Skip to main content

Advertisement

Log in

From Bench to Bedside: Future Potential for the Translation of Prolactin Inhibitors as Breast Cancer Therapeutics

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

A role for prolactin (PRL) in the pathogenesis of breast cancer has been confirmed at the cellular level in vitro, with multiple transgenic and knockout models in vivo, and within sizable patient populations through epidemiologic analysis. It is the obvious “next step” that these findings are translated into meaningful therapies to block PRL/PRLr function in human breast cancer. Several broad categories of PRL/PRLr antagonists are discussed in their pre-clinical context, including inhibitors of endocrine PRL elaboration, mutant ligand antagonists, ligand chimeras, and inhibitors of PRL-induced signaling and transactivation. The clinical potential for GHr antagonists are also discussed. These varied approaches all have demonstrated as proof-of-principle that PRL/PRLr antagonism can inhibit the in vitro and in vivo growth of breast cancer. Further pre-clinical development is required for most, however, before translation to clinical trials in breast cancer patients can occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

Abbreviations

PRL:

prolactin

PRLr:

prolactin receptor

GH:

growth hormone

GHr:

growth hormone receptor

h:

human

TGF:

transforming growth factor

Wt:

wild type

PPI:

peptidyl prolyl isomerase

ER:

estrogen receptor

References

  1. Boot LM, et al. Further investigations on induction of mammary cancer in mice by isografts of hypophyseal tissue. Cancer Res 1962;22:713–27.

    PubMed  Google Scholar 

  2. Boot LM, Ropcke G, Muhlbock O. Mammary tumour induction by pituitary isografts in mice. Acta Unio Int Contra Cancrum 1962;18:270–1.

    PubMed  Google Scholar 

  3. Welsch CW, Gribler C. Prophylaxis of spontaneously developing mammary carcinoma in C3H-HeJ female mice by suppression of prolactin. Cancer Res 1973;33(11):2939–46.

    PubMed  Google Scholar 

  4. Welsch CW, Nagasawa H. Prolactin and murine mammary tumorigenesis: a review. Cancer Res 1977;37(4):951–63.

    PubMed  Google Scholar 

  5. Heuson JC, Coune A, Staquet M. Clinical tial of 2-Br-alpha-Ergocryptine (CB-154) in advanced breast cancer. Eur J Cancer 1972;8:155–6.

    Google Scholar 

  6. Peyrat JP, et al. Effect of bromocriptin treatment on prolactin and steroid receptor levels in human breast cancer. Eur J Cancer Clin Oncol 1984;20(11):1363–7.

    Article  PubMed  Google Scholar 

  7. Bonneterre J, et al. Tamoxifen plus bromocriptine versus tamoxifen plus placebo in advanced breast cancer: results of a double blind multicentre clinical trial. Eur J Cancer Clin Oncol 1988;24(12):1851–3.

    Article  PubMed  Google Scholar 

  8. Anderson E, et al. Serum immunoreactive and bioactive lactogenic hormones in advanced breast cancer patients treated with bromocriptine and octreotide. Eur J Cancer 1993;29A(2):209–17.

    Article  PubMed  Google Scholar 

  9. Clevenger CV, et al. The role of prolactin in mammary carcinoma. Endocr Rev 2003;24(1):1–27.

    Article  PubMed  CAS  Google Scholar 

  10. Clevenger CV. Role of prolactin/prolactin receptor signaling in human breast cancer. Breast Dis 2003;18:75–86.

    PubMed  Google Scholar 

  11. Lippman ME, et al. In vitro model systems for the study of hormone-dependent human breast cancer. N Engl J Med 1977;296(3):154–9.

    Article  PubMed  Google Scholar 

  12. Ginsburg E, Vonderhaar BK. Prolactin synthesis and secretion by human breast cancer cells. Cancer Res 1995;55(12):2591–5.

    PubMed  Google Scholar 

  13. Maus MV, Reilly SC, Clevenger CV. Prolactin as a chemoattractant for human breast carcinoma. Endocrinology 1999;140(11):5447–50.

    Article  PubMed  Google Scholar 

  14. Perks CM, et al. Prolactin acts as a potent survival factor for human breast cancer cell lines. Br J Cancer 2004;91(2):305–11.

    PubMed  Google Scholar 

  15. Das R, Vonderhaar BK. Prolactin as a mitogen in mammary cells. J Mammary Gland Biol Neoplasia 1997;2(1):29–39.

    Article  PubMed  Google Scholar 

  16. Mershon J, et al. Prolactin is a local growth factor in rat mammary tumors. Endocrinology 1995;136(8):3619–23.

    Article  PubMed  Google Scholar 

  17. Arendt LM, et al. Prolactin potentiates transforming growth factor alpha induction of mammary neoplasia in transgenic mice. Am J Pathol 2006;168(4):1365–74.

    Article  PubMed  CAS  Google Scholar 

  18. Rose-Hellekant TA, et al. Prolactin induces ERalpha-positive and ERalpha-negative mammary cancer in transgenic mice. Oncogene 2003;22(30):4664–74.

    Article  PubMed  CAS  Google Scholar 

  19. Wennbo H, Tornell J. The role of prolactin and growth hormone in breast cancer. Oncogene 2000;19(8):1072–6.

    Article  PubMed  CAS  Google Scholar 

  20. Wennbo H, et al. Activation of the prolactin receptor but not the growth hormone receptor is important for induction of mammary tumors in transgenic mice. J Clin Invest 1997;100(11):2744–51.

    PubMed  Google Scholar 

  21. Oakes SR, et al. Loss of mammary epithelial prolactin receptor delays tumor formation by reducing cell proliferation in low-grade preinvasive lesions. Oncogene 2007;26(4):543–53.

    Article  PubMed  CAS  Google Scholar 

  22. Fuh G, et al. Rational design of potent antagonists to the human growth hormone receptor. Science 1992;256(5064):1677–80.

    Article  PubMed  Google Scholar 

  23. Goffin V, et al. Evidence for a second receptor binding site on human prolactin. J Biol Chem 1994;269(51):32598–606.

    PubMed  Google Scholar 

  24. Bernichtein S, et al. Development of pure prolactin receptor antagonists. J Biol Chem 2003;278(38):35988–99.

    Article  PubMed  CAS  Google Scholar 

  25. Chen TJ, et al. Development of recombinant human prolactin receptor antagonists by molecular mimicry of the phosphorylated hormone. Endocrinology 1998;139(2):609–16.

    Article  PubMed  Google Scholar 

  26. Sinha YN. Structural variants of prolactin: occurrence and physiological significance. Endocr Rev 1995;16(3):354–69.

    Article  PubMed  Google Scholar 

  27. Oetting WS, et al. Phosphorylation of prolactin. J Biol Chem 1986;261(4):1649–52.

    PubMed  Google Scholar 

  28. Walker AM. S179D prolactin: Antagonistic agony. Mol Cell Endocrinol 2007;276(1–2):1–9.

    Article  PubMed  CAS  Google Scholar 

  29. Ho TW, et al. Secretion of specific nonphosphorylated and phosphorylated rat prolactin isoforms at different stages of the estrous cycle. Neuroendocrinology 1993;58(2):160–5.

    PubMed  Google Scholar 

  30. Horiguchi K, et al. Estrogen regulates the serum level of phosphorylated prolactin in mice. J Reprod Dev 2007;53(4):915–22.

    Article  PubMed  Google Scholar 

  31. Tuazon PT, et al. p21-activated protein kinase gamma-PAK in pituitary secretory granules phosphorylates prolactin. FEBS Lett 2002;515(1–3):84–8.

    Article  PubMed  Google Scholar 

  32. Wang YF, Walker AM. Dephosphorylation of standard prolactin produces a more biologically active molecule: evidence for antagonism between nonphosphorylated and phosphorylated prolactin in the stimulation of Nb2 cell proliferation. Endocrinology 1993;133(5):2156–60.

    Article  PubMed  Google Scholar 

  33. Wicks JR, Brooks CL. Biological activity of phosphorylated and dephosphorylated bovine prolactin. Mol Cell Endocrinol 1995;112(2):223–9.

    Article  PubMed  Google Scholar 

  34. Wu W, et al. S179D prolactin increases vitamin D receptor and p21 through up-regulation of short 1b prolactin receptor in human prostate cancer cells. Cancer Res 2005;65(16):7509–15.

    Article  PubMed  Google Scholar 

  35. Xu X, et al. A molecular mimic of phosphorylated prolactin markedly reduced tumor incidence and size when DU145 human prostate cancer cells were grown in nude mice. Cancer Res 2001;61(16):6098–104.

    PubMed  Google Scholar 

  36. Naylor MJ, et al. Transcriptional changes underlying the secretory activation phase of mammary gland development. Mol Endocrinol 2005;19(7):1868–83.

    Article  PubMed  CAS  Google Scholar 

  37. Bernichtein S, et al. S179D-human PRL, a pseudophosphorylated human PRL analog, is an agonist and not an antagonist. Endocrinology 2001;142(9):3950–63.

    Article  PubMed  CAS  Google Scholar 

  38. Schroeder MD, et al. Inhibition of prolactin (PRL)-induced proliferative signals in breast cancer cells by a molecular mimic of phosphorylated PRL, S179D-PRL. Endocrinology 2003;144(12):5300–7.

    Article  PubMed  CAS  Google Scholar 

  39. Goffin V, et al. Development and potential clinical uses of human prolactin receptor antagonists. Endocr Rev 2005;26(3):400–22.

    Article  PubMed  CAS  Google Scholar 

  40. de Vos AM, Ultsch M, Kossiakoff AA. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 1992;255(5042):306–12.

    Article  PubMed  Google Scholar 

  41. Somers W, et al. The X-ray structure of a growth hormone-prolactin receptor complex. Nature 1994;372(6505):478–81.

    Article  PubMed  Google Scholar 

  42. Gadd SL, Clevenger CV. Ligand-independent dimerization of the human prolactin receptor isoforms: functional implications. Mol Endocrinol 2006;20(11):2734–46.

    Article  PubMed  CAS  Google Scholar 

  43. Brown RJ, et al. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer. Nat Struct Mol Biol 2005;12(9):814–21.

    Article  PubMed  CAS  Google Scholar 

  44. Goffin V, et al. Sequence–function relationships within the expanding family of prolactin, growth hormone, placental lactogen, and related proteins in mammals. Endocr Rev 1996;17(4):385–410.

    Article  PubMed  Google Scholar 

  45. Miller WL, Eberhardt NL. Structure and evolution of the growth hormone gene family. Endocr Rev 1983;4(2):97–130.

    Article  PubMed  Google Scholar 

  46. Chen WY, et al. A human prolactin antagonist, hPRL-G129R, inhibits breast cancer cell proliferation through induction of apoptosis. Clin Cancer Res 1999;5(11):3583–93.

    PubMed  Google Scholar 

  47. Ramamoorthy P, et al. In vitro studies of a prolactin antagonist, hPRL-G129R in human breast cancer cells. Int J Oncol 2001;18(1):25–32.

    PubMed  Google Scholar 

  48. Beck MT, Peirce SK, Chen WY. Regulation of bcl-2 gene expression in human breast cancer cells by prolactin and its antagonist, hPRL-G129R. Oncogene 2002;21(33):5047–55.

    Article  PubMed  CAS  Google Scholar 

  49. Cataldo L, et al. Inhibition of oncogene STAT3 phosphorylation by a prolactin antagonist, hPRL-G129R, in T-47D human breast cancer cells. Int J Oncol 2000;17(6):1179–85.

    PubMed  Google Scholar 

  50. Langenheim JF, et al. Two wrongs can make a right: dimers of prolactin and growth hormone receptor antagonists behave as agonists. Mol Endocrinol 2006;20(3):661–74.

    Article  PubMed  CAS  Google Scholar 

  51. Chen NY, et al. In vivo studies of the anti-tumor effects of a human prolactin antagonist, hPRL-G129R. Int J Oncol 2002;20(4):813–8.

    PubMed  Google Scholar 

  52. Tomblyn S, et al. The role of human prolactin and its antagonist, G129R, in mammary gland development and DMBA-initiated tumorigenesis in transgenic mice. Int J Oncol 2005;27(5):1381–9.

    PubMed  Google Scholar 

  53. Peirce SK, Chen WY. Human prolactin and its antagonist, hPRL-G129R, regulate bax and bcl-2 gene expression in human breast cancer cells and transgenic mice. Oncogene 2004;23(6):1248–55.

    Article  PubMed  CAS  Google Scholar 

  54. Llovera M, et al. Human prolactin (hPRL) antagonists inhibit hPRL-activated signaling pathways involved in breast cancer cell proliferation. Oncogene 2000;19(41):4695–705.

    Article  PubMed  CAS  Google Scholar 

  55. Fuh G, et al. Mechanism-based design of prolactin receptor antagonists. J Biol Chem 1993;268(8):5376–81.

    PubMed  Google Scholar 

  56. Bernichtein S, et al. New homologous bioassays for human lactogens show that agonism or antagonism of various analogs is a function of assay sensitivity. Endocrine2003;20(1–2):177–90.

    Article  PubMed  Google Scholar 

  57. Mode A, et al. The human growth hormone (hGH) antagonist G120RhGH does not antagonize GH in the rat, but has paradoxical agonist activity, probably via the prolactin receptor. Endocrinology 1996;137(2):447–54.

    Article  PubMed  Google Scholar 

  58. Elkins PA, et al. Ternary complex between placental lactogen and the extracellular domain of the prolactin receptor. Nat Struct Biol 2000;7(9):808–15.

    Article  PubMed  CAS  Google Scholar 

  59. Jomain JB, et al. Structural and thermodynamical bases for the design of pure prolactin receptor antagonists. X-ray structure of Del1-9-G129R-hPRL. J Biol Chem. 2007;282:33118–31.

    Article  PubMed  CAS  Google Scholar 

  60. Goffin V, et al. Development of new prolactin analogs acting as pure prolactin receptor antagonists. Pituitary 2003;6(2):89–95.

    Article  PubMed  Google Scholar 

  61. Kinet S, et al. Biological properties of human prolactin analogs depend not only on global hormone affinity, but also on the relative affinities of both receptor binding sites. J Biol Chem 1999;274(37):26033–43.

    Article  PubMed  Google Scholar 

  62. Zhang G, et al. A novel design of targeted endocrine and cytokine therapy for breast cancer. Clin Cancer Res 2002;8(4):1196–205.

    PubMed  Google Scholar 

  63. Yokoyama Y, et al. Effect of endostatin on spontaneous tumorigenesis of mammary adenocarcinoma in a transgenic mouse model. Cancer Res 2000;60(16):4362–5.

    PubMed  Google Scholar 

  64. Beck MT, et al. Prolactin antagonist–endostatin fusion protein as a targeted dual-functional therapeutic agent for breast cancer. Cancer Res 2003;63(13):3598–604.

    PubMed  Google Scholar 

  65. Langenheim JF, Chen WY. Development of a prolactin receptor-targeting fusion toxin using a prolactin antagonist and a recombinant form of Pseudomonas exotoxin A. Breast Cancer Res Treat 2005;90(3):281–93.

    Article  PubMed  CAS  Google Scholar 

  66. Vogel C, et al. First-line, single-agent Herceptin(R) (trastuzumab) in metastatic breast cancer. a preliminary report. Eur J Cancer 2001;37(Suppl 1):25–9.

    Article  PubMed  Google Scholar 

  67. Sissom JF, Eigenbrodt ML, Porter JC. Anti-growth action on mouse mammary and prostate glands of a monoclonal antibody to prolactin receptor. Am J Pathol 1988;133(3):589–95.

    PubMed  Google Scholar 

  68. Hunter T. Treatment for chronic myelogenous leukemia: the long road to imatinib. J Clin Invest 2007;117(8):2036–43.

    Article  PubMed  CAS  Google Scholar 

  69. DaSilva L, et al. Growth signaling and JAK2 association mediated by membrane-proximal cytoplasmic regions of prolactin receptors. J Biol Chem 1994;269(28):18267–70.

    PubMed  Google Scholar 

  70. Rui H, Kirken RA, Farrar WL. Activation of receptor-associated tyrosine kinase JAK2 by prolactin. J Biol Chem 1994;269(7):5364–8.

    PubMed  Google Scholar 

  71. Li L, Shaw PE. Autocrine-mediated activation of STAT3 correlates with cell proliferation in breast carcinoma lines. J Biol Chem 2002;277(20):17397–405.

    Article  PubMed  CAS  Google Scholar 

  72. Burke WM, et al. Inhibition of constitutively active Stat3 suppresses growth of human ovarian and breast cancer cells. Oncogene 2001;20(55):7925–34.

    Article  PubMed  CAS  Google Scholar 

  73. Miller SL, et al. Novel association of Vav2 and Nek3 modulates signaling through the human prolactin receptor. Mol Endocrinol 2005;19(4):939–49.

    Article  PubMed  CAS  Google Scholar 

  74. Miller SL, et al. Nek3 kinase regulates prolactin-mediated cytoskeletal reorganization and motility of breast cancer cells. Oncogene 2007;26(32):4668–78.

    Article  PubMed  CAS  Google Scholar 

  75. Syed F, et al. A novel and functional interaction between cyclophilin A and prolactin receptor. Endocrine 2003;20(1–2):83–90.

    Article  PubMed  Google Scholar 

  76. Rycyzyn MA, Clevenger CV. Role of cyclophilins in somatolactogenic action. Ann N Y Acad Sci 2000;917:514–21.

    Article  PubMed  Google Scholar 

  77. Rycyzyn MA, Clevenger CV. The intranuclear prolactin/cyclophilin B complex as a transcriptional inducer. Proc Natl Acad Sci U S A 2002;99(10):6790–5.

    Article  PubMed  CAS  Google Scholar 

  78. Rycyzyn MA, et al. Role of cyclophilin B in prolactin signal transduction and nuclear retrotranslocation. Mol Endocrinol 2000;14(8):1175–86.

    Article  PubMed  Google Scholar 

  79. Bram RJ, et al. Identification of the immunophilins capable of mediating inhibition of signal transduction by cyclosporin A and FK506: roles of calcineurin binding and cellular location. Mol Cell Biol 1993;13(8):4760–9.

    PubMed  Google Scholar 

  80. Bram RJ, Crabtree GR. Calcium signalling in T cells stimulated by a cyclophilin B-binding protein. Nature 1994;371(6495):355–8.

    Article  PubMed  Google Scholar 

  81. Stewart T, et al. Incidence of de-novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet 1995;346(8978):796–8.

    Article  PubMed  Google Scholar 

  82. Gschwendt M, Kittstein W, Marks F. The weak immunosuppressant cyclosporine D as well as the immunologically inactive cyclosporine H are potent inhibitors in vivo of phorbol ester TPA-induced biological effects in mouse skin and of Ca2 +/calmodulin dependent EF-2 phosphorylation in vitro. Biochem Biophys Res Commun 1988;150(2):545–51.

    Article  PubMed  Google Scholar 

  83. Yang J, et al. Novel roles of unphosphorylated STAT3 in oncogenesis and transcriptional regulation. Cancer Res 2005;65(3):939–47.

    PubMed  Google Scholar 

  84. Ren S, et al. Loss of Stat5a delays mammary cancer progression in a mouse model. Oncogene 2002;21(27):4335–9.

    Article  PubMed  CAS  Google Scholar 

  85. Jing N, Tweardy DJ. Targeting Stat3 in cancer therapy. Anticancer Drugs 2005;16(6):601–7.

    Article  PubMed  Google Scholar 

  86. Jing N, et al. Targeting Stat3 with G-quartet oligodeoxynucleotides in human cancer cells. DNA Cell Biol 2003;22(11):685–96.

    Article  PubMed  CAS  Google Scholar 

  87. Schernhammer ES, et al. Insulin-like growth factor-I, its binding proteins (IGFBP-1 and IGFBP-3), and growth hormone and breast cancer risk in The Nurses Health Study II. Endocr Relat Cancer 2006;13(2):583–92.

    Article  PubMed  CAS  Google Scholar 

  88. Kaulsay KK, et al. The effects of autocrine human growth hormone (GH) on human mammary cell behavior are mediated via the hGH receptor. Endocrinol 2001;142:767–777.

    Article  Google Scholar 

  89. Divisova J, et al. The growth hormone antagonist pegvisomant blocks both mammary gland development and MCF-7 breast cancer xenograft growth. Breast Ca Res Treat 2006;98:315–327.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by grants to CC from the NIH R01 CA69294, 92265, and 102682. Additional support to CC was also received from the Lynn Sage and Avon Foundations, and the Zell Scholar’s Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles V. Clevenger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clevenger, C.V., Zheng, J., Jablonski, E.M. et al. From Bench to Bedside: Future Potential for the Translation of Prolactin Inhibitors as Breast Cancer Therapeutics. J Mammary Gland Biol Neoplasia 13, 147–156 (2008). https://doi.org/10.1007/s10911-008-9074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9074-8

Keywords

Navigation