar 

  103. Li S, Rong M, Iacopetta B. DNA hypermethylation in breast cancer and its association with clinicopathological features. Cancer Lett. 2006;237:272–80.

    Article  PubMed  CAS  Google Scholar 

  104. Archey WB, McEachern KA, Robson M, et al. Increased CpG methylation of the estrogen receptor gene in BRCA1-linked estrogen receptor-negative breast cancers. Oncogene. 2002;21:7034–41.

    Article  PubMed  CAS  Google Scholar 

  105. Nass SJ, Herman JG, Gabrielson E, et al. Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Res. 2000;60:4346–8.

    PubMed  CAS  Google Scholar 

  106. Mc Cormack O, Chung WY, Fitzpatrick P, et al. Progesterone receptor B (PRB) promoter hypermethylation in sporadic breast cancer: progesterone receptor B hypermethylation in breast cancer. Breast Cancer Res Treat. 2008;111:45–53.

    Article  PubMed  CAS  Google Scholar 

  107. http://clinicaltrials.gov.

  108. Stearns V, Jacobs LK, Tsangaris TN, et al. A pilot study evaluating surrogates of response to short-term vorinostat in women with newly diagnosed breast cancer. J Clin Oncol 27 suppl; abstr e14508 2009; ASCO Annual Meeting.

Download references

Acknowledgment

Grant funding: NCI - CA88843 (PI: N Davidson and S Sukumar).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffi Oesterreich.

Additional information

Review for Journal of Mammary Gland Biology and Neoplasia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pathiraja, T.N., Stearns, V. & Oesterreich, S. Epigenetic Regulation in Estrogen Receptor Positive Breast Cancer—Role in Treatment Response. J Mammary Gland Biol Neoplasia 15, 35–47 (2010). https://doi.org/10.1007/s10911-010-9166-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-010-9166-0

Keywords

Navigation