Skip to main content

Advertisement

Log in

Rational Design of Competitive Prolactin/Growth Hormone Receptor Antagonists

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

There is increasing evidence that prolactin (PRL) and growth hormone (GH) act as growth-promoters of breast tumors. Recent arguments have accumulated to suggest that when they are locally-produced within the mammary tissue, these hormones, acting by an autocrine-paracrine mechanism may have enhanced, or even specific functions compared to endocrine PRL and GH. Classical drugs blocking pituitary hormone production (dopamine and somatostatin analogs) are ineffective on extrapituitary expression of PRL/GH genes, therefore the undesirable effects of these locally-produced hormones remain a target of interest for alternative strategies. This has encouraged the development of competitive PRL and/or GH receptor antagonists, which involve engineered variants of natural receptor ligands (PRL or GH) aimed at blocking receptor activation rather than hormone production in peripheral tissues. This article overviews the rational design of this new class of molecules, their specific molecular features (receptor specificity, biological properties, etc.) and whenever available, the data that have been obtained in cell or animal models of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

PRL:

prolactin

GH:

growth hormone

PRLR:

PRL receptor

GHR:

GH receptor

bp:

binding protein

h:

human

r:

rat

o:

ovine

PEG:

polyethylene glycol

References

  1. Gillam MP, Molitch ME, Lombardi G, Colao A. Advances in the treatment of prolactinomas. Endocr Rev. 2006;27:485–534.

    Article  PubMed  CAS  Google Scholar 

  2. Welsch CW, Nagasawa H. Prolactin and murine mammary tumorigenesis: a review. Cancer Res. 1977;37:951–63.

    PubMed  CAS  Google Scholar 

  3. Goffin V, Bernichtein S, Touraine P, Kelly PA. Development and potential clinical uses of human prolactin receptor antagonists. Endocr Rev. 2005;26:400–22.

    Article  PubMed  CAS  Google Scholar 

  4. Clevenger CV, Furth PA, Hankinson SE, Schuler LA. The role of prolactin in mammary carcinoma. Endocr Rev. 2003;24:1–27.

    Article  PubMed  CAS  Google Scholar 

  5. Vonderhaar BK. Prolactin involvement in breast cancer. Endocr Relat Cancer. 1999;6:389–404.

    Article  PubMed  CAS  Google Scholar 

  6. Ben Jonathan N, Hnasko R. Dopamine as a prolactin (PRL) inhibitor. Endocr Rev. 2001;22:724–63.

    Article  PubMed  CAS  Google Scholar 

  7. Ben-Jonathan N, Mershon JL, Allen DL, Steinmetz RW. Extrapituitary prolactin: distribution, regulation, functions, and clinical aspects. Endocr Rev. 1996;17:639–69.

    Article  PubMed  CAS  Google Scholar 

  8. Molitch ME. Medical management of prolactin-secreting pituitary adenomas. Pituitary. 2002;5:55–65.

    Article  PubMed  CAS  Google Scholar 

  9. Arafah BM, Nasrallah MP. Pituitary tumors: pathophysiology, clinical manifestations and management. Endocr Relat Cancer. 2001;8:287–305.

    Article  PubMed  CAS  Google Scholar 

  10. Fritze D, Queisser W, Schmid H, Kaufmann M, Massner B, Westerhausen M, et al. Prospective randomized trial concerning hyper- and normoprolactinemia and the use of bromoergocryptine in patients with metastatic breast cancer. Onkologie. 1986;9:305–12.

    Article  PubMed  CAS  Google Scholar 

  11. Bonneterre J, Mauriac L, Weber B, Roche H, Fargeot P, Tubiana-Hulin M, et al. Tamoxifen plus bromocriptine versus tamoxifen plus placebo in advanced breast cancer: results of a double blind multicentre clinical trial. Eur J Cancer Clin Oncol. 1988;24:1851–3.

    Article  PubMed  CAS  Google Scholar 

  12. Horti J, Figg WD, Weinberger B, Kohler D, Sartor O. A phase II study of bromocriptine in patients with androgen-independent prostate cancer. Oncol Rep. 1998;5:893–6.

    PubMed  CAS  Google Scholar 

  13. Clevenger CV. Nuclear localization and function of polypeptide ligands and their receptors: a new paradigm for hormone specificity within the mammary gland? Breast Cancer Res. 2003;5:181–7.

    Article  PubMed  CAS  Google Scholar 

  14. Ben Jonathan N, Liby K, McFarland M, Zinger M. Prolactin as an autocrine/paracrine growth factor in human cancer. Trends Endocrinol Metab. 2002;13:245–50.

    Article  PubMed  CAS  Google Scholar 

  15. Llovera M, Touraine P, Kelly PA, Goffin V. Involvement of prolactin in breast cancer: redefining the molecular targets. Exp Gerontol. 2000;35:41–51.

    Article  PubMed  CAS  Google Scholar 

  16. Rose-Hellekant TA, Arendt LM, Schroeder MD, Gilchrist K, Sandgren EP, Schuler LA. Prolactin induces ERalpha-positive and ERalpha-negative mammary cancer in transgenic mice. Oncogene. 2003;22:4664–74.

    Article  PubMed  CAS  Google Scholar 

  17. Touraine P, Martini JF, Zafrani B, Durand JC, Labaille F, Malet C, et al. Increased expression of prolactin receptor gene assessed by quantitative polymerase chain reaction in human breast tumors versus normal breast tissues. J Clin Endocrinol Metab. 1998;83:667–74.

    Article  PubMed  CAS  Google Scholar 

  18. Li H, Ahonen TJ, Alanen K, Xie J, LeBaron MJ, Pretlow TG, et al. Activation of signal transducer and activator of transcription 5 in human prostate cancer is associated with high histological grade. Cancer Res. 2004;64:4774–82.

    Article  PubMed  CAS  Google Scholar 

  19. Kindblom J, Dillner K, Sahlin L, Robertson F, Ormandy C, Tornell J, et al. Prostate hyperplasia in a transgenic mouse with prostate-specific expression of prolactin. Endocrinology. 2003;144:2269–78.

    Article  PubMed  CAS  Google Scholar 

  20. Manhes C, Kayser C, Bertheau P, Kelder B, Kopchick JJ, Kelly PA, et al. Local over-expression of prolactin in differentiating mouse mammary gland induces functional defects and benign lesions, but no carcinoma. J Endocrinol 2006;190:271–85.

    Article  PubMed  CAS  Google Scholar 

  21. Zinger M, McFarland M, Ben Jonathan N. Prolactin expression and secretion by human breast glandular and adipose tissue explants. J Clin Endocrinol Metab. 2003;88:689–96.

    Article  PubMed  CAS  Google Scholar 

  22. Manfroid I, Van De WC, Baudhuin A, Martial JA, Muller M. EGF stimulates Pit-1 independent transcription of the human prolactin pituitary promoter in human breast cancer SK-BR-3 cells through its proximal AP-1 response element. Mol Cell Endocrinol. 2005;229:127–39.

    Article  PubMed  CAS  Google Scholar 

  23. Baudhuin A, Manfroid I, Van De WC, Martial JA, Muller M. Transcription of the human prolactin gene in mammary cells. Ann N Y Acad Sci. 2002;973:454–8.

    PubMed  CAS  Google Scholar 

  24. Mertani HC, Zhu T, Goh EL, Lee KO, Morel G, Lobie PE. Autocrine human growth hormone (hGH) regulation of human mammary carcinoma cell gene expression. Identification of CHOP as a mediator of hGH stimulated human mammary carcinoma cell survival. J Biol Chem 2001;276:21464–75.

    Article  PubMed  CAS  Google Scholar 

  25. Mertani HC, Garcia-Caballero T, Lambert A, Gerard F, Palayer C, Boutin JM, et al. Cellular expression of growth hormone and prolactin receptors in human breast disorders. Int J Cancer. 1998;79:202–11.

    Article  PubMed  CAS  Google Scholar 

  26. Mukhina S, Mertani HC, Guo K, Lee KO, Gluckman PD, Lobie PE. Phenotypic conversion of human mammary carcinoma cells by autocrine human growth hormone. Proc Natl Acad Sci U S A. 2004;101:15166–71.

    Article  PubMed  CAS  Google Scholar 

  27. Kaulsay KK, Zhu T, Bennett W, Lee K, Lobie PE. The effects of autocrine human growth hormone (hGH) on human mammary carcinoma cell behavior are mediated via the hGH receptor. Endocrinology. 2001;142:767–77.

    Article  PubMed  CAS  Google Scholar 

  28. Waters MJ, Barclay JL. Does growth hormone drive breast and other cancers? Endocrinology. 2007;148:4533–5.

    Article  PubMed  CAS  Google Scholar 

  29. Teilum K, Hoch JC, Goffin V, Kinet S, Martial JA, Kragelund BB. Solution structure of human prolactin. J Mol Biol. 2005;351:810–23.

    Article  PubMed  CAS  Google Scholar 

  30. De Vos AM, Ultsch M, Kossiakoff AA. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science. 1992;255:306–12.

    Article  PubMed  Google Scholar 

  31. Horseman ND, Yu-Lee LY. Transcriptional regulation by the helix bundle peptide hormones: growth hormone, prolactin, and hematopoietic cytokines. Endocr Rev. 1994;15:627–49.

    Article  PubMed  CAS  Google Scholar 

  32. Kelly PA, Djiane J, Banville D, Ali S, Edery M, Rozakis M. The growth hormone/prolactin receptor gene family. In: Maclean N, editor. Oxford surveys on eukaryotic genes. London: Oxford University Press; 1991. p. 29–50.

    Google Scholar 

  33. Boutin JM, Jolicoeur C, Okamura H, Gagnon J, Edery M, Shirota M, et al. Cloning and expression of the rat prolactin receptor, a member of the growth hormone/prolactin receptor gene family. Cell. 1988;53:69–77.

    Article  PubMed  CAS  Google Scholar 

  34. Wells JA, De Vos AM. Hematopoietic receptor complexes. Annu Rev Biochem. 1996;65:609–34.

    Article  PubMed  CAS  Google Scholar 

  35. Elkins PA, Christinger HW, Sandowski Y, Sakal E, Gertler A, De Vos AM, et al. Ternary complex between placental lactogen and the extracellular domain of the prolactin receptor. Nat Struct Biol. 2000;7:808–15.

    Article  PubMed  CAS  Google Scholar 

  36. Fuh G, Cunningham BC, Fukunaga R, Nagata S, Goeddel DV, Wells JA. Rational design of potent antagonists to the human growth hormone receptor. Science. 1992;256:1677–80.

    Article  PubMed  CAS  Google Scholar 

  37. Goffin V, Shiverick KT, Kelly PA, Martial JA. Sequence–function relationships within the expanding family of prolactin, growth hormone, placental lactogen and related proteins in mammals. Endocr Rev. 1996;17:385–410.

    Article  PubMed  CAS  Google Scholar 

  38. Waters MJ, Hoang HN, Fairlie DP, Pelekanos RA, Brown RJ. New insights into growth hormone action. J Mol Endocrinol. 2006;36:1–7.

    Article  PubMed  CAS  Google Scholar 

  39. Brown RJ, Adams JJ, Pelekanos RA, Wan Y, McKinstry WJ, Palethorpe K, et al. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer. Nat Struct Mol Biol. 2005;12:814–21.

    Article  PubMed  CAS  Google Scholar 

  40. Qazi AM, Tsai-Morris CH, Dufau ML. Ligand-independent homo- and hetero-dimerization of human prolactin receptor variants: inhibitory action of the short forms by heterodimerization. Mol Endocrinol. 2006;20:1912–23.

    Article  PubMed  CAS  Google Scholar 

  41. Gadd SL, Clevenger CV. Ligand-independent dimerization of the human prolactin receptor isoforms: functional implications. Mol Endocrinol. 2006;20:2734–46.

    Article  PubMed  CAS  Google Scholar 

  42. Tan D, Johnson DA, Wu W, Zeng L, Chen YH, Chen WY, et al. Unmodified prolactin (PRL) and S179D PRL-initiated bioluminescence resonance energy transfer between homo- and hetero-pairs of long and short human prolactin receptors in living human cells. Mol Endocrinol. 2005;19:1291–303.

    Article  PubMed  CAS  Google Scholar 

  43. James JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods. 2006;3:1001–6.

    Article  PubMed  CAS  Google Scholar 

  44. Gadd SL, Clevenger CV. Ligand-independent dimerization of the human prolactin receptor isoforms: functional implications. Mol Endocrinol. 2006;20:2734–46.

    Article  PubMed  CAS  Google Scholar 

  45. Chen WY, Wight DC, Mehta BV, Wagner TE, Kopchick JJ. Glycine 119 of bovine growth hormone is critical for growth-promoting activity. Mol Endocrinol. 1991;5:1845–52.

    PubMed  CAS  Google Scholar 

  46. Chen WY, Wight DC, Wagner TE, Kopchick JJ. Expression of a mutated bovine growth hormone gene suppresses growth of transgenic mice. Proc Natl Acad Sci U S A. 1990;87:5061–5.

    Article  PubMed  CAS  Google Scholar 

  47. Kopchick JJ, Parkinson C, Stevens EC, Trainer PJ. Growth hormone receptor antagonists: discovery, development, and use in patients with acromegaly. Endocr Rev. 2002;23:623–46.

    Article  PubMed  CAS  Google Scholar 

  48. Clackson T, Ultsch MH, Wells JA, De Vos AM. Structural and functional analysis of the 1:1 growth hormone:receptor complex reveals the molecular basis for receptor affinity. J Mol Biol. 1998;277:1111–28.

    Article  PubMed  CAS  Google Scholar 

  49. Fuh G, Colosi P, Wood WI, Wells JA. Mechanism-based design of prolactin receptor antagonists. J Biol Chem. 1993;268:5376–81.

    PubMed  CAS  Google Scholar 

  50. Fuh G, Wells JA. Prolactin receptor antagonists that inhibit the growth of breast cancer cell lines. J Biol Chem. 1995;270:13133–7.

    Article  PubMed  CAS  Google Scholar 

  51. Kaulsay KK, Mertani HC, Tornell J, Morel G, Lee KO, Lobie PE. Autocrine stimulation of human mammary carcinoma cell proliferation by human growth hormone. Exp Cell Res. 1999;250:35–50.

    Article  PubMed  CAS  Google Scholar 

  52. Ross RJ, Leung KC, Maamra M, Bennett W, Doyle N, Waters MJ, et al. Binding and functional studies with the growth hormone receptor antagonist, B2036-PEG (pegvisomant), reveal effects of pegylation and evidence that it binds to a receptor dimer. J Clin Endocrinol Metab. 2001;86:1716–23.

    Article  PubMed  CAS  Google Scholar 

  53. Goffin V, Bernichtein S, Carrière O, Bennett WF, Kopchick JJ, Kelly PA. The human growth hormone antagonist B2036 does not interact with the prolactin receptor. Endocrinology. 1999;140:3853–6.

    Article  PubMed  CAS  Google Scholar 

  54. Bernichtein S, Kayser C, Dillner K, Moulin S, Kopchick JJ, Martial JA, et al. Development of pure prolactin receptor antagonists. J Biol Chem. 2003;278:35988–99.

    Article  PubMed  CAS  Google Scholar 

  55. Bernat B, Pal G, Sun M, Kossiakoff AA. Determination of the energetics governing the regulatory step in growth hormone-induced receptor homodimerization. Proc Natl Acad Sci U S A. 2003;100:952–7.

    Article  PubMed  CAS  Google Scholar 

  56. Walsh ST, Jevitts LM, Sylvester JE, Kossiakoff AA. Site2 binding energetics of the regulatory step of growth hormone-induced receptor homodimerization. Protein Sci. 2003;12:1960–70.

    Article  PubMed  CAS  Google Scholar 

  57. Gent J, Van Den EM, van Kerkhof P, Strous GJ. Dimerization and signal transduction of the growth hormone receptor. Mol Endocrinol. 2003;17:967–75.

    Article  PubMed  CAS  Google Scholar 

  58. Harding PA, Wang X, Okada S, Chen WY, Wan W, Kopchick JJ. Growth hormone (GH) and a GH antagonist promote GH receptor dimerization and internalization. J Biol Chem. 1996;271:6708–12.

    Article  PubMed  CAS  Google Scholar 

  59. Jomain JB, Tallet E, Broutin I, Hoos S, Van Agthoven J, Ducruix A, et al. Structural and thermodynamical bases for the design of pure prolactin receptor antagonists. X-ray structure of Del1–9-G129R-hPRL. J Biol Chem. 2007;282:33118–31.

    Article  PubMed  CAS  Google Scholar 

  60. Bernichtein S, Kinet S, Jeay S, Madern M, Martial JA, Kelly PA, et al. S179D-hPRL, a pseudo-phosphorylated human prolactin analog, is an agonist and not an antagonist. Endocrinology. 2001;142:3950–63.

    Article  PubMed  CAS  Google Scholar 

  61. Kinet S, Bernichtein S, Kelly PA, Martial JA, Goffin V. Biological properties of human prolactin analogs depend not only on global hormone affinity, but also on the relative affinities of both receptor binding sites. J Biol Chem. 1999;274:26033–43.

    Article  PubMed  CAS  Google Scholar 

  62. Goffin V, Struman I, Mainfroid V, Kinet S, Martial JA. Evidence for a second receptor binding site on human prolactin. J Biol Chem. 1994;269:32598–606.

    PubMed  CAS  Google Scholar 

  63. Mode A, Tollet P, Wells T, Carmignac DF, Clark RG, Chen WY, et al. The human growth hormone (hGH) antagonist G120RhGH does not antagonize GH in the rat, but has paradoxical agonist activity, probably via the prolactin receptor. Endocrinology. 1996;137:447–54.

    Article  PubMed  CAS  Google Scholar 

  64. Chen WY, Chen NY, Yun J, Wagner TE, Kopchick JJ. In vitro and in vivo studies of antagonistic effects of human growth hormone analogs. J Biol Chem. 1994;269:15892–7.

    PubMed  CAS  Google Scholar 

  65. Ormandy CJ, Camus A, Barra J, Damotte D, Lucas BK, Buteau H, et al. Null mutation of the prolactin receptor gene produces multiple reproductive defects in the mouse. Genes Dev. 1997;11:167–78.

    Article  PubMed  CAS  Google Scholar 

  66. Shen Q, Lantvit DD, Lin Q, Li Y, Christov K, Wang Z, et al. Advanced rat mammary cancers are growth hormone dependent. Endocrinology. 2007;148:4536–44.

    Article  PubMed  CAS  Google Scholar 

  67. Zhang X, Mehta RG, Lantvit DD, Coschigano KT, Kopchick JJ, Green JE, et al. Inhibition of estrogen independent mammary carcinogenesis by disruption of growth hormone signaling.. Carcinogenesis. 2006;28:143–50.

    Article  PubMed  Google Scholar 

  68. Divisova J, Kuiatse I, Lazard Z, Weiss H, Vreeland F, Hadsell DL, et al. The growth hormone receptor antagonist pegvisomant blocks both mammary gland development and MCF-7 breast cancer xenograft growth. Breast Cancer Res Treat. 2006;98:315–27.

    Article  PubMed  CAS  Google Scholar 

  69. Llovera M, Pichard C, Bernichtein S, Jeay S, Touraine P, Kelly PA, et al. Human prolactin (hPRL) antagonists inhibit hPRL-activated signaling pathways involved in breast cancer cell proliferation. Oncogene. 2000;19:4695–705.

    Article  PubMed  CAS  Google Scholar 

  70. Bernichtein S, Jeay S, Vaudry R, Kelly PA, Goffin V. New homologous bioassays for human lactogens show that agonism or antagonism of various analogs is a function of assay sensitivity. Endocrine. 2003;20:177–90.

    Article  PubMed  CAS  Google Scholar 

  71. Ramamoorthy P, Sticca R, Wagner TE, Chen WY. In vitro studies of a prolactin antagonist, hPRL-G129R in human breast cancer cells. Int J Oncol. 2001;18:25–32.

    PubMed  CAS  Google Scholar 

  72. Beck MT, Peirce SK, Chen WY. Regulation of bcl-2 gene expression in human breast cancer cells by prolactin and its antagonist, hPRL-G129R. Oncogene. 2002;21:5047–55.

    Article  PubMed  CAS  Google Scholar 

  73. Peirce SK, Chen WY. Human prolactin and its antagonist, hPRL-G129R, regulate bax and bcl-2 gene expression in human breast cancer cells and transgenic mice. Oncogene. 2004;23:1248–55.

    Article  PubMed  CAS  Google Scholar 

  74. Chen NY, Holle L, Li W, Peirce SK, Beck MT, Chen WY. In vivo studies of the anti-tumor effects of a human prolactin antagonist, hPRL-G129R. Int J Oncol. 2002;20:813–8.

    PubMed  CAS  Google Scholar 

  75. Tomblyn S, Langenheim JF, Jacquemart IC, Holle E, Chen WY. The role of human prolactin and its antagonist, G129R, in mammary gland development and DMBA-initiated tumorigenesis in transgenic mice. Int J Oncol. 2005;27:1381–9.

    PubMed  CAS  Google Scholar 

  76. Bernichtein S, Jomain JB, Kelly PA, Goffin V. The N-terminus of human prolactin modulates its biological properties. Mol Cell Endocrinol. 2003;208:11–21.

    Article  PubMed  CAS  Google Scholar 

  77. Sivaprasad U, Canfield JM, Brooks CL. Mechanism for ordered receptor binding by human prolactin. Biochemistry. 2004;43:13755–65.

    Article  PubMed  CAS  Google Scholar 

  78. Diogenes A, Patwardhan AM, Jeske NA, Ruparel NB, Goffin V, Akopian AN, et al. Prolactin modulates TRPV1 in female rat trigeminal sensory neurons. J Neurosci. 2006;26:8126–36.

    Article  PubMed  CAS  Google Scholar 

  79. Ma FY, Grattan DR, Goffin V, Bunn SJ. Prolactin-regulated tyrosine hydroxylase activity and messenger ribonucleic acid expression in mediobasal hypothalamic cultures: the differential role of specific protein kinases. Endocrinology. 2005;146:93–102.

    Article  PubMed  CAS  Google Scholar 

  80. Dagvadorj A, collins S, Jomain JB, Abdulghani J, Karras J, Zellweger T, et al. Autocrine prolactin promotes prostate cancer cell growth via Janus kinase-2-signal transducer and activator of transcription-5a/b signaling pathway. Endocrinology. 2007;148:3089–101.

    Article  PubMed  CAS  Google Scholar 

  81. Jordan VC, Murphy CS. Endocrine pharmacology of antiestrogens as antitumor agents. Endocr Rev. 1990;11:578–610.

    PubMed  CAS  Google Scholar 

  82. Fischer OM, Streit S, Hart S, Ullrich A. Beyond Herceptin and Gleevec. Curr Opin Chem Biol. 2003;7:490–5.

    Article  PubMed  CAS  Google Scholar 

  83. Chen WY, Ramamoorthy P, Chen N, Sticca R, Wagner TE. A human prolactin antagonist, hPRL-G129R, inhibits breast cancer cell proliferation through induction of apoptosis. Clin Cancer Res. 1999;5:3583–93.

    PubMed  CAS  Google Scholar 

  84. Scotti ML, Langenheim JF, Tomblyn S, Springs AE, Chen WY. Additive effects of a prolactin receptor antagonist, G129R, and herceptin on inhibition of HER2-overexpressing breast cancer cells. Breast Cancer Res Treat. 2008. doi 10.1007/s10549-007-9789-z.

  85. Yamauchi T, Yamauchi N, Ueki K, Sugiyama T, Waki H, Miki H, et al. Constitutive tyrosine phosphorylation of ErbB-2 via Jak2 by autocrine secretion of prolactin in human breast cancer. J Biol Chem. 2000;275:33937–44.

    Article  PubMed  CAS  Google Scholar 

  86. Zhang G, Li W, Holle L, Chen N, Chen WY. A novel design of targeted endocrine and cytokine therapy for breast cancer. Clin Cancer Res. 2002;8:1196–205.

    PubMed  CAS  Google Scholar 

  87. Garcia-Tunon I, Ricote M, Ruiz A, Fraile B, Paniagua R, Royuela M. Interleukin-2 and its receptor complex (alpha, beta and gamma chains) in in situ and infiltrative human breast cancer: an immunohistochemical comparative study. Breast Cancer Res. 2004;6:R1–7.

    Article  PubMed  CAS  Google Scholar 

  88. Beck MT, Chen NY, Franek KJ, Chen WY. Prolactin antagonist–endostatin fusion protein as a targeted dual-functional therapeutic agent for breast cancer. Cancer Res. 2003;63:3598–604.

    PubMed  CAS  Google Scholar 

  89. Tomblyn S, Springs AE, Langenheim JF, Chen WY. A multifaceted, targeted combination therapy using three prolactin receptor antagonist based fusion proteins which significantly inhibits tumor recurrence in HER2/neu mice. 89th Meeting of the Endocrine Society Toronto, Canada (june 2–5)[OR-43-1]. 2007, Abstract.

  90. Goffin V, Touraine P, Culler MD, Kelly PA. Drug Insight: prolactin-receptor antagonists, a novel approach to treatment of unresolved systemic and local hyperprolactinemia? Nat Clin Pract Endocrinol Metab. 2006;2:571–81.

    Article  PubMed  CAS  Google Scholar 

  91. van den Eijnden MJ, Strous GJ. Autocrine growth hormone: effects on growth hormone receptor trafficking and signaling. Mol Endocrinol. 2007;21:2832–46.

    Article  PubMed  CAS  Google Scholar 

  92. Oakes SR, Robertson FG, Kench JG, Gardiner-Garden M, Wand MP, Green JE, et al. Loss of mammary epithelial prolactin receptor delays tumor formation by reducing cell proliferation in low-grade preinvasive lesions. Oncogene. 2007;26:543–53.

    Article  PubMed  CAS  Google Scholar 

  93. Kelly PA, Bachelot A, Kedzia C, Hennighausen L, Ormandy CJ, Kopchick JJ, et al. The role of prolactin and growth hormone in mammary gland development. Mol Cell Endocrinol. 2002;197:127–31.

    Article  PubMed  CAS  Google Scholar 

  94. Nouhi Z, Chughtai N, Hartley S, Cocolakis E, Lebrun JJ, Ali S. Defining the role of prolactin as an invasion suppressor hormone in breast cancer cells. Cancer Res. 2006;66:1824–32.

    Article  PubMed  CAS  Google Scholar 

  95. Sultan AS, Xie J, LeBaron MJ, Ealley EL, Nevalainen MT, Rui H. Stat5 promotes homotypic adhesion and inhibits invasive characteristics of human breast cancer cells. Oncogene. 2005;24:746–60.

    Article  PubMed  CAS  Google Scholar 

  96. Nevalainen MT, Xie J, Torhorst J, Bubendorf L, Haas P, Kononen J, et al. Signal transducer and activator of transcription-5 activation and breast cancer prognosis. J Clin Oncol. 2004;22:2053–60.

    Article  PubMed  CAS  Google Scholar 

  97. Maus MV, Reilly SC, Clevenger CV. Prolactin as a chemoattractant for human breast carcinoma. Endocrinology. 1999;140:5447–50.

    Article  PubMed  CAS  Google Scholar 

  98. Gourdou I, Paly J, Hue-Beauvais C, Pessemesse L, Clark J, Djiane J. Expression by transgenesis of a constitutively active mutant form of the prolactin receptor induces premature abnormal development of the mouse mammary gland and lactation failure. Biol Reprod. 2004;70:718–28.

    Article  PubMed  CAS  Google Scholar 

  99. Manhes C, Kayser C, Bertheau P, Kelder B, Kopchick JJ, Kelly PA, et al. Local over-expression of prolactin in differentiating mouse mammary gland induces functional defects and benign lesions, but no carcinoma. J Endocrinol. 2006;190:271–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors are grateful to The Journal of Biological Chemistry and Endocrinology for the permission to insert some panels from two earlier publications by our group in Fig. 4 [54, 60].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Goffin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tallet, E., Rouet, V., Jomain, JB. et al. Rational Design of Competitive Prolactin/Growth Hormone Receptor Antagonists. J Mammary Gland Biol Neoplasia 13, 105–117 (2008). https://doi.org/10.1007/s10911-008-9066-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-008-9066-8

Keywords

Navigation