Complete forcing numbers of hexagonal systems

Abstract

As a strengthening of the concept of global forcing number of a graph G, the complete forcing number of G is the cardinality of a minimum edge subset of G to which the restriction of every perfect matching M is a forcing set of M. Xu et al. (J Comb Opt 29: 803–814, 2015) revealed that a complete forcing set of G also antifores each perfect matching, and obtained that for a catacondensed hexagonal system, the complete forcing number is equal to the Clar number plus the number of hexagons (Chan et al. MATCH Commun Math Comput Chem 74: 201–216, 2015). In this paper, we consider general hexagonal systems H, and present sharp upper bound on the complete forcing number of H in terms of elementary edge-cut cover and lower bound via graph decomposition as well. Through such approaches, we obtain some closed formulas for the complete forcing numbers of some types of hexagonal systems including parallelogram, regular hexagon- and rectangle-shaped hexagonal systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    H. Abeledo, G.W. Atkinson, A min-max theorem for plane bipartite graphs. Discrete Appl. Math. 158, 375–378 (2010)

    Article  Google Scholar 

  2. 2.

    J.A. Bondy, U.S.R. Murty, Graph Theory with Applications (American Elsevier, New York, Macmillan, London, 1976)

    Book  Google Scholar 

  3. 3.

    A.T. Balaban, M. Randić, Coding canonical Clar structures of polycyclic benzenoid hydrocarbons. MATCH Commun. Math. Comput. Chem. 82, 139–162 (2019)

    Google Scholar 

  4. 4.

    Z. Che, Z. Chen, Forcing on perfect matchings-A survey. MATCH Commun. Math. Comput. Chem. 66, 93–136 (2011)

    CAS  Google Scholar 

  5. 5.

    E. Clar, The Aromatic Sextet (Wiley, London, 1972)

    Google Scholar 

  6. 6.

    S.J. Cyvin, I. Gutman, Kekulé Structures in Benzenoid Hydrocarbons (Springer, Berlin, 1988)

    Book  Google Scholar 

  7. 7.

    J. Cai, H. Zhang, Global forcing number of some chemical graphs. MATCH Commun. Math. Comput. Chem. 67, 289–312 (2012)

    CAS  Google Scholar 

  8. 8.

    W. Chan, S. Xu, G. Nong, A linear-time algorithm for computing the complete forcing number and the Clar number of catacondensed hexagonal systems. MATCH Commun. Math. Comput. Chem. 74, 201–216 (2015)

    Google Scholar 

  9. 9.

    T. Došlić, Global forcing number of benzenoid graphs. J. Math. Chem. 41, 217–229 (2007)

    Article  Google Scholar 

  10. 10.

    I. Gutman, S.J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons (Springer, Berlin, 1989)

    Book  Google Scholar 

  11. 11.

    W.C. Herndon, Resonance theory and the enumeration of Kekulé structures. J. Chem. Educ. 51, 10–15 (1974)

    CAS  Article  Google Scholar 

  12. 12.

    F. Harary, D.J. Klein, T.P. Živković, Graphical properties of polyhexes: perfect matching vector and forcing. J. Math. Chem. 6, 295–306 (1991)

    CAS  Article  Google Scholar 

  13. 13.

    P. Hansen, M. Zheng, Upper bounds for the Clar number of benzenoid hydrocarbons. J. Chem. Soc. Faraday Trans. 88, 1621–1625 (1992)

    CAS  Article  Google Scholar 

  14. 14.

    P. Hansen, M. Zheng, Normal components of benzenoid systems. Theor. Chim. Acta 85, 335–344 (1993)

    CAS  Article  Google Scholar 

  15. 15.

    P. Hansen, M. Zheng, The Clar number of a benzenoid hydrocarbon and linear programming. J. Math. Chem. 15, 93–107 (1994)

    CAS  Article  Google Scholar 

  16. 16.

    D.J. Klein, M. Randić, Innate degree of freedom of a graph. J. Comput. Chem. 8, 516–521 (1987)

    CAS  Article  Google Scholar 

  17. 17.

    B. Liu, H. Bian, H. Yu, Complete forcing numbers of polyphenyl systems. Iran. J. Math. Chem. 7, 39–46 (2016)

    Google Scholar 

  18. 18.

    B. Liu, H. Bian, H. Yu, J. Li, Complete forcing number of spiro hexagonal systems. Polyc. Arom. Comp. (2019). https://doi.org/10.1080/10406638.2019.1600560

    Article  Google Scholar 

  19. 19.

    L. Lovász, M.D. Plummer, Matching Theory, Annals of Discrete Mathematics, vol. 29 (North-Holland, Amsterdam, 1986)

    Google Scholar 

  20. 20.

    J. Langner, H.A. Witek, Interface theory of benzenoids. MATCH Commun. Math. Comput. Chem. 84, 143–176 (2020)

    Google Scholar 

  21. 21.

    J. Langner, H.A. Witek, Interface theory of benzenoids: Basic applications. MATCH Commun. Math. Comput. Chem. 84, 177–215 (2020)

    Google Scholar 

  22. 22.

    E.S. Mahmoodian, R. Naserasr, M. Zaker, Defining sets in vertex colorings of graphs and Latin rectangles. Discrete Math. 167, 451–460 (1997)

    Article  Google Scholar 

  23. 23.

    H. Sachs, Perfect matchings in hexagonal system. Combinatorica 4, 89–99 (1984)

    Article  Google Scholar 

  24. 24.

    J. Sedlar, The global forcing number of the parallelogram polyhex. Discrete Appl. Math. 160, 2306–2313 (2012)

    Article  Google Scholar 

  25. 25.

    D. Vukičević, T. Došlić, Global forcing number of grid graphs. Aust. J. Combin. 38, 47–62 (2007)

    Google Scholar 

  26. 26.

    D. Vukičević, J. Sedlar, Total forcing number of the triangular grid. Math. Commun. 9, 169–179 (2004)

    Google Scholar 

  27. 27.

    S. Xu, X. Liu, W. Chan, H, Zhang, Complete forcing numbers of primitive coronoids. J. Comb. Opt. 32, 318–330 (2016)

    Article  Google Scholar 

  28. 28.

    S. Xu, H. Zhang, J. Cai, Complete forcing numbers of catacondensed hexagonal systems. J. Comb. Opt. 29, 803–814 (2015)

    Article  Google Scholar 

  29. 29.

    F. Zhang, R. Chen, When each hexagon of a hexagonal system covers it. Discrete Appl. Math. 30, 63–75 (1991)

    Article  Google Scholar 

  30. 30.

    F. Zhang, R. Chen, X. Guo, Perfect matchings in hexagonal systems. Graphs Combin. 1, 383–386 (1985)

    Article  Google Scholar 

  31. 31.

    H. Zhang, J. Cai, On the global forcing number of hexagonal systems. Discrete Appl. Math. 162, 334–347 (2014)

    Article  Google Scholar 

  32. 32.

    H. Zhang, F. Zhang, The Clar covering polynomial of hexagonal systems I. Discrete Appl. Math. 69, 147–167 (1996)

    Article  Google Scholar 

  33. 33.

    H. Zhang, H. Yao, D. Yang, A min-max result on outerplane bipartite graphs. Appl. Math. Lett. 20, 199–205 (2007)

    CAS  Article  Google Scholar 

  34. 34.

    H. Zhang, F. Zhang, Plane elementary bipartite graphs. Discrete Appl. Math. 105, 473–490 (2000)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Heping Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC (Grant No. 11871256).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, X., Zhang, H. Complete forcing numbers of hexagonal systems. J Math Chem 59, 1767–1784 (2021). https://doi.org/10.1007/s10910-021-01261-3

Download citation

Keywords

  • Hexagonal system
  • Perfect matching
  • Complete forcing set
  • Complete forcing number