Skip to main content

Advertisement

Log in

Abstract

The mouse model for breast cancer has developed into a most effective means of dissecting and understanding this devastating disease. The inbred transgenic mouse lends itself to biological, molecular, immunological, and genetic studies. The observation, dissection, transplantation, and subsequent amplification of precancerous mammary lesions and tumors give the scientist the means to readily study the tissues and design interventions and therapeutic drugs for the future eventual control of breast cancer. There are many inbred strains of mice, selected for specific characteristics. The mouse is easy to handle, breeds well, and does not require extensive facilities, funding, and handling such as monkeys, chimps, and other animal models. A huge advantage is the capability for the transplantation of tissues as well as gene manipulation, which make the transgenic mouse a major research resource. The mouse has served the scientific community well for over a century and will continue to do so in the quest for understanding breast cancer and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HAN:

hyperplastic alveolar nodule

HOG:

hyperplastic alveolar outgrowth

DCIS:

ductal carcinoma in situ

MIN:

mammary intraepithelial neoplasia

MINO:

mammary intraepithelial neoplastic outgrowth

References

  1. Lathrop AEC, Loeb L. Further investigations on the origin of tumors in mice, III. On the part played by internal secretion on the spontaneous development of tumors. J Cancer Res. 1916;1:1–20.

    PubMed  CAS  Google Scholar 

  2. Lathrop AEC, Loeb L. Further investigation on the origin of tumors in mice, V. The tumor rate in hybrid strains. J Exp Med. 1918;28:475–500.

    Article  Google Scholar 

  3. Lathrop AEC, Loeb L. Further investigation on the origin of tumors in mice, IV. Tumor incidence in later generations of strains observed tumor rate. J Cancer Res. 1919;4:137–79.

    Google Scholar 

  4. Cardiff RD, Kenney N. Mouse mammary tumor biology: a short history. Adv Cancer Res. 2007;98:53–116.

    Article  PubMed  CAS  Google Scholar 

  5. Morse HC. Origins of inbred mice. In: Bethesda MD, editor. Proceedings of a workshop. NY: Academic; 1978. (Feb 14–14).

    Google Scholar 

  6. Morse HC. The laboratory mouse: a historical perspective. In: Forster HL, Small JD, Fox JG, editors. The mouse in biomedical research, vol 1. London: Academic; 1981. p. 1–16.

    Google Scholar 

  7. Keeler CE. The laboratory mouse: its origin, heredity, and culture. Cambridge, MA: Harvard University Press; 1931.

    Google Scholar 

  8. Strong LC. Inbred mice in science. In: Morse HC, editor. Origins of inbred mice. New York: Academic; 1978. p. 719.

    Google Scholar 

  9. Paigen K. A miracle enough: the power of mice. Nat Med 1995;1:215–20.

    Article  PubMed  CAS  Google Scholar 

  10. Laboratory, Staff of the Roscoe B Jackson Memorial. The existence of non-chromosomal influence in the incidence of mammary tumors in mice. Science 1933;78:465–6.

    Article  Google Scholar 

  11. Bittner JJ. Some possible effects of nursing on the mammary gland tumor incidence in mice. Science 1936;84:162.

    Article  PubMed  Google Scholar 

  12. Bittner JJ. The milk—influence of breast tumors in mice. Science 1942;95:462–3.

    Article  PubMed  Google Scholar 

  13. Andervont HB. The milk influence in the genesis of mammary tumors. Symposium on mammary tumors in mice. Washington, DC: American Association of Advance Science; 1945. p. 123–39.

    Google Scholar 

  14. Gardner MB, Malone RW, Morris DW, Young LJ, Strange R, Cardiff RD, et al. Mammary tumors in feral mice lacking MuMTV DNA. J Exp Pathol. 1985;2:93–8.

    PubMed  CAS  Google Scholar 

  15. Callahan R, Drohan W, Gallahan D, D’Hoostelaere L, Potter M. Novel class of mouse mammary tumor virus-related DNA sequences found in all species of Mus, including mice lacking the virus proviral genome. Proc Natl Acad Sci. 1982;79:4113–7.

    Article  PubMed  CAS  Google Scholar 

  16. Faulkin LH, Mitchell DJ, Young LJ, Morris DW, Malone RW, Cardiff RD, et al. Hyperplastic and neoplastic changes in the mammary glands of feral mice free of endogenous mouse mammary tumor virus provirus. J Natl Cancer Inst. 1984;73:971–82.

    PubMed  CAS  Google Scholar 

  17. Muhlbock O. Hormonal genesis of mammary cancer. In: Advances in Caner Res. New York: Academic; 1956. p. 371–91.

    Google Scholar 

  18. Squartini F, Basolo F, Bistocchi M. Lobuloalveolar differentiation and tumorigenesis: two separate activities of mouse mammary tumor virus. Cancer Res. 1983;43:5879–82.

    PubMed  CAS  Google Scholar 

  19. Nandi S. The histocompatibility-2 locus and susceptibility to Bittner virus borne by red blood cells in mice. Proc Natl Acad Sci. 1967;58:485–92.

    Article  PubMed  CAS  Google Scholar 

  20. Nandi S, Haslam S, Helmich C. Mechanisms of resistance to mammary tumor development in C57Bl and I strains of mice. I. Noduligenesis, tumorigenesis, and characteristics of nodules and tumors. J Natl Cancer Inst. 1972;48:1005–12.

    PubMed  CAS  Google Scholar 

  21. Golovkina TV. A novel mechanism of resistance to mouse mammary tumor virus infection. J Virol. 2000;74:2752–9.

    Article  PubMed  CAS  Google Scholar 

  22. Moore DH, Sarkar NH, Kelly CE, Pillsbury N, Charney J. Type B particles in human milk. Tex Rep Biol Med. 1969;27:1027–39.

    PubMed  CAS  Google Scholar 

  23. Sarkar NH, Moore DH. On the possibility of a human breast cancer virus. Nature 1972;236:103–6.

    Article  PubMed  CAS  Google Scholar 

  24. Levine PH, Pogo BG, Klouj A, Coronel S, Woodson K, Melana S, et al. Increasing evidence for a human breast carcinoma virus with geographic differences. Cancer 2004;101:721–6.

    Article  PubMed  Google Scholar 

  25. Goedert JJ, Rabkin CS, Ross SR. Prevalence of serologic reactivity against four strains of mouse mammary tumour virus among US women with breast cancer. Brit J Cancer 2006;94:548–51.

    Article  PubMed  CAS  Google Scholar 

  26. Young LJ, DeOme KB, Blair PB, Pitelka DR, Cardiff RD. Development and characterization of the BALB/cNIV mouse strain. Cancer Res. 1984;44:4333–6.

    PubMed  CAS  Google Scholar 

  27. Morris DW, Young LJT, Gardner MB, Cardiff RD. Transfer, by selective breeding, of the pathologic MTV-2 endogenous provirus from the GR strain to a wild mouse line free of endogenous and exogenous mouse mammary tumor virus. J Virol. 1986;58:247–52.

    PubMed  CAS  Google Scholar 

  28. DeOme KB, Miyamoto MJ, Osborn RC, Guzman RC, Lum K. Effect of parity on recovery of inapparent nodule-transformed mammary gland cells in vivo. Cancer Res. 1978;38:4050–3.

    PubMed  CAS  Google Scholar 

  29. DeOme KB, Faulkin LJ, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 1959;19:515–20.

    PubMed  CAS  Google Scholar 

  30. Young LJT. The cleared mammary fat pad and the transplantation of mammary gland morphological structures and cells. In: Ip C, Asch B, editors. Methods in mammary gland biology and breast cancer research. New York: Plenum; 2000. p. 67–73.

    Google Scholar 

  31. DeOme KB, Blair PB, Faulkin LJ. Some characteristics of the preneoplastic hyperplastic alveolar nodules of C3H/Crgl mice. Acta Unio Int Contra Cancrum. 1961;17:973–82.

    PubMed  CAS  Google Scholar 

  32. DeOme KB, Young L. Hyperplastic lesions of the mouse and rat mammary glands. In: Experimental Cancer Therapy. Proceedings of the Tenth International Cancer Research Congress; 1970. p. 473–83.

  33. Medina D. Preneoplastic lesions in mouse mammary tumorigenesis. Methods Cancer Res. 1973;7:3.

    CAS  Google Scholar 

  34. Medina D. Biologic characteristics of tumor progression in the mouse mammary gland. Cancer Chemother Rep. 1975;2:127–81.

    Google Scholar 

  35. Medina D. Preneoplasstic lesions in murine mammary cancer. Cancer Res. 1976;36:2589–95.

    PubMed  CAS  Google Scholar 

  36. Medina D. Preneoplasia in mammary tumorigenesis. Cancer Treat Res. 1996;83:37–69.

    PubMed  CAS  Google Scholar 

  37. Medina D. The preneoplastic phenotype in murine mammary tumorigenesis. J Mammary Gland Biol Neoplasia 2000;5:393–407.

    Article  PubMed  CAS  Google Scholar 

  38. Medina D. Biological and molecular characteristics of the premalignant mouse mammary gland. Biochim Biophys Acta 2002;1603:1–9.

    PubMed  CAS  Google Scholar 

  39. Faulkin LJ Jr, DeOme KB. Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. J Natl Cancer Inst. 1960;24:953–69.

    PubMed  Google Scholar 

  40. Daniel CW, DeOme KB, Young L, Blair PB, Faulkin LJ. The in vivo life span of normal and preneoplastic mouse mammary glands: A serial transplantation study. Proc Natl Acad Sci U. S. A. 1968;61:53–60.

    Article  PubMed  CAS  Google Scholar 

  41. Young LJT, Medina D, DeOme KB, Daniel CW. The influence of host and tissue age on life span and growth rate of serially transplanted mouse mammary gland. Exp Gerontol. 1971;6:49–56.

    Article  PubMed  CAS  Google Scholar 

  42. Maglione JE, Moghanaki D, Young LJ, Manner CK, Ellies LG, Joseph SO, et al. Transgenic polyoma middle T mice model premalignant mammary disease. Cancer Res. 2001;61:8298–305.

    PubMed  CAS  Google Scholar 

  43. Maglione JE, McGoldrick ET, Young LJ Namba R Gregg JP, Liu L, et al. Polyomavirus middle T-induced mammary intraepithelial neoplasia outgrowths: single origin, divergent evolution, and multiple outcomes. Mol Cancer Ther. 2004;3:941–53.

    PubMed  CAS  Google Scholar 

  44. Daniel CW, DeOme KB. Growth of mouse mammary glands in vivo after monolayer culture. Science 1965;149:634–6.

    Article  PubMed  CAS  Google Scholar 

  45. Cardiff RD, Wellings SR. The comparative pathology of human and mouse mammary glands. J Mammary Gland Biol Neoplasia 1999;4:105–22.

    Article  PubMed  CAS  Google Scholar 

  46. Wellings SR, Jensen HM, DeVault MR. Persistent and atypical lobules in the human breast may be precancerous. Experientia 1976;32:1463–5.

    Article  PubMed  CAS  Google Scholar 

  47. Cardiff RD. Protoneoplasia: The molecular biology of murine mammary hyperplasia. Adv Cancer Res. 1984;42:167–90.

    Article  PubMed  CAS  Google Scholar 

  48. Cardiff RD, Sinn E, Muller W, Leder P. Transgenic oncogene mice. Tumor phenotype predicts genotype. Am J Pathol. 1991;139:495–501.

    PubMed  CAS  Google Scholar 

  49. Cardiff RD, Moghanaki D, Jensen RA. Genetically engineered mouse models of mammary intraepithelial neoplasia. J Mammary Gland Biol Neoplasia 2000;5:421–37.

    Article  PubMed  CAS  Google Scholar 

  50. Cardiff RD, Bern HA, Faulkin LJ, Daniel CW, Smith GH, Young LJT, et al. Contributions of mouse biology to breast cancer research. Comp Med. 2002;52:12–31.

    PubMed  CAS  Google Scholar 

  51. Namba R, Maglione JE, Davis RR, Baron CA, Liu S, Carmack CE, et al. Heterogeneity of mammary lesions represent molecular differences. BMC Cancer 2006;6:275.

    Article  PubMed  Google Scholar 

  52. Namba R, Maglione JE, Young LJT, Borowsky AD, Cardiff RD, MacLeod CL, et al. Molecular characterization of the transition to malignancy in a genetically engineered mouse-based model of ductal carcinoma in situ. Mol Cancer Res. 2004;2:453–63.

    PubMed  CAS  Google Scholar 

  53. Namba R, Young LJT, Maglione JE, McGoldrick ET, Liu S, Wurz GT, DeGregorio MW, Borowsky AD, et al. Selective estrogen receptor modulators inhibit growth and progression of premalignant lesions in a mouse model of ductal carcinoma in situ. Breast Cancer Res. 2005;7:R881–R889.

    Article  PubMed  CAS  Google Scholar 

  54. Namba R, Young LJT, Abbey CK, Kim L, Damont P, Borowsky AD, Qi J, Tepper CG, MacLeod C, Cardiff RD, Gregg JP. Rapamycin inhibits growth of premalignant and malignant mammary lesions in a mouse model of ductal carcinoma in situ. Clin Cancer Res. 2006;5:12(8):2613–21.

    Article  Google Scholar 

  55. Leaf C. Why are we losing the war on cancer (and how to win it). Fortune 2004. p. 5, March 29.

  56. Davie SD, Maglione JE, Manner CK, Young D, Cardiff RD, MacLeod CL, et al. Effects of FVB/NJ and C57Bl/6J strain backgrounds on mammary tumor phenotype in inducible nitric oxide synthase deficient mice. Transgenic Res. 2007;16:193–201.

    Article  PubMed  CAS  Google Scholar 

  57. Cardiff RD, Anwer MR, Gusterson BA, Hennighausen L, Jensen RA, Merino MJ, et al. The mammary pathology of genetically engineered mice: the consensus report and recommendations from the Annapolis meeting. Oncogene 2000;19:968–88.

    Article  PubMed  CAS  Google Scholar 

  58. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci. 2004;101:4966–71.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Professor Kenneth B DeOme (1906–1991) was a mentor, friend, advisor. He listened, encouraged, and guided. I owe a great deal to this intelligent, warm, caring and innovative man. Many thanks and much gratitude go to much respected mentor and friend Dr Robert Cardiff. Many thanks to Professors Howard Bern, Phyllis Blair, Leslie Faulkin, Dan Medina, Gil Smith, Charles Daniel, Raphael Guzman, Satyabrata Nandi, Richard Nishioka, Charles McGrath for their many conversations, thoughts, friendships. There are many more people who have played important roles in my professional as well as my personal development. My sincere thank you to all.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence J. T. Young.

Additional information

This work was supported, in part, by grant U42 RR14905 from the National Institutes of Health and National Centers for Research Resources.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, L.J.T. Mus Tales: A Hands-On View. J Mammary Gland Biol Neoplasia 13, 343–349 (2008). https://doi.org/10.1007/s10911-008-9088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9088-2

Keywords

Navigation