Advertisement

Journal of Mathematical Chemistry

, Volume 57, Issue 4, pp 1053–1074 | Cite as

Two new topological indices based on graph adjacency matrix eigenvalues and eigenvectors

  • Juan Alberto Rodríguez-VelázquezEmail author
  • Alexandru T. Balaban
Original Paper
  • 50 Downloads

Abstract

The Estrada topological index EE, based on the eigenvalues of the adjacency matrix, is degenerate for cospectral graphs. By additionally considering the eigenvectors, two new topological indices are devised, which have reduced degeneracy for alkanes or cyclic graphs. Index \( RV_{a} \) shows similarity to EE in ordering of alkanes with 8–10 carbon atoms, whereas index \( RV_{b} \) is more similar to the average distance-based connectivity (Balaban index J). Inter-correlations between these four topological indices are discussed, indicating which factors have predominant influence.

Keywords

Topological index Balaban index Estrada index Graph eigenvalues 

Notes

Acknowledgements

The first author of this paper thanks Prof. Douglas J. Klein, who invited him for a research stay at Texas A&M University at Galveston in 2018. The results included in this paper were obtained there. This research was supported in part by the Spanish government under the Grants MTM2016-78227-C2-1-P and PRX17/00102.

References

  1. 1.
    M. Karelson, Moledular Descriptors in QSR/QSPR (Wiley, New York, 2000)Google Scholar
  2. 2.
    J. Devillers, A.T. Balaban (eds.), Topological indices and related descriptors in QSAR and QSPR (Gordon and Breach, Amsterdam, 1999)Google Scholar
  3. 3.
    H. Gonzales-Diaz (ed.), Topological Indices for Medicinal Chemistry, Biology, Parasitology, Neurological and Social Networks (Transworld Research Network, Thiruvananthapuram, 2010)Google Scholar
  4. 4.
    H. Wiener, Structure determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)CrossRefGoogle Scholar
  5. 5.
    I. Gutman, K. Das, The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50, 83–92 (2004)Google Scholar
  6. 6.
    H. Hosoya, A newly proposed quantity chracterizingthe topologcal nature of struuctural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn 44, 2332–2339 (1971)CrossRefGoogle Scholar
  7. 7.
    M. Randić, Characterization of molecular branching. J. Am. Chem. Soc. 97, 660–661 (1975)CrossRefGoogle Scholar
  8. 8.
    L.B. Kier, L.H. Hall, Molecular Connectivity in Chemistry and Drug Research (Academic Press, New York, 1976)Google Scholar
  9. 9.
    L.B. Kier, L.H. Hall, Molecular connectivity in structure–activity analysis (Research Studies Press, Letchworth, 1986)Google Scholar
  10. 10.
    D. Bonchev, Information Theoretic Indices for Characterization of Molecular Structure (Research Studies Press, Chichester, 1983)Google Scholar
  11. 11.
    N. Trinajstiić, Chemical Graph Theory, vol. 2 (CRC Press, Boca Raton, 1992)Google Scholar
  12. 12.
    A.T. Balaban, Highly discriminating distance-based topological index. Chem. Phys. Lett. 89, 399–404 (1982)CrossRefGoogle Scholar
  13. 13.
    P.A. Filip, T.S. Balaban, A.T. Balaban, A new approach for devising local graph invariants: derived topological indices with low degeneracy and good correlation ability. J. Math. Chem. 1, 61–83 (1987)CrossRefGoogle Scholar
  14. 14.
    A.T. Balaban, S. Bertelsen, S.C. Basak, New centric topological indexes for acyclic molecules (trees) and substitents (rooted trees), and coding of rooted trees. MATCH Commun. Math. Comput. Chem. 30, 55–72 (1994)Google Scholar
  15. 15.
    L.C. Freeman, Centrality in social networks conceptual clarification. Soc. Netw. 1, 215–239 (1978)CrossRefGoogle Scholar
  16. 16.
    A.T. Balaban, D. Bonchev, W.A. Seitz, Topological chemical distances and graph centers in molecular graphs with multiple bonds. J. Molec. Struct. (Theochem) 280, 253–260 (1993)CrossRefGoogle Scholar
  17. 17.
    D. Bonchev, O. Mekenyan, A.T. Balaban, Iterative procedure for the generalized graph center in polycyclic graphs. J. Chem. Inf. Comput. Sci. 29, 91–97 (1989)CrossRefGoogle Scholar
  18. 18.
    P. Bonacich, Factoring and weighting approaches to clique identification. J. Math. Sociology 2, 113–120 (1972)CrossRefGoogle Scholar
  19. 19.
    E. Estrada, J.A. Rodríguez-Velázquez, Subgraph centrality in complex networks. Phys. Rev. E 71, 056103 (2005)CrossRefGoogle Scholar
  20. 20.
    E. Estrada, Characterization of 3D molecular structure. Chem. Phys. Lett. 319, 713–718 (2000)CrossRefGoogle Scholar
  21. 21.
    A.J. Schwenk, Almost all trees are cospectral, in New Directions in the Theory of Graphs, ed. by F. Harary (Academic Press, New York, 1973), pp. 275–307Google Scholar
  22. 22.
    A. Kerber, R. Laue, T. Grüner, M. Meringer, MOLGEN 4.0. MATCH Commun. Math. Comput. Chem. 37, 208–295 (1998)Google Scholar
  23. 23.
    R. Gugisch, A. Kerber, R. Laue, M. Meringer, J. Weidinger, MOLGEN-COM Software package for combinatorial chemistry. MATCH Commun. Math Comput. Chem. 41, 189–203 (2000)Google Scholar
  24. 24.
    R. Todeschini, Molecular Descriptors for Chemoinformatics. DRAGON, Sohtware for nolecular descriptor calculations, Talete s.r.l. Milano, Italy, vol. 2 (Wiley, Weinheim, 1983)Google Scholar
  25. 25.
    A.T. Balaban, I. Motoc, Chemical graphs. Part 36. Correlations between octane numbers and topological indices of alkanes. MATCH Commun. Math. Comput. Chem. 5, 197–218 (1979)Google Scholar
  26. 26.
    A.T. Balaban, L.B. Kier, N. Joshi, Structure-property analysis of octane numbers for hydrocarbons (alkanes, cycloalkanes, alkenes). MATCH Commun. Math. Comput. Chem. 28, 13–27 (1992)Google Scholar
  27. 27.
    E. Estrada, J.A. Rodríguez-Velázquez, M. Randić, Atomic branching in molecules. Intern. J. Quantum Chem. 106, 823–832 (2006)CrossRefGoogle Scholar
  28. 28.
    M. Randić, On structural ordering and branching in acyclic saturated hydrocarbons. J. Math. Chem. 24, 345–358 (1998)CrossRefGoogle Scholar
  29. 29.
    Z. Mihalić, N. Trinajstić, A graph-theoretical approach to structure-property relationships. J. Chem. Educ. 69, 701–712 (1992)CrossRefGoogle Scholar
  30. 30.
    D. Bonchev, J.V. Knop, N. Trinajstić, Mathematical models of branching. MATCH Commun. Math. Comput. Chem. 6, 21–47 (1979)Google Scholar
  31. 31.
    A.T. Balaban, A comparison between various topological indices, particularly between the index J and Wiener’s index W, in Topology in Chemistry: Discrete Mathematics of Molecules, ed. by D.H. Rouvray, R.B. King (Horwood Publishing Ltd., Chichester, 2002), pp. 89–112CrossRefGoogle Scholar
  32. 32.
    A.T. Balaban, A. Beteringhe, T. Constantinescu, P.A. Filip, O. Ivanciuc, Four new topological indices based on the molecular path code. J. Chem. Inf. Model. 47, 716–731 (2007)CrossRefGoogle Scholar
  33. 33.
    A.T. Balaban, D. Mills, S.C. Basak, Alkane ordering as a criterion for similarity between topological indices: index J as a “sharpened Wiener index”. MATCH. Commun. Math. Comput. Chem. 45, 5–26 (2002)Google Scholar
  34. 34.
    H. Bertz, Branching in graphs and molecules. Discr. Appl. Math. 19, 65–83 (1988)CrossRefGoogle Scholar
  35. 35.
    L. Lovasz, J. Pelikan, On the eigenvalues of trees. Period. Math. Hung. 3, 175–182 (1073)CrossRefGoogle Scholar
  36. 36.
    O.E. Polanski, I. Gutman, On the calculation of the largest eigenvalue of molecular graph. MATCH Commun. Math. Comput. Chem. 5, 149–158 (1979)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departament d’Enginyeria Informàtica i MatemàtiquesUniversitat Rovira i VirgiliTarragonaSpain
  2. 2.Foundational SciencesTexas A&M University at GalvestonGalvestonUSA

Personalised recommendations