Advertisement

A Runge–Kutta type crowded in phase algorithm for quantum chemistry problems

  • Jieyin Lv
  • T. E. SimosEmail author
Original Paper
  • 28 Downloads

Abstract

We focus the study presented in this paper on the solution of systems of differential equations with applications in Quantum Chemistry using finite difference methods. The research of the newly introduced algorithm proves its efficiency.

Keywords

Phase-lag Derivative of the phase-lag Initial value problems Oscillating solution Symmetric Hybrid Multistep Schrödinger equation 

Mathematics Subject Classification

65L05 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest or other ethical conflicts concerning this paper.

Supplementary material

10910_2019_1051_MOESM1_ESM.pdf (34 kb)
Supplementary material 1 (pdf 34 KB)

References

  1. 1.
    A.C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation. J. Comput. Phys. 6, 378–391 (1970)CrossRefGoogle Scholar
  2. 2.
    Mu Kenan, T.E. Simos, A Runge–Kutta type implicit high algebraic order two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of coupled differential equations arising from the Schrödinger equation. J. Math. Chem. 53, 1239–1256 (2015)CrossRefGoogle Scholar
  3. 3.
    M. Liang, T.E. Simos, A new four stages symmetric two-step method with vanished phase-lag and its first derivative for the numerical integration of the Schrödinger equation. J. Math. Chem. 54(5), 1187–1211 (2016)CrossRefGoogle Scholar
  4. 4.
    X. Xi, T.E. Simos, A new high algebraic order four stages symmetric two-step method with vanished phase-lag and its first and second derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 54(7), 1417–1439 (2016)CrossRefGoogle Scholar
  5. 5.
    F. Hui, T.E. Simos, Hybrid high algebraic order two-step method with vanished phase-lag and its first and second derivatives. MATCH Commun. Math. Comput. Chem. 73, 619–648 (2015)Google Scholar
  6. 6.
    Z. Zhou, T.E. Simos, A new two stage symmetric two-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 54, 442–465 (2016)CrossRefGoogle Scholar
  7. 7.
    F. Hui, T.E. Simos, Four Stages symmetric two-step P-stable method with vanished phase-lag and its first, second, third and fourth derivatives. Appl. Comput. Math. 15(2), 220–238 (2016)Google Scholar
  8. 8.
    W. Zhang, T.E. Simos, A high-order two-step phase-fitted method for the numerical solution of the Schrödinger equation. Mediterr. J. Math. 13(6), 5177–5194 (2016)CrossRefGoogle Scholar
  9. 9.
    L. Zhang, T.E. Simos, An efficient numerical method for the solution of the Schrödinger equation, Adv. Math. Phys. 2016 Article ID 8181927, 20 p.,  https://doi.org/10.1155/2016/8181927
  10. 10.
    D. Ming, T.E. Simos, A new high algebraic order efficient finite difference method for the solution of the Schrödinger equation. Filomat 31(15), 4999–5012 (2017)CrossRefGoogle Scholar
  11. 11.
    R. Lin, T.E. Simos, A two-step method with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Open Phys. 14, 628–642 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Ning, T.E. Simos, A low computational cost eight algebraic order hybrid method with vanished phase-lag and its first, second, third and fourth derivatives for the approximate solution of the Schrödinger equation. J. Math. Chem. 53(6), 1295–1312 (2015)CrossRefGoogle Scholar
  13. 13.
    Z. Wang, T.E. Simos, An economical eighth-order method for the approximation of the solution of the Schrödinger equation. J. Math. Chem. 55, 717–733 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Ma, T.E. Simos, An efficient and computational effective method for second order problems. J. Math. Chem. 55, 1649–1668 (2017)CrossRefGoogle Scholar
  15. 15.
    L. Yang, T.E. Simos, An efficient and economical high order method for the numerical approximation of the Schrödinger equation. J. Math. Chem. 55(9), 1755–1778 (2017)CrossRefGoogle Scholar
  16. 16.
    V.N. Kovalnogov, R.V. Fedorov, V.M. Golovanov, B.M. Kostishko, T.E. Simos, A four stages numerical pair with optimal phase and stability properties. J. Math. Chem. 56(1), 81–102 (2018)CrossRefGoogle Scholar
  17. 17.
    K. Yan, T.E. Simos, A finite difference pair with improved phase and stability properties, J. Math. Chem., in pressGoogle Scholar
  18. 18.
    J. Fang, C. Liu, T.E. Simos, A hybric finite difference pair with maximum phase and stability properties, J. Math. Chem., in pressGoogle Scholar
  19. 19.
    J. Yao, T.E. Simos, New finite difference pair with optimized phase and stability properties. J. Math. Chem. 56(2), 449–476 (2018)CrossRefGoogle Scholar
  20. 20.
    J. Zheng, C. Liu, T.E. Simos, A new two-step finite difference pair with optimal properties. J. Math. Chem. 56(3), 770–798 (2018)CrossRefGoogle Scholar
  21. 21.
    X. Shi, T.E. Simos, New five-stages finite difference pair with optimized phase properties, J. Math. Chem., in press - online firstGoogle Scholar
  22. 22.
    C. Liu, T.E. Simos, A five-stages symmetric method with improved phase properties. J. Math. Chem., in press - online firstGoogle Scholar
  23. 23.
    J. Yao, T.E. Simos, New five-stages two-step method with improved characteristics, J. Math. Chem., to appearGoogle Scholar
  24. 24.
    K. Yan, T.E. Simos, New Runge–Kutta type symmetric two-step method with optimized characteristics, J. Math. Chem., in press - online firstGoogle Scholar
  25. 25.
    Z. Chen, C. Liu, T.E. Simos, New three-stages symmetric two step method with improved properties for second order initial/boundary value problems. J. Math. Chem. 56(9), 2591–2616 (2018)CrossRefGoogle Scholar
  26. 26.
    R. Hao, T.E. Simos, New Runge–Kutta type symmetric two step finite difference pair with improved properties for second order initial and/or boundary value problems. J. Math. Chem. 56(10), 3014–3044 (2018)CrossRefGoogle Scholar
  27. 27.
    G.-H. Qiu, C. Liu, T.E. Simos, A new multistep method with optimized characteristics for initial and/or boundary value problems. J. Math. Chem. 57(1), 119–148 (2019)CrossRefGoogle Scholar
  28. 28.
    Th Monovasilis, Z. Kalogiratou, T.E. Simos, Trigonometrical fitting conditions for two derivative Runge–Kutta methods. Numer. Algorithms 79, 787–800 (2018)CrossRefGoogle Scholar
  29. 29.
    G. Wang, T.E. Simos, New multiple stages two-step complete in phase algorithm with improved characteristics for second order initial/boundary value problems. J. Math. Chem. 57(2), 494–515 (2019)CrossRefGoogle Scholar
  30. 30.
    N. Yang, T.E. Simos, New four stages multistep in phase algorithm with best possible properties for second order problems, J. Math. Chem., in pressGoogle Scholar
  31. 31.
    F. Hui, T.E. Simos, New multistage two-step complete in phase scheme with improved properties for quantum chemistry problems, J. Math. Chem., to appearGoogle Scholar
  32. 32.
    V.N. Kovalnogov, R.V. Fedorov, D.V. Suranov, T.E. Simos, Newmultiple stages scheme with improved properties for second order problems. J. Math. Chem. 57(1), 232–262 (2019)CrossRefGoogle Scholar
  33. 33.
    Z. Chen, C. Liu, C.-W. Hsu, T.E. Simos, A new multistage multistep full in phase algorithm with optimized characteristics for problems in chemistry, J. Math. Chem., to appearGoogle Scholar
  34. 34.
    V.N. Kovalnogov, R.V. Fedorov, A.A. Bondarenko, T.E. Simos, New hybrid two-step method with optimized phase and stability characteristics. J. Math. Chem. 56(8), 2302–2340 (2018)CrossRefGoogle Scholar
  35. 35.
    V.N. Kovalnogov, R.V. Fedorov, T.E. Simos, New hybrid symmetric two step scheme with optimized characteristics for second order problems. J. Math. Chem. 56(9), 2816–2844 (2018)CrossRefGoogle Scholar
  36. 36.
    C.J. Cramer, Essentials of Computational Chemistry (Wiley, Chichester, 2004)Google Scholar
  37. 37.
    F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 2007)Google Scholar
  38. 38.
    A.R. Leach, Molecular Modelling: Principles and Applications (Pearson, Essex, 2001)Google Scholar
  39. 39.
    P. Atkins, R. Friedman, Molecular Quantum Mechanics (Oxford University Press, Oxford, 2011)Google Scholar
  40. 40.
    V.N. Kovalnogov, T.E. Simos, V.N. Kovalnogov, I.V. Shevchuk, Perspective of mathematical modeling and research of targeted formation of disperse phase clusters in working media for the next-generation power engineering technologies. AIP Conf. Proc. 1863, 560099 (2017)CrossRefGoogle Scholar
  41. 41.
    V.N. Kovalnogov, R.V. Fedorov, D.A. Generalov, Y.A. Khakhalev, A.N. Zolotov, Numerical research of turbulent boundary layer based on the fractal dimension of pressure fluctuations. AIP Conf. Proc. 738, 480004 (2016)CrossRefGoogle Scholar
  42. 42.
    V.N. Kovalnogov, R.V. Fedorov, T.V. Karpukhina, E.V. Tsvetova, Numerical analysis of the temperature stratification of the disperse flow. AIP Conf. Proc. 1648, 850033 (2015)CrossRefGoogle Scholar
  43. 43.
    C. Liu, C.-W. Hsu, T.E. Simos, Ch. Tsitouras, Phase-fitted, six-step methods for solving \(x^{\prime \prime }=f(t, x)\). Math. Methods Appl. Sci. 42(11), 3942–3949 (2019)CrossRefGoogle Scholar
  44. 44.
    Z. Kalogiratou, Th Monovasilis, T.E. Simos, New fifth order Two-Derivative Runge-Kutta methods with constant and frequency dependent coefficients. Math. Methods Appl. Sci. 42(6), 1955–1966 (2019)CrossRefGoogle Scholar
  45. 45.
    Stefan Kottwitz, LaTeX Cookbook (Packt Publishing Ltd., Birmingham, 2015), pp. 231–236Google Scholar
  46. 46.
    M. Xu, T.E. Simos, A multistage two-step fraught in phase scheme for problems in mathematical chemistry, J. Math. Chem. in press Google Scholar
  47. 47.
    T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)CrossRefGoogle Scholar
  48. 48.
    Maxim A. Medvedev, T.E. Simos, A three-stages multistep teeming in phase algorithm for computational problems in chemistry. J. Math. Chem. 57(6), 1598–1617 (2019)CrossRefGoogle Scholar
  49. 49.
    Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236, 3880–3889 (2012)CrossRefGoogle Scholar
  50. 50.
    A.D. Raptis, T.E. Simos, A four-step phase-fitted method for the numerical integration of second order initial-value problem. BIT 31, 160–168 (1991)CrossRefGoogle Scholar
  51. 51.
    J.M. Franco, M. Palacios, J. Comput. Appl. Math. 30, 1 (1990)CrossRefGoogle Scholar
  52. 52.
    J.D. Lambert, Numerical Methods for Ordinary Differential Systems, The Initial Value Problem (Wiley, London, 1991), pp. 104–107Google Scholar
  53. 53.
    E. Stiefel, D.G. Bettis, Stabilization of Cowell’s method. Numer. Math. 13, 154–175 (1969)CrossRefGoogle Scholar
  54. 54.
    G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two new optimized eight-step symmetric methods for the efficient solution of the Schrödinger equation and related problems. MATCH Commun. Math. Comput. Chem. 60(3), 773–785 (2008)Google Scholar
  55. 55.
    G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)CrossRefGoogle Scholar
  56. 56.
  57. 57.
    T.E. Simos, P.S. Williams, Bessel and Neumann fitted methods for the numerical solution of the radial Schrödinger equation. Comput. Chem. 21, 175–179 (1977)CrossRefGoogle Scholar
  58. 58.
    Ch. Tsitouras, T.E. Simos, On ninth order, explicit Numerov type methods with constant coefficients. Mediterr. J. Math. 15(2), 46 (2018).  https://doi.org/10.1007/s00009-018-1089-9 CrossRefGoogle Scholar
  59. 59.
    T.E. Simos, G. Psihoyios, J. Comput. Appl. Math. 175(1), 9–9 (2005)CrossRefGoogle Scholar
  60. 60.
    T. Lyche, Chebyshevian multistep methods for ordinary differential equations. Num. Math. 19, 65–75 (1972)CrossRefGoogle Scholar
  61. 61.
    R.M. Thomas, Phase properties of high order almost P-stable formulae. BIT 24, 225–238 (1984)CrossRefGoogle Scholar
  62. 62.
    J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)CrossRefGoogle Scholar
  63. 63.
    A. Konguetsof, T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)CrossRefGoogle Scholar
  64. 64.
    Z. Kalogiratou, T. Monovasilis, T.E. Simos, Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)CrossRefGoogle Scholar
  65. 65.
    Z. Kalogiratou, T.E. Simos, Newton–Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)CrossRefGoogle Scholar
  66. 66.
    G. Psihoyios, T.E. Simos, Trigonometrically fitted predictor–corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)CrossRefGoogle Scholar
  67. 67.
    Z. Kalogiratou, Th. Monovasilis, T.E. Simos, New Fifth Order Two-Derivative Runge–Kutta Methods with Constant and Frequency Dependent Coefficients, Mathematical Methods in the Applied Sciences, in pressGoogle Scholar
  68. 68.
    M.A. Medvedev, T.E. Simos, Ch. Tsitouras, Hybrid, phase-fitted, four-step methods of seventh order for solving \(\text{x}^{\prime \prime }(\text{ t }) = \text{ f } (\text{ t }, \text{ x })\), Math. Methods Appl. Sci., in pressGoogle Scholar
  69. 69.
    T.E. Simos, I.T. Famelis, C. Tsitouras, Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)CrossRefGoogle Scholar
  70. 70.
    T.E. Simos, Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)CrossRefGoogle Scholar
  71. 71.
    K. Tselios, T.E. Simos, Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)CrossRefGoogle Scholar
  72. 72.
    C. Lin, J.J. Chen, T.E. Simos, Ch. Tsitouras, Evolutionary derivation of sixth-order P-stable SDIRKN methods for the solution of PDEs with the method of lines. Mediterr. J. Math. 16(3), 69 (2019).  https://doi.org/10.1007/s00009-019-1336-8 CrossRefGoogle Scholar
  73. 73.
    G. Psihoyios, T.E. Simos, A fourth algebraic order trigonometrically fitted predictor-corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)CrossRefGoogle Scholar
  74. 74.
    Z.A. Anastassi, T.E. Simos, An optimized Runge–Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)CrossRefGoogle Scholar
  75. 75.
    T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae of high order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)CrossRefGoogle Scholar
  76. 76.
    S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)CrossRefGoogle Scholar
  77. 77.
    T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331–1352 (2010)CrossRefGoogle Scholar
  78. 78.
    T.E. Simos, New Stable Closed Newton–Cotes Trigonometrically Fitted Formulae for Long-Time Integration, Abstract and Applied Analysis, 2012, Article ID 182536, 15 p., (2012)  https://doi.org/10.1155/2012/182536
  79. 79.
    T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. 2012, Article ID 420387, 17 pages,  https://doi.org/10.1155/2012/420387 (2012)
  80. 80.
    Ibraheem Alolyan, T.E. Simos, A high algebraic order multistage explicit four-step method with vanished phase-lag and its first, second, third, fourth and fifth derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 53(8), 1915–1942 (2015)CrossRefGoogle Scholar
  81. 81.
    Ibraheem Alolyan, T.E. Simos, Efficient low computational cost hybrid explicit four-step method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(8), 1808–1834 (2015)CrossRefGoogle Scholar
  82. 82.
    Ibraheem Alolyan, T.E. Simos, A high algebraic order predictor-corrector explicit method with vanished phase-lag and its first, second, third and fourth derivatives for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 53(7), 1495–1522 (2015)CrossRefGoogle Scholar
  83. 83.
    I. Alolyan, T.E. Simos, A family of explicit linear six-step methods with vanished phase-lag and its first derivative. J. Math. Chem. 52(8), 2087–2118 (2014)CrossRefGoogle Scholar
  84. 84.
    T.E. Simos, An explicit four-step method with vanished phase-lag and its first and second derivatives. J. Math. Chem. 52(3), 833–855 (2014)CrossRefGoogle Scholar
  85. 85.
    Ibraheem Alolyan, T.E. Simos, A Runge–Kutta type four-step method with vanished phase-lag and its first and second derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52(3), 917–947 (2014)CrossRefGoogle Scholar
  86. 86.
    I. Alolyan, T.E. Simos, A predictor–corrector explicit four-step method with vanished phase-lag and its first, second and third derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(2), 685–717 (2015)CrossRefGoogle Scholar
  87. 87.
    I. Alolyan, T.E. Simos, A hybrid type four-step method with vanished phase-lag and its first, second and third derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52(9), 2334–2379 (2014)CrossRefGoogle Scholar
  88. 88.
    G.A. Panopoulos, T.E. Simos, A new optimized symmetric 8-step semi-embedded predictor–corrector method for the numerical solution of the radial Schrödinger equation and related orbital problems. J. Math. Chem. 51(7), 1914–1937 (2013)CrossRefGoogle Scholar
  89. 89.
    T.E. Simos, New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation. Part I: construction and theoretical analysis. J. Math. Chem. 51(1), 194–226 (2013)CrossRefGoogle Scholar
  90. 90.
    T.E. Simos, High order closed Newton–Cotes exponentially and trigonometrically fitted formulae as multilayer symplectic integrators and their application to the radial Schrödinger equation. J. Math. Chem. 50(5), 1224–1261 (2012)CrossRefGoogle Scholar
  91. 91.
    D.F. Papadopoulos, T.E. Simos, A modified Runge–Kutta–Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7(2), 433–437 (2013)CrossRefGoogle Scholar
  92. 92.
    Th Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic Runge–Kutta–Nyström methods. Appl. Math. Inf. Sci. 7(1), 81–85 (2013)CrossRefGoogle Scholar
  93. 93.
    G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor–corrector method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7(1), 73–80 (2013)CrossRefGoogle Scholar
  94. 94.
    D.F. Papadopoulos, T.E Simos, The Use of Phase Lag and Amplification Error Derivatives for the Construction of a Modified Runge–Kutta–Nyström Method, Abstract and Applied Analysis Article Number: 910624 Published (2013)Google Scholar
  95. 95.
    I. Alolyan, Z.A. Anastassi, T.E. Simos, A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012)Google Scholar
  96. 96.
    Ibraheem Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756–3774 (2011)CrossRefGoogle Scholar
  97. 97.
    Ch. Tsitouras, ITh Famelis, T.E. Simos, On modified Runge-*Kutta trees and methods. Comput. Math. Appl. 62(4), 2101–2111 (2011)CrossRefGoogle Scholar
  98. 98.
    Ch. Tsitouras, ITh Famelis, T.E. Simos, Phase-fitted Runge–Kutta pairs of orders 8(7). J. Comput. Appl. Math. 321, 226–231 (2017)CrossRefGoogle Scholar
  99. 99.
    M.A. Medvedev, T.E. Simos, Ch. Tsitouras, Trigonometric-fitted hybrid four-step methods of sixth order for solving \(y^{\prime \prime }(x)=f(x, y)\). Math. Methods Appl. Sci. 42(2), 710–716 (2019)CrossRefGoogle Scholar
  100. 100.
    M.A. Medvedev, T.E. Simos, Ch. Tsitouras, Hybrid, phase-fitted, four-step methods of seventh order for solving \(\text{ x }^{\prime \prime }(\text{ t }) = \text{ f } (\text{ t }, \text{ x })\). Math. Methods Appl. Sci. 42(6), 2025–2032 (2019). appearCrossRefGoogle Scholar
  101. 101.
    J. Fang, C. Liu, C.-W. Hsu, T.E. Simos, Ch. Tsitouras, Explicit hybrid six–step, sixth order, fully symmetric methods for solving \(y^{\prime \prime } =f (x, y)\). Math. Methods Appl. Sci. 42(9), 3305–3314 (2019)CrossRefGoogle Scholar
  102. 102.
    T.E. Simos, C.H. Tsitouras, High phase-lag order, four-step methods for solving \(\text{ y }^{\prime \prime } = \text{ f }(\text{ x }, \text{ y })\). Appl. Comput. Math 17(3), 307–316 (2018)Google Scholar
  103. 103.
    T.E. Simos, Ch. Tsitouras, Evolutionary generation of high order, explicit two step methods for second order linear IVPs. Math. Methods Appl. Sci. 40, 6276–6284 (2017)CrossRefGoogle Scholar
  104. 104.
    T.E. Simos, Ch. Tsitouras, A new family of 7 stages, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 40, 7867–7878 (2017)CrossRefGoogle Scholar
  105. 105.
    D.B. Berg, T.E. Simos, Ch. Tsitouras, Trigonometric fitted, eighth-order explicit Numerov-type methods. Math. Methods Appl. Sci. 41, 1845–1854 (2018)CrossRefGoogle Scholar
  106. 106.
    T.E. Simos, Ch. Tsitouras, Fitted modifications of classical Runge–Kutta pairs of orders 5(4). Math. Methods Appl. Sci. 41(12), 4549–4559 (2018)CrossRefGoogle Scholar
  107. 107.
    Ch. Tsitouras, T.E. Simos, Trigonometric fitted explicit Numerov type method with vanishing phase-lag and its first and second derivatives, Mediterranean Journal of Mathematics 15(4) Article Number: 168,  https://doi.org/10.1007/s00009-018-1216-7 (2018)
  108. 108.
    M.A. Medvedev, T.E. Simos, Ch. Tsitouras, Fitted modifications of Runge–Kutta pairs of orders 6(5). Math. Methods Appl. Sci. 41(16), 6184–6194 (2018)CrossRefGoogle Scholar
  109. 109.
    M.A. Medvedev, T.E. Simos, Ch. Tsitouras, Explicit, two stage, sixth order, hybrid four-step methods for solving \(y^{\prime \prime }(x)=f(x, y)\). Math. Methods Appl. Sci. 41(16), 6997–7006 (2018)CrossRefGoogle Scholar
  110. 110.
    T.E. Simos, Ch. Tsitouras, ITh Famelis, Explicit numerov type methods with constant coefficients: a review. Appl. Comput. Math. 16(2), 89–113 (2017)Google Scholar
  111. 111.
    T.E. Simos, Ch. Tsitouras, High phase-lag order, four-step methods for solving \(y^{\prime \prime }=f(x, y)\). Appl. Comput. Math. 17(3), 307–316 (2018)Google Scholar
  112. 112.
    A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge–Kutta–Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)CrossRefGoogle Scholar
  113. 113.
    Z. Kalogiratou, Th Monovasilis, T.E. Simos, New modified Runge–Kutta–Nystrom methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)CrossRefGoogle Scholar
  114. 114.
    Th Monovasilis, Z. Kalogiratou, T.E. Simos, A family of trigonometrically fitted partitioned Runge–Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)Google Scholar
  115. 115.
    T. Monovasilis, Z. Kalogiratou, T.E. Simos, Construction of exponentially fitted symplectic Runge–Kutta–Nyström methods from partitioned Runge–Kutta methods. Mediterr. J. Math. 13(4), 2271–2285 (2016)CrossRefGoogle Scholar
  116. 116.
    T. Monovasilis, Z. Kalogiratou, H. Ramos, T.E. Simos, Modified two-step hybrid methods for the numerical integration of oscillatory problems. Math. Methods Appl. Sci. 40(4), 5286–5294 (2017)CrossRefGoogle Scholar
  117. 117.
    T.E. Simos, Multistage symmetric two-step P-stable method with vanished phase-lag and its first, second and third derivatives. Appl. Comput. Math. 14(3), 296–315 (2015)Google Scholar
  118. 118.
    Z. Kalogiratou, Th Monovasilis, H. Ramos, T.E. Simos, A new approach on the construction of trigonometrically fitted two step hybrid methods. J. Comput. Appl. Math. 303, 146–155 (2016)CrossRefGoogle Scholar
  119. 119.
    H. Ramos, Z. Kalogiratou, Th Monovasilis, T.E. Simos, An optimized two-step hybrid block method for solving general second order initial-value problems. Numer. Algorithms 72, 1089–1102 (2016)CrossRefGoogle Scholar
  120. 120.
    T.E. Simos, High order closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)Google Scholar
  121. 121.
    A. Konguetsof, T.E. Simos, An exponentially-fitted and trigonometrically-fitted method for the numerical solution of periodic initial-value problems, Comput. Math. Appl., 45(1–3), 547–554 Article Number: PII S0898-1221(02)00354-1 (2003)Google Scholar
  122. 122.
    T.E. Simos, A new explicit hybrid four-step method with vanished phase-lag and its derivatives. J. Math. Chem. 52(7), 1690–1716 (2014)CrossRefGoogle Scholar
  123. 123.
    T.E. Simos, On the explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Inf. Sci. 8(2), 447–458 (2014)CrossRefGoogle Scholar
  124. 124.
    G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor–corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8(2), 703–713 (2014)CrossRefGoogle Scholar
  125. 125.
    G.A. Panopoulos, T.E. Simos, An eight-step semi-embedded predictor-corrector method for orbital problems and related IVPs with oscillatory solutions for which the frequency is unknown. Jo. Comput. Appl. Math. 290, 1–15 (2015)CrossRefGoogle Scholar
  126. 126.
    F. Hui, T.E. Simos, A new family of two stage symmetric two-step methods with vanished phase-lag and its derivatives for the numerical integration of the Schrödinger equation. J. Math. Chem. 53(10), 2191–2213 (2015)CrossRefGoogle Scholar
  127. 127.
    L.G. Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)CrossRefGoogle Scholar
  128. 128.
    L. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)Google Scholar
  129. 129.
    L.G. Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)CrossRefGoogle Scholar
  130. 130.
    J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge–Kutta–Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)CrossRefGoogle Scholar
  131. 131.
    J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)CrossRefGoogle Scholar
  132. 132.
    G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)CrossRefGoogle Scholar
  133. 133.
    A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)CrossRefGoogle Scholar
  134. 134.
    M.M. Chawla, P.S. Rao, An Noumerov-typ method with minimal phase-lag for the integration of second order periodic initial-value problems II: explicit method. J. Comput. Appl. Math. 15, 329–337 (1986)CrossRefGoogle Scholar
  135. 135.
    M.M. Chawla, P.S. Rao, An explicit sixth-order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)Google Scholar
  136. 136.
    T.E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46, 981–1007 (2009)CrossRefGoogle Scholar
  137. 137.
    A. Konguetsof, Two-step high order hybrid explicit method for the numerical solution of the Schrödinger equation. J. Math. Chem. 48, 224–252 (2010)CrossRefGoogle Scholar
  138. 138.
    A.D. Raptis, J.R. Cash, A variable step method for the numerical integration of the one-dimensional Schrödinger equation. Comput. Phys. Commun. 36, 113–119 (1985)CrossRefGoogle Scholar
  139. 139.
    R.B. Bernstein, A. Dalgarno, H. Massey, I.C. Percival, Thermal scattering of atoms by homonuclear diatomic molecules. Proc. R. Soc. Ser. A 274, 427–442 (1963)CrossRefGoogle Scholar
  140. 140.
    R.B. Bernstein, Quantum mechanical (phase shift) analysis of differential elastic scattering of molecular beams. J. Chem. Phys. 33, 795–804 (1960)CrossRefGoogle Scholar
  141. 141.
    T.E. Simos, Exponentially fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation and related problems. Comput. Mater. Sci. 18, 315–332 (2000)CrossRefGoogle Scholar
  142. 142.
    J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formula. J. Comput. Appl. Math. 6, 19–26 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Information EngineeringChang’an UniversityXi’anPeople’s Republic of China
  2. 2.Department of Mathematics, College of SciencesKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Data Recovery Key Laboratory of Sichuan ProvinceNeijiang Normal UniversityNeijiangPeople’s Republic of China
  4. 4.Section of Mathematics, Department of Civil EngineeringDemocritus University of ThraceXanthiGreece
  5. 5.AthensGreece

Personalised recommendations