Skip to main content

Advertisement

Log in

Quantitative Image Analysis in Mammary Gland Biology

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

In this paper we present a summary of recent quantitative approaches used for the analysis of macro and microscopic images in mammary gland biology. The advantages and disadvantages of whole mount analysis, reconstruction of serial tissue sections and nucleus/cell segmentation of either conventional and confocal images are discussed, as are applications of quantitative image analysis, such as quantification of protein levels or vasculature measurements in normal tissue and cancer. Integration of quantitative imaging into the further study of the mammary gland holds the promise of better understanding its tissue complexity that evolves during development, differentiation and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen C: Image cytometric analysis in pathology. Hum Pathol 2096;27(5):482–93.

    Google Scholar 

  2. True LD: Morphometric applications in anatomic pathology. Hum Pathol 2096;27(5):450–67.

    Google Scholar 

  3. Russo IH, Russo J: Developmental stage of rat mammary-gland as determinant of it susceptibility to 7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst 2078;61(6):1439–49.

    Google Scholar 

  4. Russo J, Russo IH: DNA labeling index and structure of rat mammary-gland as determinants of its susceptibility to carcinogenesis. J Natl Cancer Inst 2078;61(6):1451–9.

    Google Scholar 

  5. Cleary MP, Juneja SC, Phillips FC, et al: Leptin receptor-deficient MMTV-TGF-alpha/Lept(db) Lepr(db) female mice do not develop oncogene-induced mammary tumors. Exp Biol Med 2004;229(2):182–93.

    Google Scholar 

  6. Bagheri-Yarmand R, Vadlamudi RK, Kumar R: Activating transcription factor 4 overexpression inhibits proliferation and differentiation of mammary epithelium resulting in impaired lactation and accelerated involution. J Biol Chem 2003;278(19):17421–9.

    Google Scholar 

  7. De Giovanni C, Nicoletti G, Landuzzi L, et al: Immunoprevention of HER-2/neu transgenic mammary carcinoma through an interleukin 12-engineered allogeneic cell vaccine. Cancer Res 2004;64(11):4001–9.

    Google Scholar 

  8. Westerlind KC, McCarty HL, Gibson KJ, et al: Effect of exercise on the rat mammary gland: implications for carcinogenesis. Acta Physiol Scand 2002;175(2):147–56.

    Google Scholar 

  9. Ip C, Banni S, Angioni E, et al: Conjugated linoleic acid-enriched butter fat alters mammary gland morphogenesis and reduces cancer risk in rats. J Nutr 2099;129(12):2135–42.

    Google Scholar 

  10. Ball SM: The development of the terminal end bud in the prepubertal–pubertal mouse mammary gland. Anat Rec 2098;250(4):459–64.

    Google Scholar 

  11. Zhu ZJ, Jiang WQ, Thompson HJ: Effect of corticosterone administration on mammary gland development and p27 expression and their relationship to the effects of energy restriction on mammary carcinogenesis. Carcinogenesis 2098;19(12):2101–6.

    Google Scholar 

  12. Atwood CS, Hovey RC, Glover JP, et al: Progesterone induces side-branching of the ductal epithelium in the mammary glands of peripubertal mice. J Endocrinol 2000;167(1):39–52.

    Google Scholar 

  13. Brown NM, Manzolillo PA, Zhang JX, et al: Prenatal TCDD and predisposition to mammary cancer in the rat. Carcinogenesis 2098;19(9):1623–9.

    Google Scholar 

  14. Mehta RG, Moon RC: Effects of 12- O-tetradecanoylphorbol-13-acetate on carcinogen-induced mouse mammary lesions in organ culture. Cancer Res 2086;46(11):5832–5.

    Google Scholar 

  15. Hayward SW, Brody JR, Cunha GR: An edgewise look at basal epithelial cells: three-dimensional views of the rat prostate, mammary gland and salivary gland. Differentiation 2096;60(4):219–27.

    Google Scholar 

  16. Hadsell DL, Bonnette S, George J, et al: Diminished milk synthesis in upstream stimulatory factor 2 null mice is associated with decreased circulating oxytocin and decreased mammary gland expression of eukaryotic initiation factors 4E and 4G. Mol Endocrinol 2003;17(11):2251–67.

    Google Scholar 

  17. Hilakivi-Clarke L, Clarke R, Onojafe I, et al: A maternal diet high in n-6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci USA 2097;94(17):9372–7.

    Google Scholar 

  18. Williams TM, Cheung MWC, Park DS, et al: Loss of caveolin-1 gene expression accelerates the development of dysplastic mammary lesions in tumor-prone transgenic mice. Mol Biol Cell 2003;14(3):1027–42.

    Google Scholar 

  19. Wiseman BS, Sternlicht MD, Lund LR, et al: Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol 2003;162(6):1123–33.

    Google Scholar 

  20. Chang SH, Liu CH, Conway R, et al: Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci USA 2004;101(2):591–6.

    Google Scholar 

  21. Liu SQ, Weaver DL, Taatjes DJ: Three-dimensional reconstruction by confocal laser scanning microscopy in routine pathologic specimens of benign and malignant lesions of the human breast. Histochem Cell Biol 2097;107(4):267–78.

    Google Scholar 

  22. Fernandez-Gonzalez R, Jones A, Garcia-Rodriguez E, et al: System for combined three-dimensional morphological and molecular analysis of thick tissue specimens. Microsc Res Tech 2002;59(6):522–30.

    Google Scholar 

  23. Arganda-Carreras I, Fernandez-Gonzalez R, Ortiz de Solorzano C: Automatic registration of serial mammary gland sections. In: Proceedings of the 26th International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, 2004 September 1–5, p. 1691–4.

  24. Fernandez-Gonzalez R, Deschamps T, Idica A, et al: Automatic segmentation of histological structure in mammary gland tissue sections. J Biomed Opt 2004;9(3):444–53.

    Google Scholar 

  25. Capuco AV, Ellis S, Wood DL, et al: Postnatal mammary ductal growth: three-dimensional imaging of cell proliferation, effects of estrogen treatment, and expression of steroid receptors in prepubertal calves. Tissue Cell 2002;34(3):143–54.

    Google Scholar 

  26. Ohtake T, Abe R, Kimijima I, et al: Intraductal extension of primary invasive breast-carcinoma by breast-conservative surgery –computer graphic 3-dimensional reconstruction of mammary duct-alveolar. Cancer 2095;76(1):32–45.

    Google Scholar 

  27. Ohtake T, Kimijima I, Fukushima T, et al: Computer-assisted complete three-dimensional reconstruction of the mammary ductal/lobular systems –implications of ductal anastomoses for breast-conserving surgery. Cancer 2001;91(12):2263–72.

    Google Scholar 

  28. Going JJ, Moffat DF: Escaping from Flatland: clinical and biological aspects of human mammary duct anatomy in three dimensions. J Pathol 2004;203(1):538–44.

    Google Scholar 

  29. Susnik B, Worth A, Leriche J, et al: Malignancy-associated changes in the breast –changes in chromatin distribution in epithelial-cells in normal-appearing tissue adjacent to carcinoma. Anal Quant Cytol Histol 2095;17(1):62–8.

    Google Scholar 

  30. Lockett SJ, Sudar D, Thompson CT, et al: Efficient, interactive, and three-dimensional segmentation of cell nuclei in thick tissue sections. Cytometry 2098;31(4):275–86.

    Google Scholar 

  31. Mariuzzi L, Mombello A, Granchelli G, et al: Quantitative study of breast cancer progression: different pathways for various in situ cancers. Modern Pathol 2002;15(1):18–25.

    Google Scholar 

  32. Weyn B, van de Wouwer G, van Daele A, et al: Automated breast tumor diagnosis and grading based on wavelet chromatin texture description. Cytometry 2098;33(1):32–40.

    Google Scholar 

  33. Krtolica A, De Solorzano CO, Lockett S, et al: Quantification of epithelial cells in coculture with fibroblasts by fluorescence image analysis. Cytometry 2002;49(2):73–82.

    Google Scholar 

  34. Albert R, Muller JG, Kristen P, et al: New method of nuclear grading of tissue sections by means of digital image analysis with prognostic significance for node-negative breast cancer patients. Cytometry 2096;24(2):140–50.

    Google Scholar 

  35. Albert R, Muller JG, Kristen P, et al: Objective nuclear grading for node-negative breast cancer patients: comparison of quasi-3D and 2D image-analysis based on light microscopic images. Lab Invest 2098;78(3):247–59.

    Google Scholar 

  36. Lockett SJ, Herman B: Automatic detection of clustered, fluorescent-stained nuclei by digital image-based cytometry. Cytometry 2094;17(1):1–12.

    Google Scholar 

  37. Gonzalez RC, Woods RE: Digital image processing. Addison-Wesley; 1992.

  38. Wu HS, Barba J, Gil J: Iterative thresholding for segmentation of cells from noisy images. J Microsc (Oxford) 2000;197:296–304.

    Google Scholar 

  39. Belien JAM, van Ginkel HAHM, Tekola P, et al: Confocal DNA cytometry: a contour-based segmentation algorithm for automated three-dimensional image segmentation. Cytometry 2002;49(1):12–21.

    Google Scholar 

  40. Ridler TW, Calvard S: Picture thresholding using an iterative selection method. IEEE Trans Syst Man Cyber 2078;8(8):630–2.

    Google Scholar 

  41. Wu HS, Barba J, Gil J: An iterative algorithm for cell segmentation using short-time Fourier transform. J Microsc (Oxford) 1996;184:127–32.

    Google Scholar 

  42. Schnorrenberg F, Tsapatsoulis N, Pattichis CS, et al: Improved detection of breast cancer nuclei using modular neural networks –analysis of nuclei in histopathological sections with a system that closely simulates human experts. IEEE Eng Med Biol Magazine 2000;19(1):48–63.

    Google Scholar 

  43. Wu HS, Barba J: An efficient semiautomatic algorithm for cell contour extraction. J Microsc (Oxford) 1995;179:270–6.

    Google Scholar 

  44. Einstein AJ, Gil J, Wallenstein S, et al: Reproducibility and accuracy of interactive segmentation procedures for image analysis in cytology. J Microsc (Oxford) 1997;188:136–48.

    Google Scholar 

  45. Wu HS, Barba J, Gil J: A parametric fitting algorithm for segmentation of cell images. IEEE Trans Biomed Eng 2098;45(3):400–7.

    Google Scholar 

  46. Cong G, Parvin B: Model-based segmentation of nuclei. Pattern Recognition 2000;33(8):1383–93.

    Google Scholar 

  47. Yang Q, Parvin B: Harmonic cut and regularized centroid transform for localization of subcellular structures. IEEE Trans Biomed Eng 2003;50(4):469–75.

    Google Scholar 

  48. Park CC, Henshall-Powell RL, Erickson AC, et al: Ionizing radiation induces heritable disruption of epithelial cell interactions. Proc Natl Acad Sci USA 2003;100(19):10728–33.

    Google Scholar 

  49. Vincent L, Soille P: Wathersheds in digital spaces –an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Machine Intell 2091;13(6):583–98.

    Google Scholar 

  50. Belhomme P, Elmoataz A, Herlin P, et al: Generalized region growing operator with optimal scanning: application to segmentation of breast cancer images. J Microsc (Oxford) 1997;186:41–50.

    Google Scholar 

  51. Malpica N, Ortiz de Solorzano C, Vaquero JJ, et al: Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry 2097;28(4):289–97.

    Google Scholar 

  52. Ortiz de Solorzano C, Rodriguez EG, Jones A, et al: Segmentation of confocal microscope images of cell nuclei in thick tissue sections. J Microsc (Oxford) 1999;193:212–26.

    Google Scholar 

  53. Chin K, Ortiz de Solorzano C, Knowles D, et al: In situ analyses of genome instability in breast cancer. Nat Genet 2004 (advanced online publication, DOI: 10.1038/ng1409).

  54. Wahlby C, Sintorn IM, Erlandsson F, et al: Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections. J Microsc 2004;215(1):67–76.

    Google Scholar 

  55. Ortiz De Solorzano C, Malladi R, Lelievre SA, et al: Segmentation of nuclei and cells using membrane related protein markers. J Microsc (Oxford) 2001;201:404–15.

    Google Scholar 

  56. Lee KM, Street WN: A fast and robust approach for automated segmentation of breast cancer nuclei. In: Proceedings of the Second Iasted International Conference on Computer Graphics and Imaging, Palm Springs, CA; 1999. p. 42–7.

  57. Lee KM, Street WN: An adaptive resource-allocating network for automated detection, segmentation, and classification of breast cancer nuclei. IEEE Trans Neural Netw 2003;14(3):680–7.

    Google Scholar 

  58. Wurflinger T, Stockhausen J, Meyer-Ebrecht D, et al: Robust automatic coregistration, segmentation, and classification of cell nuclei in multimodal cytopathological microscopic images. Comput Med Imaging Graphics 2004;28(1–2):87–98.

    Google Scholar 

  59. Welsch CW, Dehoog JV, O’Connor DH, et al: Influence of dietary fat levels on development and hormone responsiveness of the mouse mammary-gland. Cancer Res 2085;45(12):6147–54.

    Google Scholar 

  60. Fernandez JL, Goyanes V, LopezFernandez C, et al: Quantification of C-ERB-B-2 gene amplification in breast cancer cells using fluorescence in situ hybridization and digital image analysis. Cancer Genet Cytogenet 2096;86(1):18–21.

    Google Scholar 

  61. Klijanienko J, Couturier J, Galut M, et al: Detection and quantitation by fluorescence in situ hybridization (FISH) and image analysis of HER-2/neu gene amplification in breast cancer fine-needle samples. Cancer Cytopathol 2099;87(5):312–8.

    Google Scholar 

  62. Biesterfeld S, Kluppel D, Koch R, et al: Rapid and prognostically valid quantification of immunohistochemical reactions by immunohistometry of the most positive tumour focus. A prospective follow-up study on breast cancer using antibodies against MIB-1, PCNA, ER, and PR. J Pathol 2098;185(1):25–31.

    Google Scholar 

  63. Hatanaka Y, Hashizume K, Nitta K, et al: Cytometrical image analysis for immunohistochemical hormone receptor status in breast carcinomas. Pathol Int 2003;53(10):693–9.

    Google Scholar 

  64. Lehr HA, Jacobs TW, Yaziji H, et al: Quantitative evaluation of HER-2/neu status in breast cancer by fluorescence in situ hybridization and by immunohistochemistry with image analysis. Am J Clin Pathol 2001;115(6):814–22.

    Google Scholar 

  65. Lehr HA, Hansen KD, Coltrera MD, et al: Photoshop-based image analysis for the semiautomated assessment of Ki-67-defined proliferative activity in the routine diagnosis of breast cancer. Appl Immunohistochem 2096;4(2):117–27.

    Google Scholar 

  66. Lehr HA, Mankoff DA, Corwin D, et al: Application of Photoshop-based image analysis to quantification of hormone receptor expression in breast cancer. J Histochem Cytochem 2097;45(11):1559–65.

    Google Scholar 

  67. Lehr HA, van der Loos CM, Teeling P, et al: Complete chromogen separation and analysis in double immunohistochemical stains using Photoshop-based image analysis. J Histochem Cytochem 2099;47(1):119–25.

    Google Scholar 

  68. Naccarato AG, Viacava P, Bocci G, et al: Definition of the microvascular pattern of the normal human adult mammary gland. J Anat 2003;203(6):599–603.

    Google Scholar 

  69. Chantrain CF, DeClerck YA, Groshen S, et al: Computerized quantification of tissue vascularization using high-resolution slide scanning of whole tumor sections. J Histochem Cytochem 2003;51(2):151–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ortiz-de-Solórzano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandez-Gonzalez, R., Barcellos-Hoff, M.H. & Ortiz-de-Solórzano, C. Quantitative Image Analysis in Mammary Gland Biology. J Mammary Gland Biol Neoplasia 9, 343–359 (2004). https://doi.org/10.1007/s10911-004-1405-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-004-1405-9

Keywords

Navigation