Skip to main content
Log in

Two-point resistances in the generalized phenylenes

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The resistance between two nodes in some electronic networks has been studied extensively. Let \(G_n\) be a generalized phenylene with n 6-cycles and n 4-cycles. Using series and parallel rules and the \(\Delta - Y\) transformations we obtain explicit formulae for the resistance distance between any two points of \(G_n\). To the best of our knowledge \(\{G_n\}_{n=1}^{\infty }\) is a nontrivial family with diameter going to \(\infty \) for which all resistance distances have been explicitly calculated. We also determine the maximal resistance distance and the minimal resistance distance in \(G_n\). The monotonicity and some asymptotic properties of resistance distances in \(G_n\) are given. At last some numerical results are discussed, in which we calculate the Kirchhoff indices of a set of benzenoid hydrocarbons; We compare their Kirchhoff indices with some other distance-based topological indices through their correlations with the chemical properties. The linear model for the Kirchhoff index is better than or as good as the models corresponding to the other distance-based indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.R. Ashrafi, M. Ghorbani, Eccentric connectivity index of fullerences, in Novel Molecular Structure Descriptors-Theory and Applications II, ed. by I. Gutman, B. Furtula (University of Kragujevac, Kragujevac, 2010), pp. 183–192

    Google Scholar 

  2. R.B. Bapat, S. Gupta, resistance distance in wheels and fans. Indian J. Pure Appl. Math. 41(1), 1–13 (2010)

    Article  Google Scholar 

  3. W. Barrett, E.J. Evans, A.E. Francis, Resistance distance in straight linear 2-trees. Discrete Appl. Math. 258, 13–34 (2019)

    Article  Google Scholar 

  4. A. Carmona, A.M. Encinas, M. Mitjana, Effective resistances for ladder-like chains. Int. J. Quantum Chem. 114(24), 16–70 (2014)

    Article  CAS  Google Scholar 

  5. A.K. Chandra, P.R. Raghavan, W.L. Ruzzo, R. Smolensky, P. Tiwari, in Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing (Washington, Seattle, 1989), pp. 574–586

  6. H.Y. Chen, F.J. Zhang, Resistance distance and the normalized Laplacian spectrum. Discrete Appl. Math. 155, 654–661 (2007)

    Article  Google Scholar 

  7. H.Y. Chen, F.J. Zhang, Resistance distance local rules. J. Math. Chem. 44(2), 405–417 (2008)

    Article  CAS  Google Scholar 

  8. Z. Cinkir, Effective resistances and Kirchhoff index of ladder graphs. J. Math. Chem. 54, 955–966 (2016)

    Article  CAS  Google Scholar 

  9. P.G. Doyle, J.L. Snell, Random Walks and Electrical Networks (The Mathematical Association of America, Washington, 1984)

    Book  Google Scholar 

  10. A. Georgakopoulos, Uniqueness of electrical currents in a network of finite total resistance. J. Lond. Math. Soc. 82(1), 256–272 (2010)

    Article  Google Scholar 

  11. A. Georgakopoulos, S. Wagner, Hitting times, cover cost, and the Wiener index of a tree. J. Graph Theory 84, 311–326 (2017)

    Article  Google Scholar 

  12. S.V. Gervacio, Resistance distance in complete \(n\)-partite graphs. Discrete Appl. Math. 203, 53–61 (2016)

    Article  Google Scholar 

  13. J. Huang, S.C. Li, On the normalised Laplacian spectrum, degree-Kirchhoff index and spanning trees of graphs. Bull. Aust. Math. Soc. 91, 353–367 (2015)

    Article  Google Scholar 

  14. J. Huang, S.C. Li, Z. Xie, Further results on the expected hitting time, the cover cost and the related invariants of graphs. Discrete Math. 342, 78–95 (2019)

    Article  Google Scholar 

  15. Q.Y. Huang, H.Y. Chen, Q.Y. Deng, Resistance distances and the Kirchhoff index in double graphs. J. Appl. Math. Comput. 50, 1–14 (2016)

    Article  CAS  Google Scholar 

  16. S. Huang, J. Zhou, C. Bu, Some results on Kirchhoff index and degree-Kirchhoff index. MATCH Commun. Math. Comput. Chem. 75, 207–222 (2016)

    Google Scholar 

  17. S. Jafarizadeh, R. Sufiani, M.A. Jafarizadeh, Evaluation of effective resistances in pseudo-distance-regular resistor networks. J. Stat. Phys. 139, 177–199 (2010)

    Article  CAS  Google Scholar 

  18. M.A. Jafarizadeh, R. Sufiani, S. Jafarizadeh, Recursive calculation of effective resistances in distance-regular networks based on Bose–Mesner algebra and Christoffel–Darboux identity. J. Math. Phys. 50, 023–302 (2009)

    Article  Google Scholar 

  19. Z.Z. Jiang, W.G. Yan, Some two-point resistances of the Sierpinski gasket network. J. Stat. Phys. 172(3), 824–832 (2018)

    Article  Google Scholar 

  20. D.J. Klein, Resistance-distance sum rules. Croat. Chem. Acta 75, 633–649 (2002)

    CAS  Google Scholar 

  21. D.J. Klein, Centrality measure in graphs. J. Math. Chem. 47, 1209–1223 (2010)

    Article  CAS  Google Scholar 

  22. D.J. Klein, O. Ivanciuc, Graph cyclicity, excess conductance, and resistance deficit. J. Math. Chem. 30, 271–287 (2002)

    Article  Google Scholar 

  23. D.J. Klein, I. Lukovits, I. Gutman, On the definition of the hyper-Wiener index for cycle-containing structures. J. Chem. Inf. Comput. Sci. 35, 50–52 (1995)

    Article  CAS  Google Scholar 

  24. D.J. Klein, M. Randić, Resistance distance. J. Math. Chem. 12, 81–95 (1993)

    Article  Google Scholar 

  25. U.V. Luxburg, A. Radl, M. Hein, Getting lost in space: large sample analysis of the resistance distance, in Advances in Neural Information Processing Systems, vol. 23, ed. by J.D. Lafferty, C.K.I. Williams, J. Shawe-Taylor, R.S. Zemel, A. Culotta (Curran Associates, Inc, Red Hook, 2010), pp. 2622–2630

    Google Scholar 

  26. I. Lukovits, S. Nikolic, N. Trinajstic, Resistance distance in regular graphs. Int. J. Quantum Chem. 71, 217–225 (1999)

    Article  CAS  Google Scholar 

  27. J.C. Maxwell, Electricity and Magnetism (Clarendon Press, Oxford, 1892)

    Google Scholar 

  28. P.V. Mieghem, Graph Spectra of Complex Networks (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  29. J.L. Palacios, Closed-form formulae for Kirchhoff index. Int. J. Quantum Chem. 81, 135–140 (2001)

    Article  CAS  Google Scholar 

  30. Y.J. Peng, S.C. Li, On the Kirchhoff index and the number of spanning trees of linear phenylenes. MATCH Commun. Math. Comput. Chem. 77(3), 765–780 (2017)

    Google Scholar 

  31. H.S. Ramane, A.S. Yalnaik, Status connectivity indices of graphs and its applications to the boiling point of benzenoid hydrocarbons. J. Appl. Math. Comput. 55(1–2), 609–627 (2017)

    Article  Google Scholar 

  32. W. Stevenson, Elements of Power System Analysis, 3rd edn. (McGraw Hill, New York, 1975)

    Google Scholar 

  33. Y.M. Shangguan, H.Y. Chen, Two-point resistances in a family of self-similar \((x, y)\)-flower networks. Phys. A 523, 382391 (2019)

    Article  Google Scholar 

  34. G.E. Sharpe, Theorem on resistive networks. Electron. Lett. 3, 444–445 (1967)

    Article  Google Scholar 

  35. L.Y. Shi, H.Y. Chen, Resistance distances in the linear polyomino chain. J. Appl. Math. Comput. 57, 147–160 (2018)

    Article  Google Scholar 

  36. L. Sun, W. Wang, J. Zhou, C. Bu, Some results on resistance distances and resistance matrices. Linear Multilinear A 63, 523–533 (2015)

    Article  Google Scholar 

  37. Z.Z. Tan, Resistance Network Model (Xidian University Press, Xiaan, 2011)

    Google Scholar 

  38. P. Tetali, Random walks and effective resistance of networks. J. Theor. Probab. 4, 101–109 (1991)

    Article  Google Scholar 

  39. M. Vaskouski, A. Zadorozhnyuk, Resistance distances in Cayley graphs on symmetric groups. Discrete Appl. Math. 227, 121–135 (2017)

    Article  Google Scholar 

  40. D. Vukičevič, A. Graovac, A note on the comparison of the first and second normalized Zagreb eccentricity indices. Acta Chim. Slov. 57, 524–528 (2010)

    PubMed  Google Scholar 

  41. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  CAS  PubMed  Google Scholar 

  42. Wolfram Research, Inc., Mathematica, Version 9.0 (Wolfram Research Inc., Champaign, 2012)

  43. Y.J. Yang, D.J. Klein, A recursion formula for resistance distances and its applications. Discrete Appl. Math. 161, 2702–2715 (2013)

    Article  Google Scholar 

  44. Y.J. Yang, D.J. Klein, Resistance distance-based graph invariants of subdivisions and triangulations of graphs. Discrete Appl. Math. 181, 260–274 (2015)

    Article  Google Scholar 

  45. Y.J. Yang, D.J. Klein, Two-point resistances and random walks on stellated regular graphs. J. Phys. A 52(7), 075201 (2019)

    Article  Google Scholar 

  46. H.P. Zhang, Y.J. Yang, Resistance distance and Kirchhoff index in circulant graphs. Int. J. Quantum Chem. 107, 330–339 (2007)

    Article  CAS  Google Scholar 

  47. J. Zhou, L. Sun, C. Bu, Resistance characterizations of equiarboreal graphs. Discrete Math. 340, 2864–2870 (2017)

    Article  Google Scholar 

  48. J. Zhou, Z. Wang, C. Bu, On the resistance matrix of a graph. Electron. J. Combin. 23, 1–41 (2016)

    Google Scholar 

  49. Z.X. Zhu, J.B. Liu, The normalized Laplacian, degree-Kirchhoff index and the spanning tree numbers of generalized phenylenes. Discrete Appl. Math. 254, 256–267 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

Our thanks are due to the referee and Professor D. J. Klein for careful reading of this manuscript of this paper, and for suggesting may improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuchao Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Li, S. & Zhang, L. Two-point resistances in the generalized phenylenes. J Math Chem 58, 1846–1873 (2020). https://doi.org/10.1007/s10910-020-01152-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-020-01152-z

Keywords

Navigation