Skip to main content
Log in

Accurate and efficient flux-corrected finite volume approximation for the fragmentation problem

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this work, we introduce a weighted finite volume scheme for multiple fragmentation problems and report a convergence criterion of the scheme. It is observed that the finite volume method mentioned in Kumar and Kumar (Appl Math Comput 219(10):5140–5151, 2013) has not estimated the physical moments of clusters with satisfactory precision. Therefore, to control this deficiency, a weight function, and a correction factor are introduced in the numerical flux to approximate the conservative formulation of the multiple fragmentation equation. The proposed scheme preserves the first two physical moments with high accuracy in the cell overlapping case for newly born clusters. It is shown that the new formulation converges weakly under certain growth restrictions on the kernels. Finally, simulation results and numerical validations are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. V.P. Belavkin, V. Kolokol’Tsov, On a general kinetic equation for many-particle systems with interaction, fragmentation and coagulation. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 459(2031), 727–748 (2003)

    Google Scholar 

  2. G. Breschi, M.A. Fontelos, A note on the self-similar solutions to the spontaneous fragmentation equation. Proc. R. Soc. A Math. Phys. Eng. Sci. 473(2201), 20160740 (2017)

    Google Scholar 

  3. N. Brilliantov, P. Krapivsky, A. Bodrova, F. Spahn, H. Hayakawa, V. Stadnichuk, J. Schmidt, Size distribution of particles in Saturn’s rings from aggregation and fragmentation. Proc. Natl Acad. Sci. U.S.A. 112(31), 9536–9541 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. J.A. Cañizo Rincón, Asymptotic behaviour of solutions to the generalized Becker–Döring equations for general initial data. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 461(2064), 3731–3745 (2005)

    Google Scholar 

  5. B. Crüger, V. Salikov, S. Heinrich, S. Antonyuk, V. Sutkar, N. Deen, J. Kuipers, Coefficient of restitution for particles impacting on wet surfaces: an improved experimental approach. Particuology 25, 1–9 (2016)

    Google Scholar 

  6. P. Dubovskiı, I. Stewart, Trend to equilibrium for the coagulation-fragmentation equation. Math. Methods Appl. Sci. 19(10), 761–772 (1996)

    Google Scholar 

  7. R. Everson, D. Eyre, Q. Campbell, Spline method for solving continuous batch grinding and similarity equations. Comput. Chem. Eng. 21(12), 1433–1440 (1997)

    CAS  Google Scholar 

  8. L. Forestier-Coste, S. Mancini, A finite volume preserving scheme on nonuniform meshes and for multidimensional coalescence. SIAM J. Sci. Comput. 34(6), B840–B860 (2012)

    Google Scholar 

  9. N. Fournier, P. Laurençot, Local properties of self-similar solutions to Smoluchowskis coagulation equation with sum kernels. Proc. R. Soc. Edinb. Sect. A Math. 136(3), 485–508 (2006)

    Google Scholar 

  10. N. Fournier, S. Mischler, Exponential trend to equilibrium for discrete coagulation equations with strong fragmentation and without a balance condition. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 460, 2477–2486 (2004)

    Google Scholar 

  11. S. Ganesan, An operator-splitting Galerkin/SUPG finite element method for population balance equations: stability and convergence. ESAIM Math. Model. Numer. Anal. 46(6), 1447–1465 (2012)

    Google Scholar 

  12. C. Hare, T. Bonakdar, M. Ghadiri, J. Strong, Impact breakage of pharmaceutical tablets. Int. J. Pharm. 536(1), 370–376 (2018)

    CAS  PubMed  Google Scholar 

  13. W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, vol. 33 (Springer, Berlin, 2013)

    Google Scholar 

  14. C. Johnson, Effect of wave collision on fragmentation, throw, and energy efficiency of mining and comminution, in Energy Efficiency in the Minerals Industry (Springer, Cham, 2018), pp. 55–70

  15. M. Kostoglou, A. Karabelas, Optimal low order methods of moments for solving the fragmentation equation. Powder Technol. 143, 280–290 (2004)

    Google Scholar 

  16. M. Kostoglou, A. Karabelas, On the self-similar solution of fragmentation equation: numerical evaluation with implications for the inverse problem. J. Colloid Interface Sci. 284(2), 571–581 (2005)

    CAS  PubMed  Google Scholar 

  17. I. Kudzotsa, Mechanisms of aerosol indirect effects on glaciated clouds simulated numerically. PhD thesis, University of Leeds, Leeds (2013)

  18. R. Kumar, J. Kumar, Numerical simulation and convergence analysis of a finite volume scheme for solving general breakage population balance equations. Appl. Math. Comput. 219(10), 5140–5151 (2013)

    Google Scholar 

  19. S. Kumar, D. Ramkrishna, On the solution of population balance equations by discretization-II. A moving pivot technique. Chem. Eng. Sci. 51(8), 1333–1342 (1996)

    CAS  Google Scholar 

  20. J. Kumar, M. Peglow, G. Warnecke, S. Heinrich, L. Mörl, Improved accuracy and convergence of discretized population balance for aggregation: the cell average technique. Chem. Eng. Sci. 61(10), 3327–3342 (2006)

    CAS  Google Scholar 

  21. R. Kumar, J. Kumar, G. Warnecke, Moment preserving finite volume schemes for solving population balance equations incorporating aggregation, breakage, growth and source terms. Math. Models Methods Appl. Sci. 23(07), 1235–1273 (2013)

    Google Scholar 

  22. P. Laurençot, S. Mischler, The continuous coagulation-fragmentation equations with diffusion. Arch. Ration. Mech. Anal. 162(1), 45–99 (2002)

    Google Scholar 

  23. P. Laurençot, S. Mischler, From the discrete to the continuous coagulation-fragmentation equations. Proc. R. Soc. Edinb. Sect. A Math. 132(05), 1219–1248 (2002)

    Google Scholar 

  24. L. Mattsson, Modelling dust processing and the evolution of grain sizes in the ISM using the method of moments. Planet. Space Sci. 133, 107–123 (2016)

    Google Scholar 

  25. D. McLaughlin, W. Lamb, A. McBride, An existence and uniqueness result for a coagulation and multiple-fragmentation equation. SIAM J. Math. Anal. 28(5), 1173–1190 (1997)

    Google Scholar 

  26. P.G. Mezey, A crystallographic structure refinement approach using ab initio quality additive, fuzzy density fragments. Adv. Mol. Struct. Res. 4, 115–150 (1998)

    CAS  Google Scholar 

  27. P.G. Mezey, The holographic electron density theorem and quantum similarity measures. Mol. Phys. 96(2), 169–178 (1999)

    CAS  Google Scholar 

  28. P.G. Mezey, Local electron densities and functional groups in quantum chemistry, in Correlation and Localization (Springer, Berlin, 1999), pp. 167–186

  29. P.G. Mezey, Transferability, adjustability, and additivity of fuzzy electron density fragments, in Electron, Spin and Momentum Densities and Chemical Reactivity(Springer, Dordrecht, 2000), pp. 45–69

  30. P.G. Mezey, Linear scaling methods using additive fuzzy density fragmentation, in Linear-Scaling Techniques in Computational Chemistry and Physics (Springer, Dordrecht, 2011), pp. 129–146

  31. P.G. Mezey, Fuzzy electron density fragments as building blocks in crystal engineering design, in The Importance of Pi-Interactions in Crystal Engineering (Frontiers in Crystal Engineering 3) (Wiley, 2012), pp. 233–241

  32. P.G. Mezey, Natural molecular fragments, functional groups, and holographic constraints on electron densities. Phys. Chem. Chem. Phys. 14(24), 8516–8522 (2012)

    CAS  PubMed  Google Scholar 

  33. P.G. Mezey, Fuzzy electron density fragments in macromolecular quantum chemistry, combinatorial quantum chemistry, functional group analysis, and shape-activity relations. Acc. Chem. Res. 47(9), 2821–2827 (2014)

    CAS  PubMed  Google Scholar 

  34. P.G. Mezey, R.S. Berry, J.I. Brauman, A.W. Castleman Jr., E. Clementi, S.R. Langhoff, K. Morokuma, P.J. Rossky, Z. Slanina, D.G. Truhlar, Understanding Chemical Reactivity (Springer, Dordrecht, 2000)

    Google Scholar 

  35. B. Mishra, Monte carlo simulation of particle breakage process during grinding. Powder Technol. 110(3), 246–252 (2000)

    CAS  Google Scholar 

  36. R. Mohammapdour, H. Ghandehari, Mechanisms of immune response to inorganic nanoparticles and their degradation products. Adv. Drug Deliv. Rev. 180, 114022 (2022)

    CAS  PubMed  Google Scholar 

  37. F. Montiel, V.A. Squire, Modelling wave-induced sea ice break-up in the marginal ice zone. Proc. R. Soc. Math. A Phys. Eng. Sci. 473(2206), 20170258 (2017)

    CAS  Google Scholar 

  38. B. Niethammer, J.J. Velazquez, Oscillatory travelling wave solutions for coagulation equations. Q. Appl. Math. 76(1), 153–158 (2017)

    Google Scholar 

  39. S.C.O. Noutchie, Coagulation-fragmentation dynamics in size and position structured population models. PhD thesis, University of KwaZulu-Natal (2008)

  40. J. Paul, J. Kumar, An existence-uniqueness result for the pure binary collisional breakage equation. Math. Methods Appl. Sci. 41(7), 2715–2732 (2018)

    Google Scholar 

  41. J. Paul, A. Das, J. Kumar, Moments preserving finite volume approximations for the non-linear collisional fragmentation model. Appl. Math. Comput. 436, 127494 (2023)

    Google Scholar 

  42. I. Roisman, C. Tropea, Impact of a crushing ice particle onto a dry solid wall. Proc. R. Soc. A Math. Phys. Eng. Sci. 471(2183), 20150525 (2015)

    Google Scholar 

  43. J. Saha, J. Kumar, A. Bück, E. Tsotsas, Finite volume approximations of breakage population balance equation. Chem. Eng. Res. Des. 110, 114–122 (2016)

    CAS  Google Scholar 

  44. M. Singh, T. Matsoukas, G. Walker, Two moments consistent discrete formulation for binary breakage population balance equation and its convergence. Appl. Numer. Math. 166, 76–91 (2021)

    Google Scholar 

  45. M. Sommer, F. Stenger, W. Peukert, N. Wagner, Agglomeration and breakage of nanoparticles in stirred media mills–a comparison of different methods and models. Chem. Eng. Sci. 61(1), 135–148 (2006)

    CAS  Google Scholar 

  46. I. Stewart, A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels. Math. Methods Appl. Sci. 11(5), 627–648 (1989)

    Google Scholar 

  47. Z. Szekeres, P.G. Mezey, Fragmentation selection strategies in linear scaling methods, in Linear-Scaling Techniques in Computational Chemistry and Physics (Springer, Dordrecht, 2011), pp. 147–156

  48. Z. Szekeres, T. Exner, P.G. Mezey, Fuzzy fragment selection strategies, basis set dependence and HF-DFT comparisons in the applications of the adma method of macromolecular quantum chemistry. Int. J. Quant. Chem. 104(6), 847–860 (2005)

    CAS  Google Scholar 

  49. A. Vledouts, N. Vandenberghe, E. Villermaux, Fragmentation as an aggregation process. Proc. R. Soc. A Math. Phys. Eng. Sci. 471(2184), 20150678 (2015)

    Google Scholar 

  50. C. Walker, Asymptotic behaviour of liquid–liquid dispersions. Proc. R. Soc. Edinb. Sect. A Math. 134(4), 753–772 (2004)

    Google Scholar 

  51. R.M. Ziff, E. McGrady, The kinetics of cluster fragmentation and depolymerisation. J. Phys. A Math. Gen. 18(15), 3027 (1985)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, J., Ghosh, D. & Kumar, J. Accurate and efficient flux-corrected finite volume approximation for the fragmentation problem. J Math Chem 61, 1696–1716 (2023). https://doi.org/10.1007/s10910-023-01485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-023-01485-5

Keywords

Mathematics Subject Classification

Navigation