Skip to main content
Log in

Modelling reduction of nitric oxide by hydrogen over supported catalysts

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A mean field model for NO oxidation with H2 over supported catalysts is proposed and solved numerically. The model is composed of a system of PDEs subject to nonclassical conjugate conditions at the catalyst–support interface and includes the bulk diffusion of reactants and reaction products and surface diffusion of all intermediate products. The influence of the particle jumping rate constants via the catalyst–support interface and reaction rate constants on the evolution of the reactivity of the catalyst surface is investigated. It is shown that the conversion rates (turnover frequencies) of NO and H2 into products, N2, H2O, NH3, and N2O, are nonmonotonous functions of time. The conversion rates of NO and H2 into N2 and N2O can have one or two local maxima, while their conversion rates into H2O and NH3 can possess one, two, or three local maxima. The mechanism and conditions for arising of the second maximum are discussed and reaction steps that essentially increase the surface reactivity are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.C. Egelhoff Jr., The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, in Fundamental Studies of Heterogeneous Catalysis, vol. 4, ed. by D.A. King, D.P. Woodruff (Elsevier, Amsterdam, 1982)

  2. K.C. Taylor, Automotive Catalytic Converters (Springer, Berlin, 1984)

    Book  Google Scholar 

  3. V.P. Zhdanov, Monte Carlo simulations of oscillations, chaos and pattern formation in heterogeneous catalytic reactions. Surf. Sci. Rep. 45, 231–326 (2002)

    Article  CAS  Google Scholar 

  4. M.W. Lesley, L.D. Schmidt, The NO + CO reaction on Pt(100). Surf. Sci. 155, 215–240 (1985)

    Article  CAS  Google Scholar 

  5. H.H. Madden, R. Imbihl, Interaction of NO and H2 with Pt(100). Appl. Surf. Sci. 48(49), 130–134 (1991)

    Article  Google Scholar 

  6. J. Siera, P. Cobden, K. Tanaka, B.E. Nieuwenhuys, The NO–H2 reaction over Pt(100) oscillatory behaviour of activity and selectivity. Catal. Lett. 10, 335–342 (1991)

    Article  CAS  Google Scholar 

  7. M.F.H. van Tol, A. Gielbert, B.E. Nieuwenhuys, Oscillatory behaviour of the reduction of NO by H2 over Rh. Catal. Lett. 16, 297–309 (1992)

    Article  Google Scholar 

  8. J. Siera, Ph.D. thesis, Leiden university, The Nederlands (1992)

  9. P.D. Cobden, J. Siera, B.E. Nieuwenhuys, Oscillatory reduction of nitric oxide with hydrogen over Pt(100). J. Vac. Sci. Technol. A10, 2487 (1992)

    Article  Google Scholar 

  10. S.J. Lombardo, M. Slinko, T. Fink, T. Loher, H.H. Madden, R. Imbihl, G. Ertl, The NO + H2 and NO + NH3 reactions on Pt(100): steady state and oscillatory kinetics. Surf. Sci. 269(270), 481–487 (1992)

    Article  Google Scholar 

  11. M.M. Slinko, T. Fink, T. Loher, H.H. Madden, S.J. Lombardo, R. Imbihl, G. Ertl, The NO + H2 reaction on Pt(100): steady state and oscillatory kinetics. Surf. Sci. 264, 157–170 (1992)

    Article  CAS  Google Scholar 

  12. D.Y. Zemlyanov, M.Y. Smirnov, V.V. Gorodetskii, J.H. Block, HREELS and TDS studies of NO adsorption and NO+H2 reaction on Pt(100) surfaces. Surf. Sci. 329, 61–70 (1995)

    Article  CAS  Google Scholar 

  13. B. Rausenberger, M. Mundschau, W. Swiech, W. Engel, A.M. Bradshaw, Investigation of the NO + H2 reaction on Pt100 with low-energy emission and reflection microscopy: PEEM studies. J. Chem. Soc., Faraday Trans. 92, 2941 (1996)

    Article  Google Scholar 

  14. S.J. Lombardo, T. Fink, R. Imbihl, Simulations of the NO+NH3 and NO+H2 reactions on Pt(100): steady state and oscillatory kinetics. J. Chem. Phys. 98, 5526 (1993)

    Article  CAS  Google Scholar 

  15. M.M. Slinko, N.I. Jaeger, Oscillating Heterogeneous Catalytic Systems (Elsevier, Amsterdam, 1994)

    Google Scholar 

  16. M. Gruyters, A.T. Pasteur, D.A. King, Simulation of oscillatory behaviour in the reduction of NO by hydrogen on Pt100: the role of non-linear restructuring. J. Chem. Soc. Faraday Trans. 92, 2941 (1996)

    Article  CAS  Google Scholar 

  17. A.G. Makeev, B.E. Nieuwenhuys, Mathematical modeling of the NO+H2/Pt(100) reaction: “Surface explosion,” kinetic oscillations, and chaos. J. Chem. Phys. 108, 3740 (1998)

  18. A.G. Makeev, B.E. Nieuwenhuys, Simulation of oscillatory behaviour in the NO+H2 reaction on a partially reconstructed Pt(100) surface. Surf. Sci. 418, 432–440 (1998)

    Article  CAS  Google Scholar 

  19. F. Zaera, C.S. Gopinath, Role of adsorbed nitrogen in the catalytic reduction of NO on rhodium surfaces. J. Chem. Phys. 111, 8088–8097 (1999)

    Article  CAS  Google Scholar 

  20. A.G. Makeev, M. Hinz, R. Imbihl, Modeling anisotropic chemical wave patterns in the NO+H2 reaction on a Rh(110) surface. J. Chem. Phys. 114, 9083 (2001)

    Article  CAS  Google Scholar 

  21. Y. De Decker, F. Baras, N. Kruse, G. Nicolis, Modeling the NO+H2 reaction on a Pt field emitter tip: mean-field analysis and Monte Carlo simulations. J. Chem. Phys. 117, 10244 (2002)

    Article  Google Scholar 

  22. F.V. Caballero, L. Vicente, A simulation of oscillatory behavior in the NO+H2 reaction on Pt(100): effect of diffusion and blocking sites. Chem. Eng. Sci. 58, 5087–5102 (2003)

    Article  CAS  Google Scholar 

  23. F.V. Caballero, L. Vicente, Coupled diffusion on the reaction on Pt(1 0 0): chemical wave pattern formation by defects. Chem. Eng. J. 106, 229–240 (2005)

    Article  CAS  Google Scholar 

  24. L. Vicente, F.V. Caballero, Modeling of surface explosion of reaction on Pt(1 0 0): mean-field analysis and dynamic Monte Carlo simulations. J. Mol. Catal. A Chem. 272, 118–127 (2007)

    Article  CAS  Google Scholar 

  25. D.D. Hibbitts, R. Jimenez, M. Yoshimura, B. Weiss, E. Iglesia, Catalytic NO activation and NO–H2 reaction pathways. J. Catal. 319, 95–104 (2014)

    Article  CAS  Google Scholar 

  26. R. Imbihl, G. Ertl, Oscillatory kinetics in heterogeneous catalysis. Chem. Rev. 95, 697–733 (1995)

    Article  CAS  Google Scholar 

  27. N.M.H. Jansen, P.D. Cobden, B.E. Niewenhuys, Non-linear behaviour of nitric oxide reduction reactions over metal surfaces. J. Phys. Condens. Matter. 9, 1889–1917 (1997)

  28. T.V. Bocarme, N. Kruse, Kinetic instabilities during the NOx reduction with hydrogen on Pt crystals studied with field emission on the nanoscale. Chaos 12, 118–130 (2002)

    Article  Google Scholar 

  29. D.Y. Zemlyanov, M.Y. Smirnov, V.V. Gorodetskii, NO adsorption on reconstructed and unreconstructed Pt(100) surface at 300 K TDS studies. React. Kinet. Catal. Lett. 53, 87–95 (1994)

    Article  CAS  Google Scholar 

  30. V.P. Zhdanov, B. Kasemo, Monte Carlo simulation of oscillations in the NO–H2 reaction on Pt (1 0 0). Appl. Catal. A 187, 61–71 (1999)

    Article  CAS  Google Scholar 

  31. V.P. Zhdanov, Surface restructuring, kinetic oscillations, and chaos in heterogeneous catalytic reactions. Phys. Rev. E 5(9), 6292–6305 (1999)

    Article  Google Scholar 

  32. V.P. Zhdanov, Surface restructuring and kinetic oscillations in heterogeneous catalytic reactions. Phys. Rev. E 60, 7554–7558 (1999)

    Article  CAS  Google Scholar 

  33. V.P. Zhdanov, B. Kasemo, Standing fronts in bistable reactions on composite catalytic surfaces. Phys. Rev. B 62, R4849–R4852 (2000)

    Article  CAS  Google Scholar 

  34. V.P. Zhdanov, B. Kasemo, Standing fronts in oscillatory reactions on composite catalytic surfaces. Physica D 151, 73–81 (2001)

    Article  CAS  Google Scholar 

  35. V. Skakauskas, P. Katauskis, Modelling of the “surface explosion” of the NO+H2 reaction over supported catalysts. J. Math. Chem. 58, 1531–1547 (2020)

  36. A.N. Gorban, H.P. Sargsyan, H.A. Wahab, Quasichemical models of multicomponent nonlinear diffusion. Math. Model. Nat. Phenom. 6, 184–262 (2011)

    Article  Google Scholar 

  37. A.A. Samarskii, The Theory of Difference Schemes (Marcel Dekker, New York, 2001)

    Book  Google Scholar 

  38. R. Čiegis, P. Katauskis, V. Skakauskas, The robust finite-volume schemes for modeling nonclassical surface reactions. Nonlinear Anal. Model. Control 23, 234–250 (2018)

    Article  Google Scholar 

  39. W. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Series in Computational Mathematics, vol. 33. (Springer, Berlin, 2003).

    Book  Google Scholar 

  40. Th. Fink, J.P. Dath, M.R. Basset, R. Imbihl, G. Ertl, The mechanism of the “explosive” NO + CO reaction on Pt(100): experiments and mathematical modeling. Surf. Sci. 245, 96–110 (1991)

Download references

Acknowledgements

This work was supported by the Research Council of Lithuania (Project No. S-MIP-17-65).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Katauskis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skakauskas, V., Katauskis, P. Modelling reduction of nitric oxide by hydrogen over supported catalysts. J Math Chem 59, 1456–1473 (2021). https://doi.org/10.1007/s10910-021-01248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-021-01248-0

Keywords

Navigation