Skip to main content

A singularly P-stable two-step method with improved characteristics for problems in chemistry

Abstract

A new singularly P-Stable two-step algorithm of economical type with zero phase–lag and its derivative is produced in this paper. We symbolized the new scheme as LOWPFTECON2STEP. We apply the new algorithm to problems in Chemistry. The new algorithm achieves a 10th algebraic order using four function evaluations per step. For this reason, is called economical.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    M.M. Chawla, S.R. Sharma, Families of 5Th order Nyström methods for \(\text{ Y}^{\prime \prime }=\text{ F }\)(X, Y) and intervals of periodicity. Computing 26(3), 247–256 (1981)

    Article  Google Scholar 

  2. 2.

    J.M. Franco, M. Palacios, High-order P-stable multistep methods. J. Comput. Appl. Math. 30, 1–10 (1990)

    Article  Google Scholar 

  3. 3.

    J.D. Lambert, Numerical Methods for Ordinary Differential Systems, The Initial Value Problem (John Wiley and Sons, New Jersey, 1991), pp. 104–107

    Google Scholar 

  4. 4.

    E. Stiefel, D.G. Bettis, Stabilization of Cowells method. Numer. Math. 13, 154–175 (1969)

    Article  Google Scholar 

  5. 5.

    M.M. Chawla, S.R. Sharma, Intervals of periodicity and absolute stability of explicit Nyström methods for \(\text{ Y}^{\prime \prime }=\text{ F }\)(X, Y). BIT 21(4), 455–464 (1981)

    Article  Google Scholar 

  6. 6.

    M.M. Chawla, Unconditionally stable Noumerov-type methods for 2nd order differential-equations. BIT 23(4), 541–542 (1983)

    Article  Google Scholar 

  7. 7.

    http://www.burtleburtle.net/bob/math/multistep.html

  8. 8.

    M.M. Chawla, P.S. Rao, A Noumerov-type method with minimal phase-lag for the integration of 2nd order periodic initial-value problems. J. Comput. Appl. Math. 11(3), 277–281 (1984)

    Article  Google Scholar 

  9. 9.

    M.M. Chawla, Numerov made explicit has better stability. BIT 24(1), 117–118 (1984)

    Article  Google Scholar 

  10. 10.

    M.M. Chawla, P.S. Rao, High-Accuracy P-Stable Methods for \(\text{ Y}^{\prime \prime } = \text{ F }\)(T,Y), Ima J. Numer. Anal. 5(2), 215–220 (1985) and M.M. Chawla, Correction, Ima J. Numer. Anal. 6(2), 252-252 (1986)

  11. 11.

    T. Lyche, Chebyshevian multistep methods for ordinary differential equations. Num. Math. 19, 65–75 (1972)

    Article  Google Scholar 

  12. 12.

    T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)

    Article  Google Scholar 

  13. 13.

    R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225–238 (1984)

    Article  Google Scholar 

  14. 14.

    J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  Google Scholar 

  15. 15.

    M.M. Chawla, A new class of explicit 2-step 4th order methods for \(\text{ Y}^{\prime \prime } = \text{ F }\)(T, Y) with extended intervals of periodicity. J. Comput. Appl. Math. 14(3), 467–470 (1986)

    Article  Google Scholar 

  16. 16.

    M.M. Chawla, B. Neta, Families of 2-step 4th-order p-stable methods for 2nd-order differential-equations. J. Comput. Appl. Math. 15(2), 213–223 (1986)

    Article  Google Scholar 

  17. 17.

    M.M. Chawla, P.S. Rao, A Noumerov-type method with minimal phase-lag for the integration of 2nd-order periodic initial-value problems. 2. explicit method. J. Comput. Appl. Math. 15(3), 329–337 (1986)

    Article  Google Scholar 

  18. 18.

    M.M. Chawla, P.S. Rao, B. Neta, 2-step 4th-order P-stable methods with phase-lag of order 6 for \(\text{ Y}^{\prime \prime }=\text{ F }\)(T, Y). J. Comput. Appl. Math. 16(2), 233–236 (1986)

    Article  Google Scholar 

  19. 19.

    M.M. Chawla, P.S. Rao, An explicit 6th-order method with phase-lag of order 8 for \(\text{ Y}^{\prime \prime }=\text{ F }\)(T, Y). J. Comput. Appl. Math. 17(3), 365–368 (1987)

    Article  Google Scholar 

  20. 20.

    M.M. Chawla, M.A. Al-Zanaidi, Non-dissipative extended one-step methods for oscillatory problems. Int. J. Comput. Math. 69(1–2), 85–100 (1998)

    Article  Google Scholar 

  21. 21.

    M.M. Chawla, M.A. Al-Zanaidi, A two-stage fourth-order almost P-stable method for oscillatory problems. J. Comput. Appl. Math. 89(1), 115–118 (1998)

    Article  Google Scholar 

  22. 22.

    M.M. Chawla, M.A. Al-Zanaidi, S.S. Al-Ghonaim, Singly-implicit stabilized extended one-step methods for second-order initial-value problems with oscillating solutions. Math. Comput. Model. 29(2), 63–72 (1999)

    Article  Google Scholar 

  23. 23.

    J.P. Coleman, Numerical-methods for \(\text{ Y}^{\prime \prime }=\text{ F }\)(X, Y) via rational-approximations for the cosine. IMA J. Numer. Anal. 9(2), 145–165 (1989)

    Article  Google Scholar 

  24. 24.

    J.P. Coleman, A.S. Booth, Analysis of a family of Chebyshev methods for \(\text{ Y}^{\prime \prime } = \text{ F }\)(X, Y). J. Comput. Appl. Math. 44(1), 95–114 (1992)

    Article  Google Scholar 

  25. 25.

    J.P. Coleman, L.G. Ixaru, P-stability and exponential-fitting methods for \(\text{ Y}^{\prime \prime }=\text{ F }\)(X, Y). IMA J. Numer. Anal. 16(2), 179–199 (1996)

    Article  Google Scholar 

  26. 26.

    J.P. Coleman, S.C. Duxbury, Mixed collocation methods for \(\text{ Y}^{\prime \prime } = \text{ F }\)(X, Y). J. Comput. Appl. Math. 126(1–2), 47–75 (2000)

    Article  Google Scholar 

  27. 27.

    L.G. Ixaru, S. Berceanu, Coleman method maximally adapted to the Schrödinger-equation. Comput. Phys. Commun. 44(1–2), 11–20 (1987)

    Article  Google Scholar 

  28. 28.

    L.G. Ixaru, The Numerov method and singular potentials. J. Comput. Phys. 72(1), 270–274 (1987)

    CAS  Article  Google Scholar 

  29. 29.

    L.G. Ixaru, M. Rizea, Numerov method maximally adapted to the Schrödinger-equation. J. Comput. Phys. 73(2), 306–324 (1987)

    Article  Google Scholar 

  30. 30.

    L.G. Ixaru, H. De Meyer, G. Van den Berghe, M. Van Daele, Expfit4 - a fortran program for the numerical solution of systems of nonlinear second-order initial-value problems. Comput. Phys. Commun. 100(1–2), 71–80 (1997)

    CAS  Article  Google Scholar 

  31. 31.

    L.G. Ixaru, G. Van den Berghe, H. De Meyer, M. Van Daele, Four-step exponential-fitted methods for nonlinear physical problems. Comput. Phys. Commun. 100(1–2), 56–70 (1997)

    CAS  Article  Google Scholar 

  32. 32.

    L.G. Ixaru, M. Rizea, Four step methods for \(\text{ Y}^{\prime \prime }=\text{ F }\)(X, Y). J. Comput. Appl. Math. 79(1), 87–99 (1997)

    Article  Google Scholar 

  33. 33.

    M. Van Daele, G. Van den Berghe, H. De Meyer, L.G. Ixaru, Exponential-fitted four-step methods for \(\text{ Y}^{\prime \prime }=\text{ F }\)(X, Y). Int. J. Comput. Math. 66(3–4), 299–309 (1998)

    Article  Google Scholar 

  34. 34.

    L.G. Ixaru, B. Paternoster, A conditionally P-stable fourth-order exponential-fitting method for \(\text{ Y } ^{\prime \prime } = \text{ F }\)(X, Y). J. Comput. Appl. Math. 106(1), 87–98 (1999)

    Article  Google Scholar 

  35. 35.

    L.G. Ixaru, Numerical operations on oscillatory functions. Comput. Chem. 25(1), 39–53 (2001)

    PubMed  CAS  Article  PubMed Central  Google Scholar 

  36. 36.

    L.G. Ixaru, G. Van den Berghe, H. De Meyer, Exponentially fitted variable two-step BDF algorithm for first order odes. Comput. Phys. Commun. 150(2), 116–128 (2003)

    CAS  Article  Google Scholar 

  37. 37.

    M.A. Medvedev, T.E. Simos, A three-stages multistep teeming in phase Algorithm for computational problems in Chemistry. J. Math. Chem. 57(6), 1598–1617 (2019)

    CAS  Article  Google Scholar 

  38. 38.

    C.L. Lin, T.E. Simos, A complete in phase FiniteDiffrnc algorithm for DiffrntEqutins in chemistry. J. Math. Chem. 58(6), 1091–1132 (2020)

    CAS  Article  Google Scholar 

  39. 39.

    F. Hui, T.E. Simos, A new family of two stage symmetric two-Step Methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(10), 2191–2213 (2015)

    CAS  Article  Google Scholar 

  40. 40.

    L.G. Ixaru, M. Rizea, Comparison of some four-Step Methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    CAS  Article  Google Scholar 

  41. 41.

    L.G. Ixaru, M. Micu, Topics in Theoretical Physics, Central Institute of Physics, Bucharest (1978)

  42. 42.

    L.G. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  43. 43.

    J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)

    Article  Google Scholar 

  44. 44.

    J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

  45. 45.

    G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)

    Article  Google Scholar 

  46. 46.

    A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  47. 47.

    M.M. Chawla, P.S. Rao, An Noumerov-type Method with minimal phase-lag for the integration of second order periodic initial-value problems II Explicit Method. J. Comput. Appl. Math. 15, 329–337 (1986)

    Article  Google Scholar 

  48. 48.

    M.M. Chawla, P.S. Rao, An explicit sixth - order Method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)

    Google Scholar 

  49. 49.

    M. Rizea, Exponential fitting Method for the time-dependent Schrödinger equation. J. Math. Chem. 48(1), 55–65 (2010)

    CAS  Article  Google Scholar 

  50. 50.

    A. Konguetsof, Two-Step high order hybrid explicit Method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224–252 (2010)

    CAS  Article  Google Scholar 

  51. 51.

    A.D. Raptis, J.R. Cash, A variable Step Method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113–119 (1985)

    CAS  Article  Google Scholar 

  52. 52.

    A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)

    Article  Google Scholar 

  53. 53.

    R.B. Bernstein, A. Dalgarno, H. Massey, I.C. Percival, Thermal scattering of atoms by homonuclear diatomic molecules. Proc. R. Soc. Ser. A 274, 427–442 (1963)

    CAS  Google Scholar 

  54. 54.

    R.B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795–804 (1960)

    CAS  Article  Google Scholar 

  55. 55.

    M. Rizea, V. Ledoux, M. Van Daele, G. Van den Berghe, N. Carjan, Finite difference approach for the two-dimensional Schrödinger equation with application to scission-neutron emission. Comput. Phys. Commun. 179(7), 466–478 (2008)

    CAS  Article  Google Scholar 

  56. 56.

    J.R. Dormand, P.J. Prince, A family of embedded Runge-Kutta formula. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

  57. 57.

    K. Mu, T.E. Simos, A Runge-Kutta type implicit high algebraic order two-Step Method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53, 1239–1256 (2015)

    CAS  Article  Google Scholar 

  58. 58.

    L.G. Ixaru, M. Rizea, G. Van den Berghe, H. De Meyer, Weights of the exponential fitting multistep algorithms for first-order odes. J. Comput. Appl. Math. 132(1), 83–93 (2001)

    Article  Google Scholar 

  59. 59.

    A.D. Raptis, J.R. Cash, Exponential and bessel fitting methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 44(1–2), 95–103 (1987)

    Article  Google Scholar 

  60. 60.

    C.D. Papageorgiou, A.D. Raptis, A method for the solution of the Schrödinger-equation. Comput. Phys. Commun. 43(3), 325–328 (1987)

    CAS  Article  Google Scholar 

  61. 61.

    Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54, 442–465 (2016)

    CAS  Article  Google Scholar 

  62. 62.

    A.D. Raptis, Exponential multistep methods for ordinary differential equations. Bull. Greek Math. Soc. 25, 113–126 (1984)

    Google Scholar 

  63. 63.

    H. Ning, T.E. Simos, A low computational cost eight algebraic order hybrid Method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the Schrödinger equation. J. Math. Chem. 53(6), 1295–1312 (2015)

    CAS  Article  Google Scholar 

  64. 64.

    Z. Wang, T.E. Simos, An economical eighth-order method for the approximation of the solution of the Schrödinger equation. J. Math. Chem. 55, 717–733 (2017)

    CAS  Article  Google Scholar 

  65. 65.

    K. Yan, T.E. Simos, A finite difference pair with improved phase and stability properties. J. Math. Chem. (in press)

  66. 66.

    J.R. Cash, A.D. Raptis, A high-order method for the numerical-integration of the one-dimensional Schrödinger-equation. Comput. Phys. Commun. 33(4), 299–304 (1984)

    CAS  Article  Google Scholar 

  67. 67.

    A.D. Raptis, Exponentially-fitted solutions of the eigenvalue Shrödinger equation with automatic error control. Comput. Phys. Commun. 28(4), 427–431 (1983)

    Article  Google Scholar 

  68. 68.

    A.D. Raptis, 2-step methods for the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 28(4), 373–378 (1982)

    Google Scholar 

  69. 69.

    A.D. Raptis, On the numerical-solution of the Schrödinger-equation. Comput. Phys. Commun. 24(1), 1–4 (1981)

    Article  Google Scholar 

  70. 70.

    A.D. Raptis, Exponential-fitting methods for the numerical-integration of the 4th-order differential-equation \(\text{ Y}^{iv}\)+F.\(\text{ Y }=\text{ G }\). Computing 24(2–3), 241–250 (1980)

    Article  Google Scholar 

  71. 71.

    H. Van De Vyver, A symplectic exponentially fitted modified Runge-Kutta-Nyström method for the numerical integration of orbital problems. New Astron. 10(4), 261–269 (2005)

    Article  Google Scholar 

  72. 72.

    H. Van De Vyver, On the Generation of P-Stable Exponentially Fitted Runge-Kutta-Nyström Methods By Exponentially Fitted Runge-Kutta Methods. J. Comput. Appl. Math. 188(2), 309–318 (2006)

    Article  Google Scholar 

  73. 73.

    M. Van Daele, G. Van den Berghe, P-stable obrechkoff methods of arbitrary order for second-order differential equations. Numer. Algorithms 44(2), 115–131 (2007)

    Article  Google Scholar 

  74. 74.

    M. Van Daele, G. Van den Berghe, P-stable exponentially-fitted Obrechkoff Methods of arbitrary order for second-order differential equations. Numer. Algorithms 46(4), 333–350 (2007)

    Article  Google Scholar 

  75. 75.

    Y. Fang, W. Xinyuan, A trigonometrically fitted explicit numerov-type method for second-order initial value problems with oscillating solutions. Appl. Numer. Math. 58(3), 341–351 (2008)

    Article  Google Scholar 

  76. 76.

    G. Van den Berghe, M. Van Daele, Exponentially-fitted Obrechkoff Methods for second-order differential equations. Appl. Numer. Math. 59(3–4), 815–829 (2009)

    Article  Google Scholar 

  77. 77.

    D. Hollevoet, M. Van Daele, G. Van den Berghe, the optimal exponentially-fitted numerov method for solving two-point boundary value problems. J. Comput. Appl. Math. 230(1), 260–269 (2009)

    Article  Google Scholar 

  78. 78.

    J.M. Franco, L. Rández, Explicit exponentially fitted two-step hybrid Methods of high order for second-order oscillatory IVPs. Appl. Math. Comput. 273, 493–505 (2016)

    Google Scholar 

  79. 79.

    J.M. Franco, Y. Khiar, L. Rández, Two new embedded pairs of explicit Runge-Kutta Methods adapted to the numerical solution of oscillatory problems. Appl. Math. Comput. 252, 45–57 (2015)

    Google Scholar 

  80. 80.

    J.M. Franco, I. Gomez, L. Rández, Optimization of explicit two-Step hybrid Methods for solving orbital and oscillatory problems. Comput. Phys. Commun. 185(10), 2527–2537 (2014)

    CAS  Article  Google Scholar 

  81. 81.

    J.M. Franco, I. Gomez, Trigonometrically fitted nonlinear two-step methods for solving second order oscillatory IVPs. Appl. Math. Comput. 232, 643–657 (2014)

    Google Scholar 

  82. 82.

    J.M. Franco, I. Gomez, Symplectic explicit Methods of Runge-Kutta-Nyström type for solving perturbed oscillators. J. Comput. Appl. Math. 260, 482–493 (2014)

    Article  Google Scholar 

  83. 83.

    J.M. Franco, I. Gomez, Some procedures for the construction of high-order exponentially fitted Runge-Kutta-Nyström Methods of explicit type. Comput. Phys. Commun. 184(4), 1310–1321 (2013)

    CAS  Article  Google Scholar 

  84. 84.

    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, On some new low storage implementations of time advancing Runge-Kutta Methods. J. Comput. Appl. Math. 236(15), 3665–3675 (2012)

    Article  Google Scholar 

  85. 85.

    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Symmetric and symplectic exponentially fitted Runge-Kutta Methods of high order. Comput. Phys. Commun. 181(12), 2044–2056 (2010)

    CAS  Article  Google Scholar 

  86. 86.

    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, On high order symmetric and symplectic trigonometrically fitted Runge-Kutta Methods with an even number of stages. BIT Numer. Math. 50(1), 3–21 (2010)

    Article  Google Scholar 

  87. 87.

    J.M. Franco, I. Gomez, Accuracy and linear stability of RKN Methods for solving second-order stiff problems. Appl. Numer. Math. 59(5), 959–975 (2009)

    Article  Google Scholar 

  88. 88.

    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Sixth-order symmetric and symplectic exponentially fitted Runge-Kutta Methods of the Gauss type. J. Comput. Appl. Math. 223(1), 387–398 (2009)

    Article  Google Scholar 

  89. 89.

    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Structure preservation of exponentially fitted Runge-Kutta Methods. J. Comput. Appl. Math. 218(2), 421–434 (2008)

    Article  Google Scholar 

  90. 90.

    M. Calvo, J.M. Franco, J.I. Montijano, L. Rández, Sixth-order symmetric and symplectic exponentially fitted modified Runge–Kutta Methods of Gauss type. Comput. Phys. Commun. 178(10), 732–744 (2008)

    CAS  Article  Google Scholar 

  91. 91.

    J.M. Franco, Exponentially fitted symplectic integrators of RKN type for solving oscillatory problems. Comput. Phys. Commun. 177(6), 479–492 (2007)

    CAS  Article  Google Scholar 

  92. 92.

    J.M. Franco, New Methods for oscillatory systems based on ARKN Methods. Appl. Numer. Math. 56(8), 1040–1053 (2006)

    Article  Google Scholar 

  93. 93.

    J.M. Franco, Runge-Kutta-Nyström Methods adapted to the numerical integration of perturbed oscillators. Comput. Phys. Commun. 147, 770–787 (2002)

    CAS  Article  Google Scholar 

  94. 94.

    J.M. Franco, Stability of explicit ARKN methods for perturbed oscillators. J. Comput. Appl. Math. 173, 389–396 (2005)

    Article  Google Scholar 

  95. 95.

    X.Y. Wu, X. You, J.Y. Li, Note on derivation of order conditions for ARKN Methods for perturbed oscillators. Comput. Phys. Commun. 180, 1545–1549 (2009)

    CAS  Article  Google Scholar 

  96. 96.

    A. Tocino, J. Vigo-Aguiar, Symplectic conditions for exponential fitting Runge-Kutta-Nyström Methods. Math. Comput. Model. 42, 873–876 (2005)

    Article  Google Scholar 

  97. 97.

    L. Brugnano, F. Iavernaro, D. Trigiante, Hamiltonian boundary value methods (energy preserving discrete line integral Methods), JNAIAM. J. Numer. Anal. Ind. Appl. Math. 5, 17–37 (2010)

    Google Scholar 

  98. 98.

    F. Iavernaro, D. Trigiante, High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems, JNAIAM. J. Numer. Anal. Ind. Appl. Math. 4, 87–101 (2009)

    Google Scholar 

  99. 99.

    A. Konguetsof, A generator of families of two-step numerical methods with free parameters and minimal phase-lag. J. Math. Chem. 55(9), 1808–1832 (2017)

    CAS  Article  Google Scholar 

  100. 100.

    A. Konguetsof, A hybrid method with phase-lag and derivatives equal to zero for the numerical integration of the Schrödinger equation. J. Math. Chem. 49(7), 1330–1356 (2011)

    CAS  Article  Google Scholar 

  101. 101.

    Hans Van de Vyver, A phase-fitted and amplification-fitted explicit two-step hybrid method for second-order periodic initial value problems. Int. J. Mod. Phys. C 17(5), 663–675 (2006)

    Article  Google Scholar 

  102. 102.

    Hans Van de Vyver, An explicit Numerov-type Method for second-order differential equations with oscillating solutions. Comput. Math. Appl. 53(9), 1339–1348 (2007)

    Article  Google Scholar 

  103. 103.

    Y. Fang, W. Xinyuan, A trigonometrically fitted explicit hybrid Method for the numerical integration of orbital problems. Appl. Math. Comput. 189(1), 178–185 (2007)

    Google Scholar 

  104. 104.

    Beny Neta, P-stable high-order super-implicit and Obrechkoff Methods for periodic initial value problems. Comput. Math. Appl. 54(1), 117–126 (2007)

    Article  Google Scholar 

  105. 105.

    Hans Van de Vyver, Phase-fitted and amplification-fitted two-Step hybrid Methods for \(\text{ y}^{\prime \prime } = \text{ f }\) (x, y). J. Comput. Appl. Math. 209(1), 33–53 (2007)

    Article  Google Scholar 

  106. 106.

    Hans Van de Vyver, Efficient one-Step Methods for the Schrödinger equation, MATCH-Communications in Mathematical and in Computer. Chemistry 60(3), 711–732 (2008)

    Google Scholar 

  107. 107.

    J. Martín-Vaquero, J. Vigo-Aguiar, Exponential fitted Gauss, Radau and Lobatto Methods of low order. Numer. Algorithms 48(4), 327–346 (2008)

    Article  Google Scholar 

  108. 108.

    A. Konguetsof, A new two-step hybrid Method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)

    CAS  Article  Google Scholar 

  109. 109.

    F.A. Hendi, P-stable higher derivative methods with minimal phase-lag for solving second order differential equations. J. Appl. Math. 2011, 407151 (2011)

    Article  Google Scholar 

  110. 110.

    Hans Van de Vyver, Comparison of some special optimized fourth-order Runge-Kutta Methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 166(2), 109–122 (2005)

    Article  CAS  Google Scholar 

  111. 111.

    Z. Wang, D. Zhao, Y. Dai, W. Dongmei, An improved trigonometrically fitted P-stable Obrechkoff Method for periodic initial-value problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 461(2058), 1639–1658 (2005)

    Google Scholar 

  112. 112.

    M. Van Daele, G. Van den Berghe, H. De Meyer, Properties and implementation of R-Adams methods based on mixed-type interpolation. Comput. Math. Appl. 30(10), 37–54 (1995)

    Article  Google Scholar 

  113. 113.

    J. Vigo-Aguiar, L.M. Quintales, A parallel ODE solver adapted to oscillatory problems. J. Supercomput. 19(2), 163–171 (2001)

    Article  Google Scholar 

  114. 114.

    Zhongcheng Wang, Trigonometrically-fitted Method with the Fourier frequency spectrum for undamped Duffing equation. Comput. Phys. Commun. 174(2), 109–118 (2006)

    CAS  Article  Google Scholar 

  115. 115.

    Zhongcheng Wang, Trigonometrically-fitted method for a periodic initial value problem with two frequencies. Comput. Phys. Commun. 175(4), 241–249 (2006)

    CAS  Article  Google Scholar 

  116. 116.

    J. Vigo-Aguiar, J.M. Ferrandiz, A general procedure for the adaptation of multistep Algorithms to the integration of oscillatory problems. SIAM J. Numer. Anal. 35(4), 1684–1708 (1998)

    Article  Google Scholar 

  117. 117.

    J. Vigo-Aguiar, H. Ramos, Dissipative Chebyshev exponential-fitted Methods for numerical solution of second-order differential equations. J. Comput. Appl. Math. 158(1), 187–211 (2003)

    Article  Google Scholar 

  118. 118.

    J. Vigo-Aguiar, S. Natesan, A parallel boundary value technique for singularly perturbed two-point boundary value problems. J. Supercomput. 27(2), 195–206 (2004)

    Article  Google Scholar 

  119. 119.

    Chen Tang, Haiqing Yan, Hao Zhang, WenRun Li, The various order explicit multistep exponential fitting for systems of ordinary differential equations. J. Comput. Appl. Math. 169(1), 171–182 (2004)

    Article  Google Scholar 

  120. 120.

    Chen Tang, Haiqing Yan, Hao Zhang, Zhanqing Chen, Ming Liu, Guimin Zhang, The arbitrary order implicit multistep schemes of exponential fitting and their applications. J. Comput. Appl. Math. 173(1), 155–168 (2005)

    Article  Google Scholar 

  121. 121.

    Hans Van de Vyver, Frequency evaluation for exponentially fitted Runge-Kutta Methods. J. Comput. Appl. Math. 184(2), 442–463 (2005)

    Article  Google Scholar 

  122. 122.

    J.P. Coleman, L. Gr, Ixaru, Truncation Errors in exponential fitting for oscillatory problems. SIAM J. Numer. Anal. 44(4), 1441–1465 (2006)

    Article  Google Scholar 

  123. 123.

    J. Martín-Vaquero, J. Vigo-Aguiar, Adapted BDF algorithms: higher-order methods and their stability. J. Sci. Comput. 32(2), 287–313 (2007)

    Article  Google Scholar 

  124. 124.

    J. Vigo-Aguiar, J. Martín-Vaquero, H. Ramos, Exponential fitting BDF-Runge-Kutta Algorithms. Comput. Phys. Commun. 178(1), 15–34 (2008)

    CAS  Article  Google Scholar 

  125. 125.

    B. Paternoster, Present state-of-the-art in exponential fitting. A contribution dedicated to Liviu Ixaru on his 70th birthday. Comput. Phys. Commun. 183(12), 2499–2512 (2012)

    CAS  Article  Google Scholar 

  126. 126.

    Zhongcheng Wang, Obrechkoff one-step method fitted with Fourier spectrum for undamped Duffing equation. Comput. Phys. Commun. 175(11–12), 692–699 (2006)

    CAS  Article  Google Scholar 

  127. 127.

    Chunfeng Wang, Zhongcheng Wang, A P-stable eighteenth-order six-step method for periodic initial value problems. Int. J. Mod. Phys. C 18(3), 419–431 (2007)

    Article  Google Scholar 

  128. 128.

    Jiaqi Chen, Zhongcheng Wang, Hezhu Shao, Hailing Hao, Highly-accurate ground state energies of the He atom and the He-like ions by Hartree SCF calculation with Obrechkoff Method. Comput. Phys. Commun. 179(7), 486–491 (2008)

    CAS  Article  Google Scholar 

  129. 129.

    Hezhu Shao, Zhongcheng Wang, Arbitrarily precise numerical solutions of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 180(1), 1–7 (2009)

    CAS  Article  Google Scholar 

  130. 130.

    H. Shao, Z. Wang, Numerical solutions of the time-dependent Schrödinger equation: Reduction of the Error due to space discretization. Phys. Rev. E 79(5), 056705 (2009)

    Article  CAS  Google Scholar 

  131. 131.

    Zhongcheng Wang, Hezhu Shao, A new kind of discretization scheme for solving a two-dimensional time-independent Schrödinger equation. Comput. Phys. Commun. 180(6), 842–849 (2009)

    CAS  Article  Google Scholar 

  132. 132.

    T.E. Simos, Exponentially fitted Runge-Kutta Methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315–332 (2000)

    Article  Google Scholar 

  133. 133.

    C.J. Cramer, Essentials of Computational Chemistry (Wiley, Chichester, 2004)

    Google Scholar 

  134. 134.

    F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007)

    Google Scholar 

  135. 135.

    A.R. Leach, Molecular Modelling - Principles and Applications (Pearson, Essex, 2001)

    Google Scholar 

  136. 136.

    P. Atkins, R. Friedman, Molecular Quantum Mechanics (Oxford University Press, Oxford, 2011)

    Google Scholar 

  137. 137.

    V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Y.A. Khakhalev, A.N. Zolotov, Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations. AIP Conf. Proc. 738, 480004 (2016)

    Article  Google Scholar 

  138. 138.

    V.N. Kovalnogov, R.V. Fedorov, T.V. Karpukhina, E.V. Tsvetova, Numerical analysis of the temperature stratification of the disperse flow. AIP Conf. Proc. 1648, 850033 (2015)

    Article  Google Scholar 

  139. 139.

    N. Kovalnogov, E. Nadyseva, O. Shakhov, V. Kovalnogov, Control of turbulent transfer in the boundary layer through applied periodic effects. Izvestiya Vysshikh Uchebnykh Zavedenii Aviatsionaya Tekhnika 1, 49–53 (1998)

    Google Scholar 

  140. 140.

    V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Modeling and development of cooling technology of turbine engine blades. Int. Rev. Mech. Eng. 9(4), 331–335 (2015)

    Google Scholar 

  141. 141.

    S. Kottwitz, LaTeX Cookbook (Packt Publishing Ltd., Birmingham B3 2PB, UK, 2015), pp. 231–236

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest or other ethical conflicts concerning this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highly Cited Researcher (2001–2013 List, 2017 List and 2018 List), Active Member of the European Academy of Sciences and Arts. Active Member of the European Academy of Sciences. Corresponding Member of European Academy of Arts, Sciences and Humanities.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 227 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Medvedeva, M.A., Simos, T.E. A singularly P-stable two-step method with improved characteristics for problems in chemistry. J Math Chem (2021). https://doi.org/10.1007/s10910-021-01292-w

Download citation

Keywords

  • Phase-lag
  • Derivative of the phase-lag
  • Initial value problems
  • Oscillating solution
  • Symmetric
  • Hybrid
  • Multistep
  • Schrödinger equation

PACS

  • 02.60
  • 02.70.Bf
  • 95.10.Ce
  • 95.10.Eg
  • 95.75.Pq