Skip to main content

Advertisement

Log in

Cell Motility and Cytoskeletal Regulation in Invasion and Metastasis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Cell motility and chemotaxis can make important contributions to the metastatic cascade. Cell migration pathways in general play significant roles in a variety of physiological processes that can be “hijacked” by cancer cells. Both growth factors and chemokines provide important chemotactic signals in development and metastasis. Receptor activation, following binding of a growth factor or a chemokine, leads to dynamic morphological changes in the actin cytoskeleton network via a variety of distinct and interconnected pathways, resulting in translocation of the cell up a chemoattractant gradient. Such gradients may be produced by stromal cells in the local microenvironment, including macrophages and fibroblasts. A better understanding of the mechanisms of cell motility and cytoskeletal regulation may provide novel therapeutic strategies that would block metastatic progression, reducing dissemination of tumor cells and increasing patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

ARP2/3:

actin-related protein-2/3

CAF:

cancer associated fibroblast

CXCR4:

CXC motif chemokine receptor 4

ECM:

extracellular matrix

EGFR:

epidermal growth factor receptor

EMT:

epithelial–mesenchymal transition

FGF:

fibroblast growth factor

GPCR:

G-protein Coupled Receptor

HRG:

heregulin

HGF:

hepatocyte growth factor

MLC2:

myosin II light chain

MRCK:

myotonic dystrophy kinase-related Cdc42-binding kinase

PI3K:

phosphoinositide 3-kinase

PLC:

phospholipase C

SDF-1:

stromal derived factor 1

ROCK:

rho signals through rho-kinase

RTK:

receptor tyrosine kinase

TAM:

tumor associated macrophages

WASP:

Wiskott–Aldrich syndrome protein

WAVE:

WASP-family verprolin-homologous proteins

Reference

  1. Lauffenburger DA, Horwitz AF. Cell migration: a physically integrated molecular process. Cell 1996;84(3):359–69.

    Article  PubMed  CAS  Google Scholar 

  2. Condeelis J, Singer RH, Segall JE. The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol 2005;21:695–718.

    Article  PubMed  CAS  Google Scholar 

  3. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell 2006;127(4):679–95.

    Article  PubMed  CAS  Google Scholar 

  4. Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat Rev 2004;4(6):448–56.

    CAS  Google Scholar 

  5. Schneider IC, Haugh JM. Mechanisms of gradient sensing and chemotaxis: conserved pathways, diverse regulation. Cell Cycle 2006;5(11):1130–4.

    PubMed  CAS  Google Scholar 

  6. Dormann D, Weijer CJ. Chemotactic cell movement during development. Curr Opin Genet Dev 2003;13(4):358–64.

    Article  PubMed  CAS  Google Scholar 

  7. Mailleux AA, Spencer-Dene B, Dillon C, Ndiaye D, Savona-Baron C, Itoh N, et al. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development 2002;129(1):53–60.

    PubMed  CAS  Google Scholar 

  8. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev 2004;4(1):71–8

    CAS  Google Scholar 

  9. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 2006;124(2):263–6.

    Article  PubMed  CAS  Google Scholar 

  10. Lee JM, Dedhar S, Kalluri R, Thompson EW. The epithelial–mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 2006;172(7):973–81.

    Article  PubMed  CAS  Google Scholar 

  11. Nieto MA. The early steps of neural crest development. Mech Dev 2001;105(1–2):27–35.

    Article  PubMed  CAS  Google Scholar 

  12. Ahmed N, Maines-Bandiera S, Quinn MA, Unger WG, Dedhar S, Auersperg N. Molecular pathways regulating EGF-induced epithelio–mesenchymal transition in human ovarian surface epithelium. Am J Physiol 2006 Jun;290(6):C1532–42.

    Article  CAS  Google Scholar 

  13. Friedl P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol 2004;16(1):14–23.

    Article  PubMed  CAS  Google Scholar 

  14. Condeelis J, Segall JE. Intravital imaging of cell movement in tumours. Nat Rev 2003;3(12):921–30.

    Article  CAS  Google Scholar 

  15. Ebert LM, Schaerli P, Moser B. Chemokine-mediated control of T cell traffic in lymphoid and peripheral tissues. Mol Immunol 2005;42(7):799–809.

    Article  PubMed  CAS  Google Scholar 

  16. Cupedo T, Mebius RE. Role of chemokines in the development of secondary and tertiary lymphoid tissues. Semin Immunol 2003;15(5):243–8.

    Article  PubMed  CAS  Google Scholar 

  17. Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006;354(6):610–21.

    Article  PubMed  CAS  Google Scholar 

  18. Zlotnik A. Chemokines and cancer. Int J Cancer 2006;119(9):2026–9.

    Article  PubMed  CAS  Google Scholar 

  19. Dewan MZ, Ahmed S, Iwasaki Y, Ohba K, Toi M, Yamamoto N. Stromal cell-derived factor-1 and CXCR4 receptor interaction in tumor growth and metastasis of breast cancer. Biomed Pharmacother 2006;60(6):273–6.

    Article  PubMed  CAS  Google Scholar 

  20. Smith MCP, Luker KE, Garbow JR, Prior JL, Jackson E, Piwnica-Worms D, et al. CXCR4 regulates growth of both primary and metastatic breast cancer. Philadelphia, A: American Association for Cancer Research; 2004. p. 8604–12.

  21. Kato M, Kitayama J, Kazama S, Nagawa H. Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Res 2003;5(5):R144–50.

    Article  PubMed  CAS  Google Scholar 

  22. Muller A, Homey B, Soto H, Ge N, Catron D, Buchanan ME, McClanahan T, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001;410(6824):50–6.

    Article  PubMed  CAS  Google Scholar 

  23. Phillips RJ, Burdick MD, Lutz M, Belperio JA, Keane MP, Strieter RM. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med 2003;167(12):1676–86.

    Article  PubMed  Google Scholar 

  24. Ben-Baruch A. The multifaceted roles of chemokines in malignancy. Cancer Metastasis Rev 2006;V25(3):357–71.

    Article  CAS  Google Scholar 

  25. Holland JD, Kochetkova M, Akekawatchai C, Dottore M, Lopez A, McColl SR. Differential functional activation of chemokine receptor CXCR4 is mediated by G proteins in breast cancer cells. Cancer Res 2006;66(8):4117–24.

    Article  PubMed  CAS  Google Scholar 

  26. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006;366(1):2–16.

    Article  PubMed  CAS  Google Scholar 

  27. Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, et al. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Molec Cell 2003;11(2):495–505.

    Article  PubMed  CAS  Google Scholar 

  28. Holbro T, Beerli RR, Maurer F, Koziczak M, Barbas CF III, Hynes NE. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc Natl Acad Sci U S A 2003;100(15):8933–8.

    Article  PubMed  CAS  Google Scholar 

  29. Citri A, Skaria KB, Yarden Y. The deaf and the dumb: the biology of ErbB-2 and ErbB-3. Exp Cell Res 2003;284(1):54–65.

    Article  PubMed  CAS  Google Scholar 

  30. Riese DJ II, Stern DF. Specificity within the EGF family/ErbB receptor family signaling network. Bioessays 1998;20(1):41–8.

    Article  PubMed  Google Scholar 

  31. Salomon DS, Brandt R, Ciardiello F, Normanno N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol/Hematol 1995;19(3):183–232.

    Article  CAS  Google Scholar 

  32. Atlas E, Cardillo M, Mehmi I, Zahedkargaran H, Tang C, Lupu R. Heregulin is sufficient for the promotion of tumorigenicity and metastasis of breast cancer cells in vivo. Mol Cancer Res 2003;1(3):165–75.

    PubMed  CAS  Google Scholar 

  33. Stove C, Bracke M. Roles for neuregulins in human cancer. Clin Exp Metastasis 2004;21(8):665–84.

    Article  PubMed  CAS  Google Scholar 

  34. Willmarth NE, Ethier SP. Autocrine and juxtacrine effects of amphiregulin on the proliferative, invasive, and migratory properties of normal and neoplastic human mammary epithelial cells. J Biol Chem 2006;281(49):37728–37.

    Article  PubMed  CAS  Google Scholar 

  35. Xue C, Wyckoff J, Liang F, Sidani M, Violini S, Tsai KL, et al. Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res 2006;66(1):192–7.

    Article  PubMed  CAS  Google Scholar 

  36. Wyckoff J, Wang W, Lin EY, Wang Y, Pixley F, Stanley ER, et al. A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 2004;64(19):7022–9.

    Article  PubMed  CAS  Google Scholar 

  37. Xue C, Liang F, Mahmood R, Vuolo M, Wyckoff J, Qian H, et al. ErbB3-dependent motility and intravasation in breast cancer metastasis. Cancer Res 2006;66(3):1418–26.

    Article  PubMed  CAS  Google Scholar 

  38. Longati P, Comoglio PM, Bardelli A. Receptor tyrosine kinases as therapeutic targets the model of the MET oncogene. Current Drug Targets 2001;2:41–55.

    Article  PubMed  CAS  Google Scholar 

  39. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003;4(12):915–25.

    Article  PubMed  CAS  Google Scholar 

  40. Ma PC, Maulik G, Christensen J, Salgia R. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev 2003;22(4):309–25.

    Article  PubMed  CAS  Google Scholar 

  41. Luker KE, Luker GD. Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett 2006;238(1):30–41.

    Article  PubMed  CAS  Google Scholar 

  42. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 2006;107(5):1761–7.

    Article  PubMed  CAS  Google Scholar 

  43. Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G, et al. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 2006;126(3):489–502.

    Article  PubMed  CAS  Google Scholar 

  44. Micke P, Ostman A. Tumour–stroma interaction: cancer-associated fibroblasts as novel targets in anti-cancer therapy? Lung Cancer 2004;45 Suppl 2:S163–75.

    Article  PubMed  Google Scholar 

  45. Qian LW, Mizumoto K, Maehara N, Ohuchida K, Inadome N, Saimura M, et al. Co-cultivation of pancreatic cancer cells with orthotopic tumor-derived fibroblasts: fibroblasts stimulate tumor cell invasion via HGF secretion whereas cancer cells exert a minor regulative effect on fibroblasts HGF production. Cancer Lett 2003;190(1):105–12.

    Article  PubMed  CAS  Google Scholar 

  46. Goswami S, Sahai E, Wyckoff JB, Cammer M, Cox D, Pixley FJ, et al. Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Res 2005;65(12):5278–83.

    Article  PubMed  CAS  Google Scholar 

  47. Wang W, Goswami S, Lapidus K, Wells AL, Wyckoff JB, Sahai E, et al. Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 2004;64:8585–94.

    Article  PubMed  CAS  Google Scholar 

  48. Goswami S, Wang W, Wyckoff JB, Condeelis JS. Breast cancer cells isolated by chemotaxis from primary tumors show increased survival and resistance to chemotherapy. Cancer Res 2004;64(21):7664–7.

    Article  PubMed  CAS  Google Scholar 

  49. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell 2003;112(4):453–65.

    Article  PubMed  CAS  Google Scholar 

  50. Mouneimne G, Soon L, DesMarais V, Sidani M, Song X, Yip SC, et al. Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J Cell Biol 2004;166(5):697–708.

    Article  PubMed  CAS  Google Scholar 

  51. Yin HL, Janmey PA. Phosphoinositide regulation of the actin cytoskeleton. Annu Rev Physiol 2003;65:761–89.

    Article  PubMed  CAS  Google Scholar 

  52. Hurley JH. Membrane binding domains. Biochim Biophys Acta Mol Cell Biol Lipids 2006;1761(8):805–11.

    Article  CAS  Google Scholar 

  53. van Rheenen J, Jalink K. Agonist-induced PIP(2) hydrolysis inhibits cortical actin dynamics: regulation at a global but not at a micrometer scale. Mol Biol Cell 2002;13(9):3257–67.

    Article  PubMed  CAS  Google Scholar 

  54. van Rheenen J, Achame EM, Janssen H, Calafat J, Jalink K. PIP2 signaling in lipid domains: a critical re-evaluation. EMBO J 2005;24(9):1664–73.

    Article  PubMed  CAS  Google Scholar 

  55. Franca-Koh J, Kamimura Y, Devreotes P. Navigating signaling networks: chemotaxis in Dictyostelium discoideum. Curr Opin Genet Dev 2006;16(4):333–8.

    Article  PubMed  CAS  Google Scholar 

  56. Barber MA, Welch HCE. PI3K and RAC signalling in leukocyte and cancer cell migration. Bull Cancer 2006;93(5):E44–52.

    PubMed  Google Scholar 

  57. Hall A. Rho GTPases and the control of cell behaviour. Biochem Soc Trans 2005;33:891–5.

    Article  PubMed  CAS  Google Scholar 

  58. Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS. Cofilin promotes actin polymerization and defines the direction of cell motility. Science 2004;304(5671):743–6.

    Article  PubMed  CAS  Google Scholar 

  59. Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta 2007;1773(5):642–52.

    Article  PubMed  CAS  Google Scholar 

  60. Wang W, Mouneimne G, Sidani M, Wyckoff J, Chen X, Makris A, et al. The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. J Cell Biol 2006;173(3):395–404.

    Article  PubMed  CAS  Google Scholar 

  61. Mouneimne G, DesMarais V, Sidani M, Scemes E, Wang W, Song X, et al. Spatial and temporal control of cofilin activity is required for directional sensing during chemotaxis. Curr Biol 2006;16(22):2193–205.

    Article  PubMed  CAS  Google Scholar 

  62. Takenawa T, Suetsugu S. The WASP–WAVE protein network: connecting the membrane to the cytoskeleton. Nat Rev Mol Cell Biol 2007;8(1):37–48.

    Article  PubMed  CAS  Google Scholar 

  63. Ichetovkin I, Grant W, Condeelis J. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr Biol 2002;12(1):79–84.

    Article  PubMed  CAS  Google Scholar 

  64. Kurisu S, Suetsugu S, Yamazaki D, Yamaguchi H, Takenawa T. Rac–WAVE2 signaling is involved in the invasive and metastatic phenotypes of murine melanoma cells. Oncogene 2004;24(8):1309–19.

    Article  CAS  Google Scholar 

  65. Yamazaki D, Suetsugu S, Miki H, Kataoka Y, Nishikawa S-I, Fujiwara T, et al. WAVE2 is required for directed cell migration and cardiovascular development. Nature 2003;424(6947):452–6.

    Article  PubMed  CAS  Google Scholar 

  66. Kovar DR. Molecular details of formin-mediated actin assembly. Curr Opin Cell Biol 2006;18(1):11–7.

    Article  PubMed  CAS  Google Scholar 

  67. Schirenbeck A, Bretschneider T, Arasada R, Schleicher M, Faix J. The diaphanous-related formin dDia2 is required for the formation and maintenance of filopodia. Nat Cell Biol 2005;7(6):619–25.

    Article  PubMed  CAS  Google Scholar 

  68. Yamaguchi H, Lorenz M, Kempiak SJ, Sarmiento C, Coniglio S, Symons M, et al. Molecular mechanism of invadopodium formation: the role of the N-WASP/Arp2/3 complex pathway and cofilin. J Cell Biol 2005;168:441–52.

    Article  PubMed  CAS  Google Scholar 

  69. Mizutani K, Miki H, He H, Maruta H, Takenawa T. Essential role of neural Wiskott–Aldrich syndrome protein in podosome formation and degradation of extracellular matrix in src-transformed fibroblasts. Cancer Res 2002;62(3):669–74.

    PubMed  CAS  Google Scholar 

  70. Wilkinson S, Paterson HF, Marshall CJ. Cdc42–MRCK and Rho–ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol 2005;7(3):255–61.

    Article  PubMed  CAS  Google Scholar 

  71. Sahai E, Marshall CJ. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 2003;5(8):711–9.

    Article  PubMed  CAS  Google Scholar 

  72. Kairouz R, Daly RJ. Tyrosine kinase signalling in breast cancer: modulation of tyrosine kinase signalling in human breast cancer through altered expression of signalling intermediates. Breast Cancer Res 2000;2(3):197–202.

    Article  PubMed  CAS  Google Scholar 

  73. Ying H, Biroc SL, Li W-w, Alicke B, Xuan J-A, Pagila R, et al. The Rho kinase inhibitor fasudil inhibits tumor progression in human and rat tumor models. 2006;5(9):2158–64.

  74. Klein CA, Blankenstein TJ, Schmidt-Kittler O, Petronio M, Polzer B, Stoecklein NH, et al. Genetic heterogeneity of single disseminated tumour cells in minimal residual cancer. Lancet 2002;360(9334):683–9.

    Article  PubMed  CAS  Google Scholar 

  75. Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005;353(16):1659–72.

    Article  PubMed  CAS  Google Scholar 

  76. Loisel TP, Boujemaa R, Pantaloni D, Carlier MF. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 1999;401(6753):613–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dmitriy Kedrin is supported by DOD pre-doctoral traineeship award # BC061403. Jacco van Rheenen is supported by a fellowship from the Dutch Cancer Society. John Condeelis, Lorena Hernandez and Jeffrey Segall are supported by CA100324. We would like to apologize to the authors whose work could not be included in this review due to space limitations. J. van Rheenen and L. Hernandez contributed equally to the review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey E. Segall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kedrin, D., van Rheenen, J., Hernandez, L. et al. Cell Motility and Cytoskeletal Regulation in Invasion and Metastasis. J Mammary Gland Biol Neoplasia 12, 143–152 (2007). https://doi.org/10.1007/s10911-007-9046-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-007-9046-4

Keywords

Navigation