Skip to main content
Log in

Myoglobin ligand gate mechanism analysis by a novel 3D visualization technique

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A protein is commonly visualized as a discrete piecewise linear curve, conventionally characterized in terms of the extrinsically determined Ramachandran angles. However, in addition to the extrinsic geometry, the protein has also two independent intrinsic geometric structures, determined by the peptide planes and the side chains respectively. Here we develop a novel 3D visualization method that instead of the extrinsic geometry utilizes the intrinsic geometry of side chains. We base our approach on a series of orthonormal coordinate frames along the protein side chains in combination with a mapping of the atoms positions onto a unit sphere, for visualization purposes. We develop our methodology in terms of an example, by analyzing the acidity dependence of the presumed myoglobin ligand gate. In the literature, the ligand gate is often asserted to be highly localized at the distal histidine, its functioning being regulated by environmental changes. Thus, we investigate whether any \({\mathrm{pH}}\) dependence can be detected in the orientation of the distal and proximal histidine residues, using existing crystallographic data. We observe no \({\mathrm{pH}}\) dependence, in support of the alternative proposals that the ligand gate is more complex and might even be located elsewhere. Our methodology should help the planning of future myoglobin structure experiments, to identify the ligand gate position and its mechanism. More generally, our methodology is designed to visually depict the spatial orientation of side chain covalent bonds in a protein. As such, it can be eventually advanced into a general visual 3D tool for protein structure analysis for purposes of prediction, validation and refinement. It can serve as a complement to widely used visualization suites such as VMD, Jmol, PyMOL and others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. https://en.wikipedia.org/wiki/List of molecular graphics systems. Accessed 14 Sept 2018

  2. H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, P.E. Bourne, The protein data bank. Nucl. Acids Res. 28(1), 235–242 (2000)

    Article  CAS  PubMed  Google Scholar 

  3. P.A. Calligari, G.R. Kneller, ScrewFit: combining localization and description of protein secondary structure. Acta Crystallogr. Sect. D Biol. Crystallogr. 68(12), 1690–1693 (2012)

    Article  CAS  Google Scholar 

  4. D. Case, M. Karplus, Dynamics of ligand binding to heme proteins. J. Mol. Biol. 132(3), 343–368 (1979)

    Article  CAS  PubMed  Google Scholar 

  5. P.S. Coelho, E.M. Brustad, A. Kannan, F.H. Arnold, Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome p450 enzymes. Science 339, 307–310 (2013). http://science.sciencemag.org/content/339/6117

  6. J. Du, M. Sono, J.H. Dawson, The H93G myoglobin cavity mutant as a versatile scaffold for modeling heme iron coordination structures in protein active sites and their characterization with magnetic circular dichroism spectroscopy. Coord. Chem. Rev. 255(7–8), 700–716 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. R. Elber, M. Karplus, Enhanced sampling in molecular dynamics: use of the time-dependent hartree approximation for a simulation of carbon monoxide diffusion through myoglobin. J. Am. Chem. Soc. 112(25), 9161–9175 (1990)

    Article  CAS  Google Scholar 

  8. H. Frauenfelder, B.H. McMahon, P.W. Fenimor, Myoglobin: the hydrogen atom of biology and a paradigm of complexity. Proc. Natl. Acad. Sci. USA 100, 8615–8617 (2003)

    Article  CAS  PubMed  Google Scholar 

  9. Y. Hou, J. Dai, J. He, A. Niemi, X. Peng, N. Ilieva, Intrinsic protein geometry with application to non-proline cis peptide planes. J. Math. Chem. 57(1), 263 (2019)

    Article  CAS  Google Scholar 

  10. X. Huang, S.G. Boxer, Discovery of new ligand binding pathways in myoglobin by random mutagenesis. Nat. Struct. Biol. 1(4), 226–229 (1994)

    Article  CAS  PubMed  Google Scholar 

  11. J.C. Kendrew, G. Bodo, H.M. Dintzis, R.G. Parrish, H. Wyckoff, D.C. Phillips, Three-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature 181, 662–666 (1958)

    Article  CAS  PubMed  Google Scholar 

  12. J .C. Kendrew, R.E. ans Dickerson, B.E. Strandberg, R.G. Hart, D.R. Davies, D.C. Phillips, V.C. Shore, Structure of myoglobin: a three-dimensional fourier synthesis at 2 Å resolution. Nature 185, 422–427 (1960)

    Article  CAS  PubMed  Google Scholar 

  13. G.R. Kneller, K. Hinsen, Protein secondary-structure description with a coarse-grained model. Acta Crystallogr. Sect. D Biol. Crystallogr. 71(7), 1411–1422 (2015)

    Article  CAS  Google Scholar 

  14. A. Krokhotin, A. Niemi, X. Peng, On the role of thermal backbone fluctuations in myoglobin ligand gate dynamicsy. J. Chem. Phys. 138(17), 175101 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. Y. Lin, J. Wang, Y. Lu, Functional tuning and expanding of myoglobin by rational protein design. Sci. China Chem. 57(3), 346–355 (2014)

    Article  CAS  Google Scholar 

  16. G. Maggiora, P. Mezey, B. Mao, K. Chou, A new chiral feature in \(\alpha \)-helical domains of proteins. Biopolym. Orig. Res. Biomol. 30(1–2), 211–214 (1990)

    CAS  Google Scholar 

  17. P.G. Mezey, K. Fukui, S. Arimoto, Treatment of small deformations of polyhedral shapes of functional group distributions in biomolecules. Int. J. Quantum Chem. 76(6), 756–761 (2000)

    Article  CAS  Google Scholar 

  18. P.G. Mezey, K. Fukui, S. Arimoto, K. Taylor, Polyhedral shapes of functional group distributions in biomolecules and related similarity measures. Int. J. Quantum Chem. 66(1), 99–105 (1998)

    Article  CAS  Google Scholar 

  19. S. Mondal, S. Ghosh, Effect of curcumin on the binding of cationic, anionic and nonionic surfactants with myoglobin. J. Mol. Struct. 1134, 292–297 (2017)

    Article  CAS  Google Scholar 

  20. J.S. Olson, A.J. Mathews, R.J. Rohlfs, B.A. Springer, K.D. Egeberg, S.G. Sligar, J. Tame, J.P. Renaud, K. Nagai, The role of the distal histidine in myoglobin and haemoglobin. Nature 336(6196), 265 (1988)

    Article  CAS  PubMed  Google Scholar 

  21. X. Peng, A. Chenani, S. Hu, Y. Zhou, A.J. Niemi, A three dimensional visualisation approach to protein heavy-atom structure reconstruction. BMC Struct. Biol. 14(1), 27 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  22. M.F. Perutz, F. Mathews, An X-ray study of azide methaemoglobin. J. Mol. Biol. 21(1), 199–202 (1966)

    Article  CAS  PubMed  Google Scholar 

  23. M.F. Perutz, M.G. Rossman, A.F. Cullis, H. Muirhead, G. Will, A.C.T. North, Structure of haemoglobin: a three-dimensional fourier synthesis at 5.5-Å. resolution, obtained by X-ray analysis. Nature 185, 416–422 (1960)

    Article  CAS  PubMed  Google Scholar 

  24. S.E. Phillips, B.P. Schoenborn, Neutron diffraction reveals oxygen-histidine hydrogen bond in oxymyoglobin. Nature 292(5818), 81 (1981)

    Article  CAS  PubMed  Google Scholar 

  25. G. Ramachandran, C. Ramakrishnan, V. Sasisekharan, Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99 (1963)

    Article  CAS  PubMed  Google Scholar 

  26. I. Schlichting, J. Berendzen, G.N. Phillips Jr., R.M. Sweet, Crystal structure of photolysed carbonmonoxy-myoglobin. Nature 371, 808–812 (1994)

    Article  CAS  PubMed  Google Scholar 

  27. M.D. Spivak, A Comprehensive Introduction to Differential Geometry (Publish or Perish, Berkeley, 1970)

    Google Scholar 

  28. T.Y. Teng, W. Schildkamp, P. Dolmer, K. Moffat, Two open-flow cryostats for macromolecular crystallography. J. Appl. Crystallogr. 27(2), 133–139 (1994)

    Article  CAS  Google Scholar 

  29. R. Tilton, I. Kuntz, G. Petsko, Cavities in proteins: structure of a metmyoglobin-xenon complex solved to 1.9 Å. Biochemistry 23, 2849–2857 (1984)

    Article  CAS  PubMed  Google Scholar 

  30. J. Vojtěchovskỳ, K. Chu, J. Berendzen, R.M. Sweet, I. Schlichting, Crystal structures of myoglobin-ligand complexes at near-atomic resolution. Biophys. J. 77(4), 2153–2174 (1999)

    Article  PubMed  PubMed Central  Google Scholar 

  31. Z. Wang, Y. Ando, A.D. Nugraheni, C. Ren, S. Nagao, S. Hirota, Self-oxidation of cytochrome c at methionine80 with molecular oxygen induced by cleavage of the met-heme iron bond. Mol. Biosyst. 10(12), 3130–3137 (2014)

    Article  CAS  PubMed  Google Scholar 

  32. F. Yang, G.N. Phillips Jr., Crystal structures of CO-, deoxy-and met-myoglobins at various pH values. J. Mol. Biol. 256(4), 762–774 (1996)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Bulgarian Science Fund (Grant DNTS-CN-01/9/2014), Vetenskapsrådet (Sweden), Carl Trygger’s Stiftelse and Qian Ren Grant at Beijing Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevena Ilieva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Niemi, A.J., Peng, X. et al. Myoglobin ligand gate mechanism analysis by a novel 3D visualization technique. J Math Chem 57, 1586–1597 (2019). https://doi.org/10.1007/s10910-019-01021-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-019-01021-4

Keywords

Navigation