Skip to main content
Log in

Quantifying the distortion by spin–orbit and spin–spin coupling in molecular clusters using Molecular Quantum Similarity

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The manuscript discusses the concepts of spin–orbit and spin–spin coupling in atomic physics and Molecular Quantum Similarity (MQS) in molecular clusters. spin–orbit and spin–spin coupling arises from the interaction between an electron's spin and its motion around the nucleus and electron–electron interaction and plays a crucial role in determining energy levels and spectral lines in atoms with heavy nuclei. On the other hand, MQS is a computational approach to compare the electronic density distributions in different molecular systems. In this order of ideas, the study aims to answer questions about electronic and structural differences caused by the spin–orbit and spin–spin coupling from the initial geometry [Steradians (SR) geometry] using the MQS framework. The MQS is based on the Molecular Quantum Similarity Measure (MQSM) using different positive operators such as Dirac delta and Coulomb operators to quantify the similarity between molecular systems. The paper presents tables with MQSM indices and Euclidean distances for different molecular clusters using initial geometry vs. geometry involved spin–orbit and spin–spin coupling. The scalar, spin–orbit and spin–spin relativistic coupling were incorporated using Amsterdam Density Functional code. The results show significant coupling of spin–orbit and spin–spin coupling on the similarity measures between different molecules. The manuscript suggests that understanding the relationship between spin–orbit and spin–spin coupling and quantum similarity could lead to deeper insights into electronic interactions in complex molecular systems and has potential applications in quantum mechanics and molecular physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Support information is not attached.

Code availability

Institutionally licensed programs for ADF code.

References

  1. R.J. Radwanski, R. Michalski, Z. Ropka, A. Błaut, Physica B 319(1–4), 78 (2002)

    Article  ADS  CAS  Google Scholar 

  2. E.L. Hahn, D.E. Maxwell, Phys. Rev. 88, 1070–1084 (1952)

    Article  ADS  CAS  Google Scholar 

  3. R.S. Drago, Physical Methods in Chemistry (W.B. Saunders, Philadelphia, 1977), pp.211–213

    Google Scholar 

  4. R. Carbó-Dorca, L. Amat, E. Besalú, M. Lobato, quantum similarity, in Advances in Molecular Similarity, vol. 2 (JAI Press, London, 1998), pp. 1–42

  5. J. Fukuoka, Molec. Struct. Theochem. 451, 11 (1998)

    Article  Google Scholar 

  6. M. Solá, J. Mestres, R. Carbó, M. Duran, J. Chem. Phys. 104, 636 (1996)

    Article  ADS  Google Scholar 

  7. R. Carbó, E. Besalú, Theoretical foundation of quantum similarity, in Molecular Similarity and Reactivity: From Quantum Chemical to Phenomenological Approaches, vol. 14. Understanding Chemical Reactivity, ed. by R. Carbó (Kluwer, Amsterdam, 1995), pp. 3–30

  8. A. Morales-Bayuelo, R.A. Matute, J. Caballero, J. Mol. Mod. 21, 156 (2015)

    Article  Google Scholar 

  9. A. Morales-Bayuelo, R. Vivas-Reyes, J. Quant. Chem. 2014, Article ID 850163 (2014)

  10. A. Morales-Bayuelo, R. Vivas-Reyes, J. Math. Chem. 51, 125 (2013)

    Article  MathSciNet  CAS  Google Scholar 

  11. A. Morales-Bayuelo, R. Vivas-Reyes, J. Math. Chem. 51, 1835 (2013)

    Article  MathSciNet  CAS  Google Scholar 

  12. A. Morales-Bayuelo, V. Valdiris, R. Vivas-Reyes, J. Theor. Chem. 14, 1 (2014)

    Article  Google Scholar 

  13. A. Morales-Bayuelo, J. Torres, R. Baldiris, R. Vivas-Reyes, Int. J. Quant. Chem. 112, 2681 (2012)

    Article  CAS  Google Scholar 

  14. A. Morales-Bayuelo, J. Torres, R. Vivas-Reyes, Int. J. Quant. Chem. 112, 2637 (2012)

    Article  CAS  Google Scholar 

  15. A. Morales-Bayuelo, R. Baldiris, R. Vivas-Reyes, J. Theor. Chem. 13, 1 (2013)

    Article  Google Scholar 

  16. G. te Velde, F.M. Bickelhaupt, E.J. Baerends, C. Fonseca Guerra, S.J.A. van Gisbergen, J.G. Snijders, T. Ziegler, J. Comput. Chem. Comput. Chem. 22, 931–937 (2001)

    Article  CAS  Google Scholar 

  17. R. van Leeuwen, E. van Lenthe, E.J. Baerends, J.G. Snijders, J. Chem. Phys. 101, 1272 (1994)

    Article  ADS  Google Scholar 

  18. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  ADS  CAS  Google Scholar 

  19. R. Carbó-Dorca, E. Besalú, J. Comput. Chem. 31, 2452 (2010)

    Article  PubMed  Google Scholar 

  20. C.C. Pye, T. Ziegler, E. van Lenthe, J.N. Louwen, Can. J. Chem. 87, 790 (2009)

    Article  CAS  Google Scholar 

  21. P.R.T. Schipper, O.V. Gritsenko, S.J.A. van Gisbergen, E.J. Baerends, J. Chem. Phys. 112, 1344 (2000)

    Article  ADS  CAS  Google Scholar 

  22. R. Carbó-Dorca, L. Leyda, M. Arnau, Int. J. Quant. Chem. 17, 1185 (1980)

    Article  Google Scholar 

  23. K.D. Sen (ed.), Molecular Similarity II. Topics in Current Chemistry, vol. 174 (Springer, Heidelberg, 1995), p. 1

  24. X. Girones, D. Robert, R. Carbó-Dorca, J. Comput. Chem. 22, 255 (2001)

    Article  CAS  Google Scholar 

  25. R. Carbó-Dorca, X. Gironés, Int. J. Quant. Chem. 101, 8 (2005)

    Article  Google Scholar 

  26. P. Bultinck, X. Gironés, R. Carbó-Dorca, Rev. Comput. Chem. 21, 127 (2005)

    Article  CAS  Google Scholar 

  27. X. Gironés, D. Robert, R. Carbó-Dorca, J. Comput. Chem. 22, 255–263 (2001)

    Article  Google Scholar 

  28. P. Constans, L. Amat, R. Carbó-Dorca, J. Comput. Chem. 18, 826 (1997)

    Article  CAS  Google Scholar 

  29. R. Carbó-Dorca, L.D. Mercado, J. Comput. Chem. 310, 2195 (2010)

    Article  Google Scholar 

  30. X. Gironés, R. Carbó-Dorca, Q.S.A.R. Combin, Sci. 25, 579 (2006)

    Google Scholar 

  31. R. Carbó-Dorca, E. Besalú, L.D. Mercado, J. Comput. Chem. 32, 582 (2011)

    Article  PubMed  Google Scholar 

  32. L. Amat, R. Carbó-Dorca, Int. J. Quant. Chem. 87, 59 (2002)

    Article  CAS  Google Scholar 

  33. E. Van Lenthe, J. Chem. 101, 9783 (1994)

    ADS  Google Scholar 

Download references

Acknowledgements

A. Morales-Bayuelo thanks to the Universidad del Sinú, Sectional Cartagena.

Funding

This study was granted by UNISINU-2023-I.

Author information

Authors and Affiliations

Authors

Contributions

This author has equally contributed to this study.

Corresponding author

Correspondence to Alejandro Morales-Bayuelo.

Ethics declarations

Conflict of interest

The author declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morales-Bayuelo, A. Quantifying the distortion by spin–orbit and spin–spin coupling in molecular clusters using Molecular Quantum Similarity. J Math Chem 62, 591–605 (2024). https://doi.org/10.1007/s10910-023-01552-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-023-01552-x

Keywords

Navigation