Relations between some topological indices and the line graph

Abstract

The concepts of geometric–arithmetic and harmonic indices were introduced in the area of chemical graph theory recently. They have proven to correlate well with physical and chemical properties of some molecules. The aim of this paper is to obtain new inequalities involving the first Zagreb, the harmonic, and the geometric–arithmetic \(GA_1\) indices. Furthermore, inequalities relating these indices and line graphs are proven.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    B. Bollobás, P. Erdös, Graphs of extremal weights. Ars Comb. 50, 225–233 (1998)

    Google Scholar 

  2. 2.

    B. Bollobás, P. Erdös, A. Sarkar, Extremal graphs for weights. Discrete Math. 200, 5–19 (1999)

    Google Scholar 

  3. 3.

    S. Bermudo, J.M. Rodríguez, J.M. Sigarreta, Computing the hyperbolicity constant. Comput. Math. Appl. 62, 4592–4595 (2011)

    Google Scholar 

  4. 4.

    B. Borovićanin, B. Furtula, On extremal Zagreb indices of trees with given domination number. Appl. Math. Comput. 279, 208–218 (2016)

    Google Scholar 

  5. 5.

    G. Brinkmann, J. Koolen, V. Moulton, On the hyperbolicity of chordal graphs. Ann. Comb. 5, 61–69 (2001)

    Google Scholar 

  6. 6.

    R. Cruz, H. Giraldo, J. Rada, Extremal values of vertex–degree topological indices over hexagonal systems. MATCH Commun. Math. Comput. Chem. 70, 501–512 (2013)

    Google Scholar 

  7. 7.

    K.C. Das, Maximizing the sum of the squares of the degrees of a graph. Discrete Math. 285, 57–66 (2004)

    Google Scholar 

  8. 8.

    K.C. Das, On comparing Zagreb indices of graphs. MATCH Commun. Math. Comput. Chem. 63, 433–440 (2010)

    Google Scholar 

  9. 9.

    K.C. Das, On geometric–arithmetic index of graphs. MATCH Commun. Math. Comput. Chem. 64, 619–630 (2010)

    Google Scholar 

  10. 10.

    K.C. Das, I. Gutman, B. Furtula, Survey on geometric–arithmetic indices of graphs. MATCH Commun. Math. Comput. Chem. 65, 595–644 (2011)

    CAS  Google Scholar 

  11. 11.

    K.C. Das, I. Gutman, B. Furtula, On first geometric–arithmetic index of graphs. Discrete Appl. Math. 159, 2030–2037 (2011)

    Google Scholar 

  12. 12.

    H. Deng, S. Balachandran, S.K. Ayyaswamy, Y.B. Venkatakrishnan, On the harmonic index and the chromatic number of a graph. Discrete Appl. Math. 161, 2740–2744 (2013)

    Google Scholar 

  13. 13.

    A. Dobrynin, Hexagonal chains with segments of equal lengths having distinct sizes and the same Wiener index. MATCH Commun. Math. Comput. Chem. 78, 121–132 (2017)

    Google Scholar 

  14. 14.

    A. Dobrynin, I. Gutman, The average Wiener index of hexagonal chains. Comput. Chem. 23(6), 571–576 (1999)

    CAS  Google Scholar 

  15. 15.

    Z. Du, B. Zhou, N. Trinajstić, Minimum general sum-connectivity index of unicyclic graphs. J. Math. Chem. 48, 697–703 (2010)

    CAS  Google Scholar 

  16. 16.

    Z. Du, B. Zhou, N. Trinajstić, Minimum sum-connectivity indices of trees and unicyclic graphs of a given matching number. J. Math. Chem. 47, 842–855 (2010)

    CAS  Google Scholar 

  17. 17.

    Z. Du, B. Zhou, N. Trinajstić, On geometric–arithmetic indices of (molecular) trees. MATCH Commun. Math. Comput. Chem. 66, 681–697 (2011)

    CAS  Google Scholar 

  18. 18.

    C.S. Edwards, The largest vertex degree sum for a triangle in a graph. Bull. Lond. Math. Soc. 9, 203–208 (1977)

    Google Scholar 

  19. 19.

    S. Fajtlowicz, On conjectures of Graffiti-II. Congr. Numer. 60, 187–197 (1987)

    Google Scholar 

  20. 20.

    O. Favaron, M. Mahéo, J.F. Saclé, Some eigenvalue properties in graphs (conjectures of Graffiti-II). Discrete Math. 111, 197–220 (1993)

    Google Scholar 

  21. 21.

    B. Furtula, I. Gutman, M. Dehmer, On structure-sensitivity of degree-based topological indices. Appl. Math. Comput. 219(17), 8973–8978 (2013)

    Google Scholar 

  22. 22.

    B. Furtula, I. Gutman, S. Ediz, On difference of Zagreb indices. Discrete Appl. Math. 178, 83–88 (2014)

    Google Scholar 

  23. 23.

    A. Granados, A. Portilla, J.M. Rodríguez, J.M. Sigarreta, Relations of the geometric–arithmetic index with some topological indices. Appl. Anal. Discrete Math. (Accepted for publication)

  24. 24.

    I. Gutman, Extremal hexagonal chains. J. Math. Chem. 12(1), 197–210 (1993)

    Google Scholar 

  25. 25.

    I. Gutman, S.J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons (Springer, Berlin, 1989)

    Google Scholar 

  26. 26.

    I. Gutman, B. Furtula (eds.), Recent Results in the Theory of Randić Index (University of Kragujevac, Kragujevac, 2008)

    Google Scholar 

  27. 27.

    I. Gutman, B. Furtula, Vertex–degree-based molecular structure descriptors of benzenoid systems and phenylenes. J. Serb. Chem. Soc. 77, 1031–1036 (2012)

    CAS  Google Scholar 

  28. 28.

    I. Gutman, J. Tošović, Testing the quality of molecular structure descriptors. Vertex–degree-based topological indices. J. Serb. Chem. Soc. 78(6), 805–810 (2013)

    CAS  Google Scholar 

  29. 29.

    I. Gutman, B. Furtula, M. Ivanovic, Notes on trees with minimal atom–bond connectivity index. MATCH Commun. Math. Comput. Chem. 67, 467–482 (2012)

    CAS  Google Scholar 

  30. 30.

    F. Harary, R.Z. Norman, Some properties of line digraphs. Rend. Circ. Mat. Palermo 9, 161–169 (1960)

    Google Scholar 

  31. 31.

    B. Hollas, On the variance of topological indices that depend on the degree of a vertex. MATCH Commun. Math. Comput. Chem. 54, 341–350 (2005)

    Google Scholar 

  32. 32.

    E.A. Jonckheere, Contrôle du traffic sur les réseaux à géométrie hyperbolique-Vers une théorie géométrique de la sécurité l’acheminement de l’information. J. Eur. Syst. Autom. 8, 45–60 (2002)

    Google Scholar 

  33. 33.

    J. Krausz, Démonstration nouvelle d’un théorème de Whitney sur les réseaux. Mat. Fiz. Lapok 50, 75–85 (1943)

    Google Scholar 

  34. 34.

    X. Li, I. Gutman, Mathematical Aspects of Randić Type Molecular Structure Descriptors (University of Kragujevac, Kragujevac, 2006)

    Google Scholar 

  35. 35.

    X. Li, Y. Shi, A survey on the Randić index. MATCH Commun. Math. Comput. Chem. 59, 127–156 (2008)

    CAS  Google Scholar 

  36. 36.

    M. Liu, A simple approach to order the first Zagreb indices of connected graphs. MATCH Commun. Math. Comput. Chem. 63, 425–432 (2010)

    Google Scholar 

  37. 37.

    J. Liu, Q. Zhang, Remarks on harmonic index of graphs. Util. Math. 88, 281–285 (2012)

    Google Scholar 

  38. 38.

    A. Martínez-Pérez, J.M. Rodríguez, J.M. Sigarreta, A new approximation to the geometric–arithmetic index. J. Math. Chem. 56, 1865–1883 (2018)

    Google Scholar 

  39. 39.

    A. Martínez-Pérez, J.M. Rodríguez, Some results on lower bounds for topological indices. J. Math. Chem. 57, 1472–1495 (2019)

    Google Scholar 

  40. 40.

    J. Michel, J.M. Rodríguez, J.M. Sigarreta, V. Villeta, Hyperbolicity and parameters of graphs. Ars Comb. 100, 43–63 (2011)

    Google Scholar 

  41. 41.

    S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after. Croat. Chem. Acta 76, 113–124 (2003)

    Google Scholar 

  42. 42.

    D. Pestana, J.M. Sigarreta, E. Tourís, Geometric–arithmetic index and line graph. J. Math. Chem. 57, 1427–1447 (2019)

    CAS  Google Scholar 

  43. 43.

    M. Randić, On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)

    Google Scholar 

  44. 44.

    P.S. Ranjini, V. Lokesha, I.N. Cangül, On the Zagreb indices of the line graphs of the subdivision graphs. Appl. Math. Comput. 218, 699–702 (2011)

    Google Scholar 

  45. 45.

    M. Randić, D. Plavšić, N. Lerš, Variable connectivity index for cycle-containing structures. J. Chem. Inf. Comput. Sci. 41, 657–662 (2001)

    PubMed  Google Scholar 

  46. 46.

    J.A. Rodríguez, J.M. Sigarreta, On the Randić index and condicional parameters of a graph. MATCH Commun. Math. Comput. Chem. 54, 403–416 (2005)

    Google Scholar 

  47. 47.

    J.A. Rodríguez-Velázquez, J. Tomás-Andreu, On the Randić index of polymeric networks modelled by generalized Sierpinski graphs. MATCH Commun. Math. Comput. Chem. 74, 145–160 (2015)

    Google Scholar 

  48. 48.

    J.M. Rodríguez, J.M. Sigarreta, On the geometric–arithmetic index. MATCH Commun. Math. Comput. Chem. 74, 103–120 (2015)

    Google Scholar 

  49. 49.

    J.M. Rodríguez, J.M. Sigarreta, Spectral properties of geometric–arithmetic index. Appl. Math. Comput. 277, 142–153 (2016)

    Google Scholar 

  50. 50.

    J.M. Rodríguez, J.M. Sigarreta, New results on the harmonic index and its generalizations. MATCH Commun. Math. Comput. Chem. 78(2), 387–404 (2017)

    Google Scholar 

  51. 51.

    J.M. Rodríguez, J.M. Sigarreta, The Harmonic Index. pp. 229–281, vol. 1. in Bounds in Chemical Graph Theory—Basics (Three volumes), Mathematical Chemistry Monograph, ed. by I. Gutman, B. Furtula, K.C. Das, E. Milovanovic, I. Milovanovic, vol. 19 (University of Kragujevac, Kragujevac, 2017). ISBN: 978-86-6009-043-2. http://match.pmf.kg.ac.rs/mcm19.html

  52. 52.

    J.M. Rodríguez, J.M. Sigarreta, J.-M. Vilaire, M. Villeta, On the hyperbolicity constant in graphs. Discrete Math. 311, 211–219 (2011)

    Google Scholar 

  53. 53.

    G. Su, L. Xu, Topological indices of the line graph of subdivision graphs and their Schur bounds. Appl. Math. Comput. 253, 395–401 (2015)

    Google Scholar 

  54. 54.

    J.M. Sigarreta, Bounds for the geometric–arithmetic index of a graph. Miskolc Math. Notes 16(2), 1199–1212 (2015)

    Google Scholar 

  55. 55.

    TRC Thermodynamic Tables. Hydrocarbons (Thermodynamic Research Center, The Texas A&M University System: College Station, 1987)

  56. 56.

    M. Vöge, A.J. Guttmann, I. Jensen, On the number of benzenoid hydrocarbons. J. Chem. Inf. Comput. Sci. 42, 456–466 (2002)

    PubMed  Google Scholar 

  57. 57.

    D. Vukičević, B. Furtula, Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J. Math. Chem. 46, 1369–1376 (2009)

    Google Scholar 

  58. 58.

    H. Whitney, Congruent graphs and the connectivity of graphs. Am. J. Math. 54, 150–168 (1932)

    Google Scholar 

  59. 59.

    H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    CAS  PubMed  Google Scholar 

  60. 60.

    R. Wua, Z. Tanga, H. Deng, A lower bound for the harmonic index of a graph with minimum degree at least two. Filomat 27, 51–55 (2013)

    Google Scholar 

  61. 61.

    R. Wu, Z. Tang, H. Deng, On the harmonic index and the girth of a graph. Util. Math. 91, 65–69 (2013)

    Google Scholar 

  62. 62.

    R. Wu, Z. Tang, H. Deng, A lower bound for the harmonic index of a graph with minimum degree at least two. Filomat 27(1), 51–55 (2013)

    Google Scholar 

  63. 63.

    X. Xu, Relationships between harmonic index and other topoplogical indices. Appl. Math. Sci. 6(41), 2013–2018 (2012)

    Google Scholar 

  64. 64.

    S. Xu, H. Zhang, Generalized Hosoya polynomials of hexagonal chains. J. Math. Chem. 43(2), 852–863 (2008)

    CAS  Google Scholar 

  65. 65.

    L. Zhong, The harmonic index for graphs. Appl. Math. Lett. 25, 561–566 (2012)

    Google Scholar 

  66. 66.

    L. Zhong, The harmonic index on unicyclic graphs. Ars Comb. 104, 261–269 (2012)

    Google Scholar 

  67. 67.

    L. Zhong, K. Xu, The harmonic index for bicyclic graphs. Util. Math. 90, 23–32 (2013)

    Google Scholar 

  68. 68.

    L. Zhong, K. Xu, Inequalities between vertex–degree-based topological Indices. MATCH Commun. Math. Comput. Chem. 71, 627–642 (2014)

    Google Scholar 

  69. 69.

    Y. Zhu, R. Chang, X. Wei, The harmonic index on bicyclic graphs. Ars Comb. 110, 97–104 (2013)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Domingo Pestana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported in part by two grants from Ministerio de Economía y Competitividad, Agencia Estatal de Investigación (AEI) and Fondo Europeo de Desarrollo Regional (FEDER) (MTM2016-78227-C2-1-P and MTM2017-90584-REDT), Spain.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carballosa, W., Granados, A., Pestana, D. et al. Relations between some topological indices and the line graph. J Math Chem 58, 632–646 (2020). https://doi.org/10.1007/s10910-019-01091-4

Download citation

Keywords

  • First Zagreb index
  • Geometric–arithmetic index
  • Harmonic index
  • Vertex–degree-based topological index
  • Line graph

Mathematics Subject Classification

  • MSC 05C07
  • MSC 92E10