Skip to main content
Log in

MMTV-induced Pregnancy-dependent Mammary Tumors

Early History and New Perspectives

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Almost 60 years ago, Foulds carefully described for the first time a particular type of mouse mammary tumor that appeared in the glands of pregnant females and disappeared shortly after delivery. Since then, the attention that researchers paid to the Mouse Mammary Tumor Virus (MMTV)-induced pregnancy-dependent tumors has not vanished through the years. This was because the information obtained from mice carrying MMTV variants that were able to induce pregnancy-dependent tumors was meaningful for studying different aspects of mammary tumor biology. In addition, mice infected with these viral variants provided some of the few chances to use fully hormone-dependent estrogen receptor positive breast cancer models in the mouse. In the analysis of the association between tumor morphology and behavior, the mechanisms underlying progression towards autonomy, the impact of different genes during cancer initiation and development, and the relevance of host genetic background for tumor incidence and hormone-dependence, mouse strains carrying these MMTV variants have been very important tools that could not have been replaced with any other available model. The goal of this article is to provide a succinct chronicle of the experiments and observations made in the MMTV-induced pregnancy-dependent models that most significantly contributed to the mouse mammary tumor biology field. In addition, the possibility to use these MMTV variants as alternative models for analyzing mammary tumor stem cells and pregnancy-associated breast cancer in women is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

MMTV:

mouse mammary tumor virus

GEM:

genetically engineered mouse

ER:

estrogen receptor

PR:

progesterone receptor

HD:

hormone-dependent

HI:

hormone-independent

HANs:

Hyperplastic alveolar nodules

HOGs:

hyperplastic outgrowths

PI-MECs:

parity-induced mammary epithelial cells

References

  1. Wagner K. Models of breast cancer: quo vadis, animal modeling. Breast Cancer Res. 2004;6:31–8. doi:10.1186/bcr723.

    Article  PubMed  CAS  Google Scholar 

  2. Heston WE, Vlahakis G, Tsubura Y. Strain DD, a new high mammary tumor strain, and comparison of DD strain with strain C3H. J Natl Cancer Inst. 1964;32:237–51.

    PubMed  CAS  Google Scholar 

  3. Foulds L. Mammary tumors in hybrid mice: The presence and transmission of the mammary tumor agent. Br J Cancer 1949;3:230–9.

    PubMed  CAS  Google Scholar 

  4. Mühlbock O. Note on a new inbred mouse strain. Eur J Cancer 1965;1:123–4. doi:10.1016/0014-2964(65)90003-4.

    PubMed  Google Scholar 

  5. Squartini F. Responsiveness and progression of mouse mammary tumors in high-cancer strain mice. J Natl Cancer Inst. 1962;28:911–26.

    PubMed  CAS  Google Scholar 

  6. Foulds L. The histologic analysis of mammary tumors in mice. I–IV. J Natl Cancer Inst 1956;17:701–801.

    PubMed  CAS  Google Scholar 

  7. Benveltzen P, Daams JH. Mammary tumor virus activity in brain and liver of GR strain mice. Eur J Cancer 1970;6:273–6. doi:10.1016/0014-2964(70)90090-3.

    Google Scholar 

  8. Foulds L. Mammary tumors in hybrid mice: A sex factor in transplantation. Br J Cancer 1947;1:326–70.

    Google Scholar 

  9. Foulds L. Mammary tumors in hybrid mice: Growth and progression of spontaneous tumors. Br J Cancer. 1949;3:345–75.

    PubMed  CAS  Google Scholar 

  10. Smith JA, King RJB. Biochemical Studies on Hormone Responsive mammary tumors in BR6 mice. Cancer Res 1970;30:2055–60.

    PubMed  CAS  Google Scholar 

  11. Foulds L. Mammary tumors in hybrid mice: Hormone responses of transplanted tumors. Br J Cancer. 1949;3:240–6.

    PubMed  CAS  Google Scholar 

  12. Squartini F. Responsiveness and progression of mammary tumors in high cancer-strain mice. J Natl Cancer Inst. 1962;28:911–26.

    PubMed  CAS  Google Scholar 

  13. Squartini F, Rossi G, Paoletti I. Characters of mammary tumors in BALB/c female mice foster nursed by C3H and RIII mothers. Nature. 1963;197:505–6. doi:10.1038/197505a0.

    Article  PubMed  CAS  Google Scholar 

  14. Golovkina T, Piazzon I, Nepomnaschy I, Buggiano V, Olano Vela M, Ross S. Generation of tumorigenic milk-born mouse mammary tumor virus by recombination between exogenous and endogenous viruses. J Virol 1997;71:3895–903.

    PubMed  CAS  Google Scholar 

  15. Piazzon GA, Torello S, Nepomnaschy I, Deroche A, Dran G. Transmission of a Mls-la-like superantigen to BALB/c mice by foster nursing on F1 Mls-1 mothers. J Immunol 1994;153:1553–62.

    PubMed  CAS  Google Scholar 

  16. Buggiano V, Schere-Levy C, Abe K, Vanzulli S, Piazzon I, Smith GH, et al. Impairment of mammary lobular development induced by expression of TGFb1 under the control of WAP promoter does not suppress tumorigenesis in MMTV-infected transgenic mice. Int J Cancer. 2001;92:568–76.

    Article  PubMed  CAS  Google Scholar 

  17. Moreau H. Recherches experimentales sur la transmissibilite de certain neoplasmes (epithelioma cilindriques). Arch Med Exp Anat Path 1894;6:677–705.

    Google Scholar 

  18. Dobrovolskaia-Zavadskaia N. Sur une tumeur de souris a evolution lente et descontinue et son compartement hereditaire. Compt Rend Soc Biol 1930;103:994–6.

    Google Scholar 

  19. Haddow A. The biological characters of spontaneous tumours of the mouse, with special reference to rate of growth. J Path Bact 1938;47:553–65. doi:10.1002/path.1700470315.

    Article  Google Scholar 

  20. Gardner WU. The effect of estrogen on the incidence of mammary and pituitary tumors in hybrid mice. Cancer Res. 1941;1:345–58.

    CAS  Google Scholar 

  21. Nandi S, Bern HA, DeOme KB. Effect of hormones on growh and neoplastic development of transplanted hyperplastic alveolar nodules found in the mammary gland of old females C3H/Crgl mice. J Natl Cancer Inst. 1960;24:883–903.

    PubMed  CAS  Google Scholar 

  22. Huseby RA, Bittner JJ. A comparative morphological study of the mammary glands with reference to the known factyor that influencing the development of mammary carcinomas in mice. Cancer Res. 1946;6:240–55.

    Google Scholar 

  23. DeOme KB, Faulkin LJ Jr, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 1959;19:515–20.

    PubMed  CAS  Google Scholar 

  24. DeOme KB, Bern HA, Nandi S, Pitelka DR, Faulkin LJ Jr. The precancerous nature of the hyperplastic alveolar nodules found in the mammary gland of old female C3H/Crgl mice. In: Genetics and Cancer. Austin: Univ Texas Press; 1959. p. 327–48.

    Google Scholar 

  25. Squartini F. Mammogenesis and breast carcinogenesis in virgin female mice of BALB/cf substrain with the milk agent. J Natl Cancer Inst. 1959;23:1227–38.

    PubMed  CAS  Google Scholar 

  26. Nathanson IT, Andervont HB. Effect of testosterone propionate on development and growth of mammary carcinoma in female mice. Proc Soc Exp Biol Med. 1939;40:421–2.

    CAS  Google Scholar 

  27. Haagensen CD, Randall HT, Auchincloss R. Failure of thyrotropic pituitary hormone to prevent spontaneous mammary cancer in mice. Proc Soc Exp Biol Med. 1940;45:820–3.

    CAS  Google Scholar 

  28. Jones EE. The effect of testosterone propionate on mammary tumors in mice of the C3H strain. Cancer Res. 1941;1:787–9.

    CAS  Google Scholar 

  29. Gardner WU. Persistence and growth of spontaneous mammary tumors and hyperplastic nodules in hypophysectomized mice. Cancer Res. 1942;2:476–88.

    Google Scholar 

  30. Muhlbock O. Studies on the hormone dependence of experimental breast tumors in mice. In: Currie AR, editor. Endocrine aspects of breast cancer. Edinburgh: E & S.Livingstone Ltd.; 1958. p. 291–96.

    Google Scholar 

  31. Korteweg R, Thomas F. Tumor induction andf tumor growth in hypophysectomized mice. Am J Cancer. 1939;37:36–44.

    Google Scholar 

  32. DeOme KB, Miyamoto MJ, Osborn RC, Guzman RC, Lum K. Effect of parity on recovery of inapparent nodule-transformed mammary gland cells in vivo. Cancer Res. 1978;38:4050–3.

    PubMed  CAS  Google Scholar 

  33. Heston WE, Vlahakis G. Mammary tumors, plaques and hyperplastic alveolar nodules in various combinations of mouse inbred strains and the different lines of the mammary tumor virus. Int J Cancer. 1971;7:141–8. doi:10.1002/ijc.2910070116.

    Article  PubMed  CAS  Google Scholar 

  34. Aidells BD, Daniel CW. Hormone-dependent mammary tumors in Strain GR/A Mice. I. Alternation between ductal and tumorous phases of growth during serial transplantation. J Natl Cancer Inst. 1974;52:1855–63.

    PubMed  CAS  Google Scholar 

  35. Callahan R, Smith GH. MMTV-induced mammary tumorigenesis: gene discovery, progression to malignancy and cellularpathways. Oncogene. 2000;19:992–1001. doi:10.1038/sj.onc.1203276.

    Article  PubMed  CAS  Google Scholar 

  36. Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development. 1998;125:1921–30.

    PubMed  CAS  Google Scholar 

  37. Peters G, Lee AE, Dickson C. Activation of a cellular gene by mouse mammary tumor virus may occur early in mammary tumor development. Nature. 1984;309:273–5. doi:10.1038/309273a0.

    Article  PubMed  CAS  Google Scholar 

  38. Michalides R, Wagenaar E, Sluyser M. Mammary tumor virus DNA as a marker for genotypic variance within hormoneresponsive GR mouse mammary tumors. Cancer Res. 1982;42:1154–8.

    PubMed  CAS  Google Scholar 

  39. Sluyser M, Moncharment B, Van Der Valk MA, DeGoeij CC, Evers SG. Different int-1 region DNA rearrangements within different zones of a single mouse mammary tumor. Virology. 1988;163:11–8. doi:10.1016/0042-6822(88)90228-0.

    Article  PubMed  CAS  Google Scholar 

  40. Sarkar NH. Clonal variations among multiple primary mammary tumors and within a tumor of individual mice: insertion mutations of INT oncogenes. Virology. 1995;212:490–9. doi:10.1006/viro.1995.1507.

    Article  PubMed  CAS  Google Scholar 

  41. Cardiff RD, Fanning TG, Morris DW, Ashley RL, Faulkin LJ. Restriction endonuclease studies of hyperplastic outgrowth lines from BALB/cfC3H mouse hyperplastic mammary nodules. Cancer Res. 1981;41:3024–9.

    PubMed  CAS  Google Scholar 

  42. Buggiano V, Schere-Levy C, Gattelli A, Cirio MC, Marfil M, Nepomnaschy I, et al. Origin and progression of pregnancy-dependent mammary tumors induced by new mouse mammary tumor virus variants. Breast Cancer Res Treat. 2002;75:191–202. doi:10.1023/A:1019932516887.

    Article  PubMed  CAS  Google Scholar 

  43. Gattelli A, Cirio MC, Quaglino A, Schere-Levy C, Martinez N, Binaghi M, et al. Progression of pregnancy-dependent mouse mammary tumors after long dormancy periods. involvement of wnt pathway activation. Cancer Res. 2004;64:5193–9. doi:10.1158/0008-5472.CAN-03-3992.

    Article  PubMed  CAS  Google Scholar 

  44. Gattelli A, Zimberlin M, Castilla L, Kordon E. Selection of early occurring mutations dictates hormone-independency progression in mouse mammary tumor lines. J Virol. 2006;80:11409–15. doi:10.1128/JVI.00234-06.

    Article  PubMed  CAS  Google Scholar 

  45. Sluyser M, Van Nie R. Estrogen receptor content and hormone-responsive growth of mouse mammary tumors. Cancer Res. 1974;34:3253–7.

    PubMed  CAS  Google Scholar 

  46. Dabre PD, King RJB. Progression to steroid autonomy in S115 mouse mammary tumor cells: role of DNA methylation. J Cell Biol. 1984;99:1410–5. doi:10.1083/jcb.99.4.1410.

    Article  Google Scholar 

  47. Kordon E, Lanari C, Meiss R, Elizalde P, Charreau E, Dosne Pasqualini C. Hormone-dependence of a mouse mammary tumor line induced in vivo by medroxyprogesterone acetate. Breast Cancer Res Treat. 1990;17:33–43. doi:10.1007/BF01812682.

    Article  PubMed  CAS  Google Scholar 

  48. Dabre PD, King RJB. Progression to steroid insensitivity can occur irrespective of the presence of functional steroid receptors. Cell. 1987;51:521–8. doi:10.1016/0092-8674(87)90121-8.

    Article  Google Scholar 

  49. Kordon E, Guerra F, Molinolo A, Elizalde P, Charreau E, Dosne Pasqualini C, et al. Effect of sialoadenectomy on medroxyprogesteroneacetate-induced mammary carcinogenesis in BALB/c mice. Correlation between histology and epidermal growth-factor receptor content. Int J Cancer. 1994;59:196–203. doi:10.1002/ijc.2910590210.

    Article  PubMed  CAS  Google Scholar 

  50. Sluyser M, Moncharment B, Van Der Valk MA, DeGoeij CC, Evers SG. Different int-1 region DNA rearrangements within different zones of a single mouse mammary tumor. Virology. 1988;163:11–8. doi:10.1016/0042-6822(88)90228-0.

    Article  PubMed  CAS  Google Scholar 

  51. Aghorne C, Thomas M, Lagarde A, Kerbel RS, Breitman ML. Genetic evidence for progressive selection and overgrowth ofprimary tumors by metastatic cell subpopulations. Cancer Res. 1988;48:6109–14.

    Google Scholar 

  52. Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell. 1982;31:99–109. doi:10.1016/0092-8674(82)90409-3.

    Article  PubMed  CAS  Google Scholar 

  53. Dickson C, Smith R, Brookes S, Peters G. Tumorigenesis by mouse mammary tumor virus: proviral activation of a cellular gene in the common integration region int-2. Cell. 1984;37:529–36. doi:10.1016/0092-8674(84)90383-0.

    Article  PubMed  CAS  Google Scholar 

  54. Tsukamoto AS, Grosschedl R, Guzman RC, Parslow T, Varmus HE. Expression of the Int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinoma in male and female mice. Cell. 1988;55:619–25. doi:10.1016/0092-8674(88)90220-6.

    Article  PubMed  CAS  Google Scholar 

  55. Muller WJ, Lee FS, Dickson C, Peters G. The int-2 gene product act as an epithelial growth factor in transgenic mice. EMBO J. 1990;9:907–13.

    PubMed  CAS  Google Scholar 

  56. Callahan R. MMTV-induced mutation in mouse mammary tumors: Their potential relevance to human breast cancer. Breast Cancer Res Treat. 1996;39:33–44. doi:10.1007/BF01806076.

    Article  PubMed  CAS  Google Scholar 

  57. Marchetti A, Robbins J, Campbell G, Buttitta F, Squartini M, Bistocchi M, Callahan R. Host genetic background effect on the frequency of mouse mammary tumor virus-induced rearrangements in the int-1 and int-2 loci in mouse mammary tumors. J Virol. 1991;65:4550–4.

    PubMed  CAS  Google Scholar 

  58. Peters G, Lee AE, Dickson C. Concerted activation of two potential proto-oncogenes in carcinomas induced by mouse mammary tumor virus. Nature. 1986;320:628–31. doi:10.1038/320628a0.

    Article  PubMed  CAS  Google Scholar 

  59. Mester J, Wagenaar E, Sluyser M, Nusse R. Activation of int-1 and int-2 mammary oncogenes in hormone-dependent and -independent mammary tumors of GR mice. J Virol. 1987;61:1073–8.

    PubMed  CAS  Google Scholar 

  60. Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci U S A. 2003;100:15853–8. doi:10.1073/pnas.2136825100.

    Article  PubMed  CAS  Google Scholar 

  61. Liu BY, McDermott SP, Khwaja SS, Alexander CM. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci U S A. 2004;101:4158–63. doi:10.1073/pnas.0400699101.

    Article  PubMed  CAS  Google Scholar 

  62. Wagner KU, Boulanger CA, Henry MD, Sgagias M, Hennighausen L, Smith GH. An adjunct mammary epithelial cell population in parous females: its role in functional adaptation and tissue renewal. Development. 2002;129:1377–86.

    PubMed  CAS  Google Scholar 

  63. Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene. 2005;24:552–60. doi:10.1038/sj.onc.1208185.

    Article  PubMed  CAS  Google Scholar 

  64. Henry MD, Triplett AA, Oh KB, Smith GH, Wagner KU. Parity-induced mammary epithelial cells facilitate tumorigenesis in MMTV-neu transgenic mice. Oncogene. 2004;23:6980–5. doi:10.1038/sj.onc.1207827.

    Article  PubMed  CAS  Google Scholar 

  65. Kordon E, Mc Knight R, Jhappan C, Hennighausen L, Merlino G, Smith GH. Ectopic TGFb1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol. 1995;168:47–61. doi:10.1006/dbio.1995.1060.

    Article  PubMed  CAS  Google Scholar 

  66. Boulanger CA, Smith GH. Reducing mammary cancer risk through premature stem cell senescence. Oncogene. 2001;20:2264–72. doi:10.1038/sj.onc.1204312.

    Article  PubMed  CAS  Google Scholar 

  67. Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene. 2005;24:552–60. doi:10.1038/sj.onc.1208185.

    Article  PubMed  CAS  Google Scholar 

  68. Feng Y, Manka D, Wagner KU, Khan SA. Estrogen receptor-alpha expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proc Natl Acad Sci U S A. 2007;104:14718–23. doi:10.1073/pnas.0706933104.

    Article  PubMed  CAS  Google Scholar 

  69. Polyak K. Pregnancy and breast cancer: the other side of the coin. Cancer Cell. 2006;9:151–3. doi:10.1016/j.ccr.2006.02.026.

    Article  PubMed  CAS  Google Scholar 

  70. Albrektsen G, Heuch I, Thoresen S, Kvåle G. Clinical stage of breast cancer by parity, age at birth, and time since birth: a progressive effect of pregnancy hormones. Cancer Epidemiol Biomarkers Prev. 2006;15:65–9. doi:10.1158/1055-9965.EPI-05-0634.

    Article  PubMed  CAS  Google Scholar 

  71. Schedin P. Pregnancy-associated breast cancer and metastasis. Nat Rev Cancer. 2006;6:281–91. doi:10.1038/nrc1839.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Omar A. Coso for critically reading the manuscript. ECK receives research support from CONICET and the Agencia Nacional de Promoción Científica y Tecnológica, Argentina and from the Fogarty Fundation, National Institutes of Health, US (grant R01-TW06212).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith C. Kordon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kordon, E.C. MMTV-induced Pregnancy-dependent Mammary Tumors. J Mammary Gland Biol Neoplasia 13, 289–297 (2008). https://doi.org/10.1007/s10911-008-9091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9091-7

Keywords