The spectrum of the vertex quadrangulation of a 4-regular toroidal graph and beyond

Abstract

Let G be a simple plane graph with all vertices of valency 4. The vertex quadrangulation QG of G visually looks like a graph whose vertices are depicted as empty squares, and the connecting edges are attached to the corners of the squares. In particular, such is the molecular graph of the putative polymer of cyclobutadiene. This graph can be represented in finite form as a snippet of wallpaper or as a graph embedded in the surface of a torus. We consider the spectra of eigenvalues of toroidal vertex-quadrangulated graphs, also casting a glance at some related issues. Finding such spectra is possible due to using known spectral methods specially designed for symmetric graphs. However, the analytical calculation of the spectrum of an arbitrary vertex-quadrangulated graph (not necessarily with symmetry) still remains an unsolved problem. The current work is also a preliminary exploratory consideration of this complex problem.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. 1.

    Reviewer-suggested term.

References

  1. 1.

    D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs: Theory and Application (Academic Press, New York, 1980)

    Google Scholar 

  2. 2.

    Y. Ji-Min, Symmetry rules in the graph theory of molecular orbitals. Adv. Quantum Chem. 13, 211–241 (1981)

    Article  Google Scholar 

  3. 3.

    R.A. Davidson, Spectral analysis of graphs by cyclic automorphism subgroups. Theor. Chim. Acta (Berl.) 58, 193–231 (1981)

    CAS  Article  Google Scholar 

  4. 4.

    K. Balasubramanian, Characteristic polynomials of organic polymers and periodic structures. J. Comput. Chem. 6(6), 656–661 (1985)

    CAS  Article  Google Scholar 

  5. 5.

    A. Tang, Y. Kiang, G. Yan, S. Tai, Graph Theoretical Molecular Orbitals (Science Press, Beijing, 1986)

    Google Scholar 

  6. 6.

    D. Cvetković, Spectra of graphs formed by some unary operations. Publ. Inst. Math. (Beograd) (N.S.) 19(33), 37–41 (1975)

    Google Scholar 

  7. 7.

    F. Zhang, Y.-C. Chen, Z. Chen, Clique-inserted-graphs and spectral dynamics of clique-inserting. J. Math. Anal. Appl. 349(1), 211–225 (2009)

    Article  Google Scholar 

  8. 8.

    D.J. Klein, E. Yi, A comparison on metric dimension of graphs, line graphs, and line graphs of the subdivision graphs. Eur. J. Pure Appl. Math. 5(3), 302–316 (2012)

    Google Scholar 

  9. 9.

    D.J. Klein, C.E. Larson, Eigenvalues of saturated hydrocarbons. J. Math. Chem. 51(6), 1608–1618 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    M.V. Diudea, V.R. Rosenfeld, The truncation of a cage graph. J. Math. Chem. 55(4), 1014–1020 (2017)

    CAS  Article  Google Scholar 

  11. 11.

    V.R. Rosenfeld, Looking into the future of molecules with novel topological symmetries. J. Math. Chem. 57(7), 1850–1867 (2019)

    CAS  Article  Google Scholar 

  12. 12.

    V.B. Mnuhin, Spectra of graphs under certain unary operations, in Nekotorye Topologicheskie i Kombinator. Svoistva Grafov, Akad. Nauk Ukrain. SSR Inst. Mat. Preprint No. 8, 38–44 (1980) (Russian)

  13. 13.

    P.W. Fowler, K.M. Rogers, Eigenvalue relations for decorated trivalent polyhedra Connections between the fullerenes and their fulleren-yne and spheriphane relatives. J. Chem. Soc. Faraday Trans. 94(8), 1019–1027 (1998)

    CAS  Article  Google Scholar 

  14. 14.

    D.M. Cvetković, M. Doob, I. Gutman, A. Torgašev, Recent Results in the Theory of Graph Spectra (North-Holland, Amsterdam, 1988)

    Google Scholar 

  15. 15.

    I. Gutman, Spectral properties of some graphs derived from bipartite graphs. MATCH Commun. Math. Comput. Chem. 8, 291–314 (1980)

    CAS  Google Scholar 

  16. 16.

    V.R. Rosenfeld, M.V. Diudea, The block-polynomials and block-spectra of dendrimers. Internet Electron. J. Mol. Des. 1(3), 142–156 (2002)

    CAS  Google Scholar 

  17. 17.

    V.R. Rosenfeld, The circuit polynomial of the restricted rooted product \(G(\Gamma )\) of graphs with a bipartite core \(G\). Discrete Appl. Math. 156(4), 500–510 (2008)

    Article  Google Scholar 

  18. 18.

    Y. Yang, V.R. Rosenfeld, Some spectral invariants of the neighborhood corona of graphs. Discrete Appl. Math. 247(1), 300–308 (2018)

    Article  Google Scholar 

  19. 19.

    D.J. Klein, V.R. Rosenfeld, Dinormal graphs. J. Math. Chem. 49(7), 1256–1262 (2011)

    CAS  Article  Google Scholar 

  20. 20.

    M.I. Huilgol, V. Sriram, K. Balasubramanian, Tensor and Cartesian products for nanotori, nanotubes and zig-zag polyhex nanotubes and their applications to \({}^{13}\)C NMR spectroscopy. Mol. Phys. e1817594, 1–12 (2020). https://doi.org/10.1080/00268976.2020.1817594

    CAS  Article  Google Scholar 

  21. 21.

    D.J. Klein, Elemental benzenoids. J. Chem. Inf. Comput. Sci. 34, 453–459 (1994)

    CAS  Article  Google Scholar 

  22. 22.

    A. Ceulemans, L.F. Chibotaru, S.A. Bovin, P.W. Fowler, The electronic structure of polyhex carbon tori. J. Chem. Phys. 112, 4271–4278 (2000). https://doi.org/10.1063/1.480972

    CAS  Article  Google Scholar 

  23. 23.

    J.M. Szucs, D.J. Klein, Regular affine tilings and regular maps on a flat torus. Discrete Appl. Math. 105, 225–237 (2000)

    Article  Google Scholar 

  24. 24.

    X. Li, Y. Shi, I. Gutman, Graph Energy (Springer, Berlin, 2012)

    Book  Google Scholar 

  25. 25.

    D.J. Klein, V.R. Rosenfeld, Phased graphs and graph energies. J. Math. Chem. 49(7), 1238–1244 (2011)

    CAS  Article  Google Scholar 

  26. 26.

    D.J. Klein, V.R. Rosenfeld, Phased cycles. J. Math. Chem. 49(7), 1245–1255 (2011)

    CAS  Article  Google Scholar 

  27. 27.

    U. Mizutani, Introduction to the Electron Theory of Metals (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  28. 28.

    V.R. Rosenfeld, The toroidal unit cell of a quasicrystal. J. Math. Chem. 55(10), 1941–1950 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    Circulant graph, Wikipedia. https://en.wikipedia.org/wiki/Circulant_graph. 16 Sept 2020

  30. 30.

    Regular group action, Grupprops. https://groupprops.subwiki.org/wiki/Regular_group_action. 02 Jan 2009

  31. 31.

    F.T. Leighton, Circulants and the characterization of vertex-transitive graphs. J. Res. Natl. Bur. Stand. 88(6), 395–402 (1983)

    Article  Google Scholar 

  32. 32.

    O. Delgado-Friedrichs, Analyzing periodic nets via the barycentre construction, in Lecture on the inner workings of Systre held in Santa Barbara in August 2008, file systre-lecture at gavrog.org (in free access)

  33. 33.

    T. Došlić, M. Taheri-Dehkordi, G.H. Fath-Tabar, Packing stars in fullerenes. J. Math. Chem. 58(10), 2223–2244 (2020)

    Article  Google Scholar 

  34. 34.

    T. Pisanski, T.W. Tucker, A. Žitnik, Straight-ahead walks in Eulerian graphs. Discrete Math. 281(1–3), 237–246 (2004)

    Article  Google Scholar 

  35. 35.

    L. Lovász, M.D. Plummer, Matching Theory (American Mathematical Society, Providence, 2009)

    Google Scholar 

  36. 36.

    J.R. Dias, Structural origin of specific eigenvalues in chemical graphs of planar molecules. Molecular orbital functional groups. Mol. Phys. 85(6), 1043–1060 (1995)

    CAS  Article  Google Scholar 

  37. 37.

    M. Randić, S. El-Basil, R.B. King, On non-symmetry equivalence. Math. Comput. Model. 11, 641–646 (1988)

    Article  Google Scholar 

  38. 38.

    I. Sciriha, P.W. Fowler, A spectral view of fullerenes. Math. Balk. (N.S.) 18(1–2), 183–192 (2004)

    Google Scholar 

  39. 39.

    K. Balasubramanian, X. Liu, Spectra and characteristic polynomials of polyhedral clusters. Int. J. Quantum Chem. Quantum. Chem. Symp. 22, 319–328 (1988)

    CAS  Article  Google Scholar 

  40. 40.

    K. Balasubramanian, Enumeration of stable stereo and position isomers of polysubstituted alcohols. Ann. N. Y. Acad. Sci. 319(1), 33–36 (1979)

    Article  Google Scholar 

  41. 41.

    D.J. Klein, A. Ryzhov, V.R. Rosenfeld, Permutational isomers on a molecular skeleton with neighbor-excluding ligands. J. Math. Chem. 45(4), 892–909 (2009). Erratum, p. 910

    CAS  Article  Google Scholar 

  42. 42.

    V.R. Rosenfeld, D.J. Klein, Enumeration of substitutional isomers with restrictive mutual positions of ligands. I. Overall counts. J. Math. Chem. 51(1), 21–37 (2013)

    CAS  Article  Google Scholar 

  43. 43.

    V.R. Rosenfeld, D.J. Klein, Enumeration of substitutional isomers with restrictive mutual positions of ligands. II. Counts with restrictions on subsymmetry. J. Math. Chem. 51(1), 239–264 (2013)

    CAS  Article  Google Scholar 

  44. 44.

    L.F. Veiros, G. Dazinger, K. Kirchner, M.J. Calhorda, R. Schmid, By what mechanisms are metal cyclobutadiene complexes formed from alkynes? Chem. Eur. J. 10(22), 5860–5870 (2004)

    CAS  Article  Google Scholar 

  45. 45.

    P.W. Fowler, D.E. Manolopoulos, An Atlas of Fullerenes (Dover Publications, Inc., Mincola, 2006)

    Google Scholar 

  46. 46.

    M. Ghorbani, M. Dehmer, S. Rahmani, M. Rajabi-Parsa, A Survey on symmetry group of polyhedral graphs. Symmetry 12, 370 (2020). https://doi.org/10.3390/sym12030370

    CAS  Article  Google Scholar 

  47. 47.

    M.D. Sikirić, M. Deza, 4-regular and self-dual analogs of fullerenes. arXiv:0910.5323v3 [math.GT] 9 Nov 2009, 17pp.

  48. 48.

    H. Yao, G. Hua, H. Zhang, W.-Y. Qiu, The construction of 4-regular polyhedra containing triangles, quadrilaterals and pentagons. MATCH Commun. Math. Comput. Chem. 64(2), 345–358 (2010)

    Google Scholar 

Download references

Acknowledgements

The author thanks his reviewers for their valuable comments, which significantly improved the presentation of the article. The support of the Ministry of Absorption of the State Israel (through fellowship “Shapiro”) is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vladimir R. Rosenfeld.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rosenfeld, V.R. The spectrum of the vertex quadrangulation of a 4-regular toroidal graph and beyond. J Math Chem 59, 1551–1569 (2021). https://doi.org/10.1007/s10910-021-01254-2

Download citation

Keywords

  • Cartesian product of graphs
  • Toroidal graph
  • Vertex quadrangulation
  • Characteristic polynomial
  • Graph spectrum
  • Weighted divisor
  • Finite crystal
  • Regular Abelian group
  • Circulant