Skip to main content
Log in

Solving nonlinear reaction–diffusion problem in electrostatic interaction with reaction-generated pH change on the kinetics of immobilized enzyme systems using Taylor series method

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A mathematical model of electrostatic interaction with reaction-generated pH change on the kinetics of immobilized enzyme is discussed. The model involves the coupled system of non-linear reaction–diffusion equations of substrate and hydrogen ion. The non-linear term in this model is related to the Michaelis–Menten reaction of the substrate and non-Michaelis–Menten kinetics of hydrogen ion. The approximate analytical expression of concentration of substrate and hydrogen ion has been derived by solving the non-linear reactions using Taylor’s series method. Reaction rate and effectiveness factor are also reported. A comparison between the analytical approximation and numerical solution is also presented. The effects of external mass transfer coefficient and the electrostatic potential on the overall reaction rate were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. L. Rajendran, R. Swaminathan, M. Chitra Devi, A Closer Look of Nonlinear Reaction-Diffusion Equations (Nova Science Publishers Incorporated, New York, 2020).

    Google Scholar 

  2. B.P.F. Ayuso, J.M. Grau, M.M. Ruiz, P.M. Suárez, J. Math. Chem. 58, 273 (2020)

    Article  Google Scholar 

  3. A.A. Fedorov, A.S. Berdnikov, V.E. Kurochkin, J. Math. Chem. 57, 971 (2019)

    Article  CAS  Google Scholar 

  4. J.H. He, Y.O. El-Dib, J. Math. Chem. 58, 2245 (2020)

    Article  CAS  Google Scholar 

  5. J.H. He, Ain Shams Eng. J. 11, 1411 (2020)

    Article  Google Scholar 

  6. J.H. He, H. Latifizadeh, Int. J. Numer. Methods Heat Fluid Flow 2, 44 (2020)

    Google Scholar 

  7. M.E.G. Lyons, J. Solid State Electrochem. 24, 2751 (2020)

  8. A.M. Wazwaz, Optik 207, 164457 (2020)

    Article  Google Scholar 

  9. M.R. Zangooee, S.A. Hosseini, D.D. Ganji, Int. J. Ambient. Energy. 1-8 (2020)

  10. R.J. Salomi, S.V. Sylvia, L. Rajendran, M. Abukhaled, Sensor. Actuat. B-Chem. 321, 128576 (2020)

    Article  Google Scholar 

  11. K. Saranya, V. Mohan, L. Rajendran, J. Math. Chem. 58, 1230 (2020)

    Article  CAS  Google Scholar 

  12. R.U. Rani, L. Rajendran, Chem. Phys. Lett. 754, 137573 (2020)

    Article  Google Scholar 

  13. R. Swaminathan, K. Venugopal, M. Rasi, M. Abukhaled, L. Rajendran, Quím. Nova 43, 58 (2020)

    CAS  Google Scholar 

  14. K.B. Ramachandran, A.S. Rathore, S.K. Gupta, Chem. Eng. J. Biochem. Eng. J. 57, B15 (1995)

    Article  CAS  Google Scholar 

  15. E. Miletics, G. Molnárka, Int. J. Comp. Meth-sing. 4, 105 (2004)

    Google Scholar 

  16. P. Rentrop, Numer. Math. 31, 359 (1978)

    Article  Google Scholar 

  17. E. Miletics, G. Molnárka, Hung. Electron. J. Sci. Appl. Numer. Math. 1–16 (2003)

  18. S.G. Georgiev, I.M. Erhan, Appl. Math. Comput. 378, 125200 (2020)

    Google Scholar 

  19. G. Groza, M. Razzaghi, Comput. Math. Appl. 66, 1329 (2013)

    Article  Google Scholar 

  20. S. Saravanakumar, A. Eswari, L. Rajendran, Int. J. Adv. Multidiscip. Res. 2, 98 (2015)

    Google Scholar 

  21. M. Rasi, L. Rajendran, A. Subbiah, Sensor. Actuat. B-Chem. 208, 128 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Academy of Maritime Education and Training(AMET), Deemed to be University, Chennai. The authors are thankful to Shri J.Ramachandran, Chancellor, Col. Dr. G. Thiruvasagam, Vice-Chancellor and Dr. M. Jayaprakashvel, Registrar, Academy of Maritime Education and Training (AMET), Deemed to be University, Chennai, Tamil Nadu for their continuous support. The authors are also very grateful to the reviewers for their valuable comments.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rajendran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Appendices

Appendix 1: Relation between H(X) and S(X)

From Eqs. (2) and (3) it is observed that

$$\frac{{d^{2} H\left( X \right)}}{{dX^{2} }} = a\frac{{d^{2} S\left( X \right)}}{{dX^{2} }}$$
(14)

On integrating both sides we get,

$$\frac{dH\left( X \right)}{{dX}} = a\frac{dS\left( X \right)}{{dX}} + c_{1}$$
(15)

Using the boundary condition given in Eq. (4), the value of \(c_{1} = 0\).

Hence Eq. (15) becomes,

$$\frac{dH\left( X \right)}{{dX}} = a\frac{dS\left( X \right)}{{dX}}$$
(16)

Again on integrating we get

$$H\left( X \right) = aS\left( X \right) + c_{2}$$
(17)

Since at \(X = 0, S\left( 0 \right) = l, H\left( 0 \right) = m\), the value of \(c_{2} = m - al\).

$$H\left( X \right) = m + a\left( {S\left( X \right) - l} \right)$$
(18)

where

$$a = - \frac{{D_{es} }}{{D_{eh} }}\frac{{s_{0} }}{{h_{0} }}$$
(19)

Appendix 2: Approximate analytical expression of concentration of hydrogen ion and substrate using Taylor series method

Taylor series method is used for solving the dimensionless Eqs. (2) and (3). We assume that the solution of Eqs. (2)–(6) can be expanded in a Taylor series about \(X = 0\) given by

$$S\left( X \right) = \mathop \sum \limits_{r = 0}^{4} \left. {\frac{{d^{r} S}}{{dX^{r} }}} \right|_{X = 0} \frac{{X^{r} }}{r!} = S\left( 0 \right) + \left. {\frac{dS}{{dX}}} \right|_{X = 0} X + \left. {\frac{{d^{2} S}}{{dX^{2} }}} \right|_{X = 0} \frac{{X^{2} }}{2!} + \left. {\frac{{d^{3} S}}{{dX^{3} }}} \right|_{X = 0} \frac{{X^{3} }}{3!} + \left. {\frac{{d^{4} S}}{{dX^{4} }}} \right|_{X = 0} \frac{{X^{4} }}{4!}$$
(20)
$$H\left( X \right) = \mathop \sum \limits_{r = 0}^{4} \left. {\frac{{d^{r} H}}{{dX^{r} }}} \right|_{X = 0} \frac{{X^{r} }}{r!} = H\left( 0 \right) + \left. {\frac{dH}{{dX}}} \right|_{X = 0} X + \left. {\frac{{d^{2} H}}{{dX^{2} }}} \right|_{X = 0} \frac{{X^{2} }}{2!} + \left. {\frac{{d^{3} H}}{{dX^{3} }}} \right|_{X = 0} \frac{{X^{3} }}{3!} + \left. {\frac{{d^{4} H}}{{dX^{4} }}} \right|_{X = 0} \frac{{X^{4} }}{4!}$$
(21)

Let us assume that \(S\left( 0 \right) = l \ and\ H\left( 0 \right) = m.\)

We can now evaluate the derivatives at \(X = 0\) by substituting \({\text{X}} = 0\) into Eqs. (2) and (3) and impose the boundary condition that \(\frac{{\text{dS}}}{{\text{dX}}} = \frac{{{\text{dH}}}}{{{\text{dX}}}} = 0\) at \({\text{X}} = 0\). By imposing these conditions simultaneously, we get

$$\left. {\frac{{d^{2} S}}{{dX^{2} }}} \right|_{X = 0} { } = S^{\prime\prime}\left( 0 \right){ } = \frac{\phi S\left( 0 \right)}{{\left( {1 + \gamma S\left( 0 \right)} \right)\left( {1 + \alpha_{1} H\left( 0 \right) + \frac{1}{{H\left( 0 \right)\alpha_{2} }}} \right)}}$$
(22)
$$\left. {\frac{{d^{2} H}}{{dX^{2} }}} \right|_{X = 0} = H^{\prime\prime}\left( 0 \right) = \frac{a\phi S\left( 0 \right)}{{\left( {1 + \gamma S\left( 0 \right)} \right)\left( {1 + \alpha_{1} H\left( 0 \right) + \frac{1}{{H\left( 0 \right)\alpha_{2} }}} \right)}} = a S^{\prime\prime}\left( 0 \right)$$
(23)
$$\left. {\frac{{d^{3} S}}{{dX^{3} }}} \right|_{X = 0} = \left. {\frac{{d^{3} H}}{{dX^{3} }}} \right|_{X = 0} = 0$$
(24)
$$\left. {\frac{{d^{4} S}}{{dX^{4} }}} \right|_{X = 0} = S^{4} \left( 0 \right) = - \frac{{\phi \alpha_{2} \left[ {S\left( 0 \right)\left( {\alpha_{1} \alpha_{2} H\left( 0 \right)^{2} + \alpha_{2} H\left( 0 \right) + 1} \right)\left( {\alpha_{1} \alpha_{2} H\left( 0 \right)^{2} - 1} \right)\left( {\gamma S\left( 0 \right) + 1} \right)^{2} H^{\prime\prime}\left( 0 \right) - H\left( 0 \right)\left( {\alpha_{1} \alpha_{2} H\left( 0 \right)^{2} + \alpha_{2} H\left( 0 \right) + 1} \right)^{2} \left( {\gamma S\left( 0 \right) + 1} \right)S^{\prime\prime}\left( 0 \right)} \right]}}{{\left( {\gamma S\left( 0 \right) + 1} \right)^{3} \left( {\alpha_{1} \alpha_{2} H\left( 0 \right)^{2} + \alpha_{2} H\left( 0 \right) + 1} \right)^{3} }}$$
(25)
$$\left. {\frac{{d^{4} H}}{{dX^{4} }}} \right|_{X = 0} = a S^{4} \left( 0 \right)$$
(26)

These derivative terms evaluated at \(X = 0\) allow us to express the Taylor series solution Eqs. (20) and (21) as

$$S\left( X \right) = S\left( 0 \right) + S^{\prime\prime}\left( 0 \right)\frac{{X^{2} }}{2!} + S^{\left( 4 \right)} \left( 0 \right)\frac{{X^{4} }}{4!}$$
(27)
$$H\left( X \right) = H\left( 0 \right) + H^{\prime\prime}\left( 0 \right)\frac{{X^{2} }}{2!} + H^{\left( 4 \right)} \left( 0 \right)\frac{{X^{4} }}{4!}$$
(28)

Equations (27) and (28) can be written as

$$S\left( X \right) = l + S_{1} X^{2} + S_{2 } X^{4}$$
(29)
$$H\left( X \right) = m + aS_{1} X^{2} + aS_{2 } X^{4}$$
(30)

where

$$S_{1} = \phi l\left[ {2\left( {1 + \gamma l} \right)\left[ {1 + \alpha_{1} m + \left( {m\alpha_{2} } \right)^{ - 1} } \right]} \right]^{ - 1}$$
(31)
$$S_{2} = - \frac{{\phi \alpha_{2} \left[ {l\left( {\alpha_{1} \alpha_{2} m^{2} + \alpha_{2} m + 1} \right)\left( {\alpha_{1} \alpha_{2} m^{2} - 1} \right)\left( {\gamma l + 1} \right)^{2} H^{\prime\prime}\left( 0 \right) - m\left( {\alpha_{1} \alpha_{2} m^{2} + \alpha_{2} m + 1} \right)^{2} \left( {\gamma l + 1} \right)S^{\prime\prime}\left( 0 \right)} \right]}}{{24\left( {\gamma l + 1} \right)^{3} \left( {\alpha_{1} \alpha_{2} m^{2} + \alpha_{2} m + 1} \right)^{3} }}$$
(32)
$$H^{\prime\prime}\left( 0 \right) = a S^{\prime\prime}\left( 0 \right) = a\phi \left[ {\left( {1 + \gamma l} \right)\left( {1 + \alpha_{1} m + \left( {m\alpha_{2} } \right)^{ - 1} } \right)} \right]^{ - 1}$$
(33)

By applying the remaining boundary conditions (Eqs. (5) and (6)), we get

$$2S_{1} + 4S_{2} = \beta_{s} \left( {1 - l - S_{1} - S_{2 } } \right)$$
(34)
$$2aS_{1} + 4aS_{2} = b\left( {1 - \left( {m + aS_{1} + aS_{2 } } \right)P^{ - 1} } \right)$$
(35)

In order to find the unknown constants l and m, substitute the values of the parameter (refer Table 1) in (34) and (35). Using computational knowledge engine like Wolfram alpha we can get the values easily. The values of the unknown constants are \(l = 0.1094, m = 1.2410\).

Hence,

$$S\left( X \right) = 0.1094 + 0.5108X^{2} + 0.3554X^{4}$$
(36)
$$H\left( X \right) = 1.2410 - 0.1277X^{2} - 0.0888X^{4}$$
(37)

The dimensionless reaction rate is

$$V\left( {pH_{0} } \right) = 2S_{1} + 4S_{2}$$
(38)

The effectiveness factor is

$$\eta \left( \phi \right) = \frac{1}{\phi }\left( {1 + \gamma } \right)\left( {1 + \alpha_{1} + \alpha_{2}^{ - 1} } \right)\left( {2S_{1} + 4S_{2} } \right)$$
(39)

Appendix 3: Maple coding to find dimensionless reaction rate

$$\begin{aligned} & > p : = 20;\,k : = 0.25;\,beta : = 100;\,M : = 1;\,g: = 1;\,P : = \exp \left( 0 \right);\,so : = 10^{ - 4} ;\,c : = 1; \\ & a1 : = 0.1; a2: = 1;\,ph0 : = 4; \\ & > ho : = 10^{ - ph0} ;a : = - k \cdot \frac{so}{{ho}}\,;b : = M \cdot beta \cdot k \cdot c; \\ & > S1 : = p \cdot \frac{l}{{2 \cdot \left( {g \cdot l + 1} \right) \cdot \left( {a1 \cdot m + 1 + \frac{1}{m \cdot a2}} \right)}}: \\ & > S2 : = a2^{2} \cdot p^{2} \cdot l \cdot m \cdot \frac{{\left( {a1 \cdot a2 \cdot m^{3} + a2 \cdot \left( {a \cdot a1 \cdot g \cdot l^{2} + a \cdot a1 \cdot l + 1} \right) \cdot m^{2} + m - a \cdot l \cdot \left( {g \cdot l + 1} \right)} \right)}}{{24 \cdot \left( {g \cdot l + 1} \right)^{3} \cdot \left( {a1 \cdot a2 \cdot m^{2} + a2 \cdot m + 1} \right)^{3} }}: \\ & > S : = S2.X^{4} + S1.X^{2} + l: \\ & > H : = S2 \cdot X^{4} \cdot a + S1 \cdot X^{2} \cdot a + m: \\ & > SD : = diff\left( {S, X} \right): \\ & > HD : = diff\left( {H, X} \right): \\ & > f1 : = simplify\left( {subs\left( {X = 1, SD} \right)} \right) = beta \cdot \left( {1 - simplify\left( {subs\left( {X = 1, S} \right)} \right)} \right): \\ & > f2 : = simplify\left( {subs\left( {X = 1, HD} \right)} \right) = b \cdot \left( {1 - \frac{{simplify\left( {subs\left( {X = 1, H} \right)} \right)}}{P}} \right): \\ & > solve\left( {\left\{ {f1, f2} \right\}, \left\{ {l, m} \right\}} \right); \\ & \left\{ {l = 0.1093690396, m = 1.240981202} \right\} \\ & > V : = simplify\left( {subs\left( {X = 1, \left\{ {l = 0.1093690396, m = 1.240981202} \right\}, SD} \right)} \right); \\ & V : = 2.443128278 \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinolyn Sylvia, S., Joy Salomi, R., Rajendran, L. et al. Solving nonlinear reaction–diffusion problem in electrostatic interaction with reaction-generated pH change on the kinetics of immobilized enzyme systems using Taylor series method. J Math Chem 59, 1332–1347 (2021). https://doi.org/10.1007/s10910-021-01241-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-021-01241-7

Keywords

Navigation