Skip to main content
Log in

Qualitative analysis and Hopf bifurcation of a generalized Lengyel–Epstein model

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this present paper, we deal with a generalized Lengyel–Epstein model with the zero-flux boundary conditions. Firstly, we give an attraction region and the boundedness estimates of the solutions to the parabolic equations. Hereafter, one performs the local and global stability of the unique positive equilibrium. The first Lyapunov exponent technique and the normal form theory are employed to investigate the directions of the Hopf bifurcation, respectively. It is found that the supercritical or the subcritical may occur in the generalized Lengyel–Epstein model. Finally, we explore the steady states of the elliptic equations. The boundedness, the nonexistence, and the existence of the steady states are performed. Numerical experiments well verify the theoretical analysis. Relevant theoretical results illustrate that the diffusion rates of the substance can affect the dynamical behaviors of such a generalized Lengyel–Epstein model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Cassani, A. Monteverde, M. Piumetti, Belousov–Zhabotinsky type reactions: the non-linear behavior of chemical systems. J. Math. Chem. 59, 792–826 (2021)

    Article  CAS  Google Scholar 

  2. J. Sarria-Gonzalez, I. Sgura, M.R. Ricard, Bifurcations in twinkling patterns for the Lengyel–Epstein reaction-diffusion model. Int. J. Bifur. Chaos 31(11), 2150164 (2021)

    Article  Google Scholar 

  3. N.I. Kavallaris, R. Barreira, A. Madzvamuse, Dynamics of shadow system of a singular Gierer-Meinhardt system on an evolving domain. J. Nonlinear Sci. 31(1), 5 (2021)

    Article  Google Scholar 

  4. B. Aguda, R. Larter, Sustained oscillations and bistability in a detailed mechanism of the peroxidase–oxidase reaction. J. Am. Chem. Soc. 112, 2167–2173 (1990)

    Article  CAS  Google Scholar 

  5. E. Freire, L. Pizarro, A. Rodríguez-Luis, F.F. Sánchez, Multiparametric bifurcations in an enzyme-catalyzed reaction model. Int. J. Bifurcat. Chaos 15, 905–947 (2004)

    Article  Google Scholar 

  6. J. Maseko, M. Alamgir, I. Epstein, Bifurcation analysis of a system of coupled chemical oscillators: bromate–chlorite–iodide. Physica D 19, 153–161 (1986)

    Article  Google Scholar 

  7. I. Lengyel, G. Rabai, I.R. Epstein, Experimental and modeling study of oscillations in the chlorine dioxide–iodine–malonic acid reaction. J. Am. Chem. Soc. 112, 9104–9110 (1990)

    Article  CAS  Google Scholar 

  8. A.M. Zhabotinskii, Periodic course of the oxidation of malonic acid in a solution (studies on the kinetics of Belousovs reaction). Biofizika 9, 306–311 (1964)

    CAS  Google Scholar 

  9. I. Lengyel, I.R. Epstein, Diffusion-induced instability in chemically reacting systems: steady-state multiplicity, oscillation, and chaos. J. Nonlinear Sci. 1, 69–76 (1991)

    Google Scholar 

  10. T.B.A.F. Tayloy Jr., Helical Turing patterns in the Lengyel–Epstein model in thin cylindrical layers. Chaos 25, 064308 (2015)

    Article  Google Scholar 

  11. J.Y. Jin, J.P. Shi, J.J. Wei et al., Bifurcations of patterned solutions in the diffusive Lengyel–Epstein system of CIMA chemical reactions. Rocky Mount. J. Math. 43(5), 1637–1674 (2013)

    Article  Google Scholar 

  12. H. Merdan, S. Kayan, Hopf bifurcations in Lengyel–Epstein reaction-diffusion model with discrete time delay. Nonlinear Dyn. 79(3), 1757–1770 (2015)

    Article  Google Scholar 

  13. D. Mansouri, S. Abdelmalek, S. Bendoukha, On the asymptotic stability of the time-fractional Lengyel–Epstein system. Comput. Math. Appl. 78, 1415–1430 (2019)

    Article  Google Scholar 

  14. L.M. Valenzuela, G. Ble, M. Falconi, Hopf and Bautin bifurcations in a generalized Lengyel–Epstein system. J. Math. Chem. 58, 497–515 (2020)

    Article  CAS  Google Scholar 

  15. M.X. Chen, R.C. Wu, Y.C. Xu, Dynamics of a depletion-type Gierer–Meinhardt model with Langmuir–Hinshelwood reaction scheme. Discret. Contin. Dyn. Syst. B 27(4), 2275–2312 (2022)

    Article  Google Scholar 

  16. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. (Springer, New York, 1990)

    Book  Google Scholar 

  17. M.X. Chen, R.C. Wu, X.H. Wang, Non-constant steady states and Hopf bifurcation of a species interaction model. Commun. Nonlinear Sci. Numer. Simul. 116, 106846 (2023)

    Article  Google Scholar 

  18. B.D. Hassard, N.D. Kazarinoff, Y.H. Wan, Theory and Applications of Hopf Bifurcation (Cambridge University Press, Cambridge, 1981)

    Google Scholar 

  19. X.X. Fu, R.C. Wu, M.X. Chen, Spatiotemporal complexity in a diffusive Brusselator model. J. Chem. Math. 59, 2344–2367 (2021)

    Article  CAS  Google Scholar 

  20. M.X. Chen, R.C. Wu, L.P. Chen, Spatiotemporal complexity in a Leslie–Gower type predator-prey model near Turing–Hopf point. Chaos Solit. Fract. 153, 111509 (2021)

    Article  Google Scholar 

  21. M.X. Chen, R.C. Wu, B. Liu et al., Spatiotemporal dynamics in a ratio-dependent predator-prey model with time delay near the Turing–Hopf bifurcation point. Commun. Nonlinear Sci. Numer. Simul. 77, 141–167 (2019)

    Article  Google Scholar 

  22. S.H. Wu, Y.L. Song, Stability and spatiotemporal dynamics in a diffusive predator-prey with nonlocal prey competition. Nonlinear Anal. 48, 12–39 (2019)

    Article  Google Scholar 

  23. Y. Lou, W.M. Ni, Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131(1), 79–131 (1996)

    Article  Google Scholar 

  24. M.X. Chen, R.C. Wu, Patterns in the predator-prey system with network connection and harvesting policy. Math. Meth. Appl. Sci. 5, 1–22 (2022)

    Google Scholar 

  25. C.V. Pao, Nonlinear Parabolic and Elliptic Equations (Springer, New York, 1992)

    Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the anonymous referee for her/his careful reading and helpful suggestions, which led to great improvements of the presentation of this paper. This work was supported by China Postdoctoral Science Foundation (No. 2021M701118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengxin Chen.

Ethics declarations

Confict of interest

The authors declare that there are no conficts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Wang, T. Qualitative analysis and Hopf bifurcation of a generalized Lengyel–Epstein model. J Math Chem 61, 166–192 (2023). https://doi.org/10.1007/s10910-022-01418-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-022-01418-8

Keywords

Navigation