Skip to main content
Log in

Pseudospectral solution of the Schrödinger equation for the Rosen-Morse and Eckart potentials

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Pseudospectral methods based on non-classical quadratures are used to numerically compute the eigenvalues and eigenfunctions of the Schrödinger equation for the Rosen-Morse and Eckart potentials. The method uses a basis set of non-classical polynomials, \(\{ P_n(x) \}\), orthonormal with respect to a weight function, \(w(x)>0\), to construct an \(N \times N\) matrix representative, \(\{ H_{nm} \}\), of the Hamiltonian, H. This matrix representative is transformed to an equivalent pseudospectral representative, \(\{H_{ij}\}\). The rate of convergence of the eigenvalues of \(\{ H_{ij} \}\) to the eigenvalues of H, versus the grid size N, is reported for non-classical basis functions in comparison with the use of Legendre and Laguerre polynomials as well as a Fourier basis. The use of non-classical polynomials is shown to provide the fastest convergence for the eigenvalues. The pseudospectral method based on nonclassical quadratures proposed in this paper should find wide applicability to other problems in quantum and statistical mechanics. A review is provided of the use of a tensor product of one dimensional basis functions to describe two and three dimensional problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. B.D. Shizgal, H. Chen, The quadrature discretization method (QDM) in the solution of the Schrödinger equation with nonclassical basis functions. J. Chem. Phys. 104, 4137–4150 (1996)

    Article  CAS  Google Scholar 

  2. B.D. Shizgal, H. Chen, The quadrature discretization method in the solution of the Fokker–Planck equation with nonclassical basis functions. J. Chem. Phys. 107, 8051–8063 (1997)

    Article  CAS  Google Scholar 

  3. D. Baye, P.H. Heenen, Generalized meshes for quantum-mechanical problems. J. Phys. A Math. Gen. 19, 2041–2059 (1986)

    Article  Google Scholar 

  4. D. Baye, M. Hesse, M. Vincke, The unexplained accuracy of the Lagrange-mesh method. Phys. Rev. E 65, 026701 (2002)

    Article  CAS  Google Scholar 

  5. D.T. Colbert, W.H. Miller, A novel discrete variable representation for quantum-mechanical reactive scattering via the S-Matrix Kohn method. J. Chem. Phys. 96, 1982–1991 (1992)

    Article  CAS  Google Scholar 

  6. J.C. Light, T. Carrington Jr., Discrete variable representations and their utilization. Adv. Chem. Phys. 114, 263–310 (2000)

    Google Scholar 

  7. V. Szalay, Optimal grids for generalized finite basis and discrete variable representations: definition and method of calculation. J. Chem. Phys. 125, 154115 (2006)

    Article  CAS  PubMed  Google Scholar 

  8. V. Szalay, G. Czako, A. Nagy, T. Furtenbacher, A.G. Csaszar, On one-dimensional discrete variable representations with general basis functions. J. Chem. Phys. 119, 10512–10518 (2003)

    Article  CAS  Google Scholar 

  9. D. Kosloff, R. Kosloff, A Fourier method of solution for the time-dependent Schrödinger-equation as a tool in molecular dynamics. J. Comput. Phys. 52, 35–53 (1983)

    Article  CAS  Google Scholar 

  10. R. Kosloff, The Fourier method, in Numerical Grid Methods and their Application to Schrödinger’s Equation, ed. by C. Cerjan (Kluwer Academic, Dordrecht, 1993), pp. 175–194

    Chapter  Google Scholar 

  11. C.C. Marston, G.G. Balint-Kurti, The Fourier grid Hamiltonian method for bound state eigenvalues and eigenfunctions. J. Chem. Phys. 91, 3571–3576 (1989)

    Article  CAS  Google Scholar 

  12. J. Stare, G.G. Balint-Kurti, The Fourier grid Hamiltonian method for solving the vibrational Schrödinger equation in internal coordinates: theory and test applications. J. Phys. Chem. A 107, 7204–7214 (2003)

    Article  CAS  Google Scholar 

  13. A. Derevianko, E. Luc-Koenig, F. Masnou-Seeuws, Application of B-splines in determining the eigenspectrum of diatomic molecules: robust numerical description of halo-state and Feshbach molecules. Can. J. Phys. 87, 67–74 (2009)

    Article  CAS  Google Scholar 

  14. B.W. Shore, Solving the radial Schrödinger equation by using cubic-spline basis functions. J. Chem. Phys. 58, 3855–3866 (1973)

    Article  CAS  Google Scholar 

  15. F. Cooper, A. Kharem, U. Sukhatme, Supersymmetry and quantum mechanics. Phys. Rep. 251, 267–385 (1995)

    Article  CAS  Google Scholar 

  16. F. Cooper, J.N. Ginocchio, A. Khare, Relationship between supersymmetry and solvable potentials. Phys. Rev. D 36, 2458–2473 (1987)

    Article  CAS  Google Scholar 

  17. C.-L. Ho, Simple unified derivation and solution of Coulomb, Eckart and Rosen-Morse potentials in prepotential approach. Ann. Phys. 324, 1095–1104 (2009)

    Article  CAS  Google Scholar 

  18. S. Dominguez-Hernandez, D.J. Fernandez, C. Rosen-Morse, Potential and its supersummetric partners. Int. J. Theor. Phys. 50, 1993–2001 (2011)

    Article  Google Scholar 

  19. G.-H. Sun, S.H. Dong, Quantum information entropies of the eigenstates for a symmetrically trigonometric Rosen-Morse potential. Phys. Scr. 87, 045003 (2013)

    Article  CAS  Google Scholar 

  20. G.-H. Sun, S.H. Dong, Quantum information entropies for an asymmetric trigonometric Rosen-Morse potential. Ann. Phys. 525, 934–943 (2013)

    Article  Google Scholar 

  21. S.A. Najafizade, H. Hassanabadi, D. Zarrinkamar, Information theoretic global measures of Dirac Equation with Morse and trigonometric Rosen-Morse potentials. Few Body Syst. 68, 149–163 (2017)

    Article  Google Scholar 

  22. R. Dutt, A. Khare, U.P. Sukhatme, Supersymmetry, shape invariance, and exactly solvabe potentials. Am. J. Phys. 56, 163–168 (1987)

    Article  Google Scholar 

  23. R.K. Yadav, A. Khare, B.P. Mandal, The scattering amplitude for rationally extended shape invariant Eckart potentials. Phys. Lett. A 379, 67–70 (2015)

    Article  CAS  Google Scholar 

  24. C. Quesne, Novel enlarged shape invariance property and eckartly solvable rational extensions of the Rosen-Morse II and Eckart potentials. SIGMA 8, 80–99 (2012)

    Google Scholar 

  25. H. Hassanabadi, B.H. Yazarloo, A.N. Ikot, N. Salehi, S. Zarrinkamr, Exact analytical versus numerical solutions of the Schrödinger equation for Hua plus modified Eckart potential. Indian J. Phys. 87(12), 1219–1223 (2013)

    Article  CAS  Google Scholar 

  26. B.D. Shizgal, Pseudospectral method of solution of the Schrödinger equation with non-classical polynomials; the Morse and Poschl-Teller (SUSY) potentials. Comput. Theor. Chem. 1084, 51–58 (2016)

    Article  CAS  Google Scholar 

  27. B.D. Shizgal, Pseudospectral solution of the Fokker–Planck equation with equilibrium bistable states: the eigenvalue spectrum and the approach to equilibrium. J. Stat. Phys. 164, 1379–1393 (2016)

    Article  Google Scholar 

  28. B.D. Shizgal, A comparison of pseudospectral methods for the solution of the Schrödinger equation: the Lennard-Jones \((n,6)\) potential. Comput. Theor. Chem. 114, 25–32 (2017)

    Article  CAS  Google Scholar 

  29. B. Shizgal, Spectral Methods in Chemistry and Physics: Applications to Kinetic Theory and Quantum Mechanics (Springer, New York, 2015)

    Book  Google Scholar 

  30. W. Gautschi, On generating orthogonal polynomials. SIAM J. Sci. Stat. Comput. 3, 289–317 (1982)

    Article  Google Scholar 

  31. W. Gautschi, Algorithm 726: ORTHOPOL—a package of routines for generating orthogonal polynomials with Gauss-type quadrature rules. ACM Trans. Math. Softw. 20, 21–82 (1994)

    Article  Google Scholar 

  32. W. Gautschi, Orthogonal Polynomials in MATLAB: Excercies and Solutions (SIAM, Philadelphia, 2016)

    Book  Google Scholar 

  33. J.Q.W. Lo, B.D. Shizgal, Pseudospectral methods of solution of the Schrödinger equation. J. Math. Chem. 44, 787–801 (2008)

    Article  CAS  Google Scholar 

  34. B.D. Shizgal, N. Ho, X. Yang, The computation of radial integrals with nonclassical quadratures for quantum chemistry and other applications. J. Math. Chem. 55, 413–422 (2017)

    Article  CAS  Google Scholar 

  35. K. Leung, B.D. Shizgal, H. Chen, The quadrature discretization method (QDM) in comparison with other numerical methods of solution of the Fokker–Planck equation for electron thermalization. J. Math. Chem. 24, 291–319 (1998)

    Article  CAS  Google Scholar 

  36. C.-I. Gheorghiu, Laguerre collocation solutions to boundary layer type problems. Numer. Algorithm 64, 385–401 (2013)

    Article  Google Scholar 

  37. B.D. Shizgal, H. Chen, The quadrature discretization method (QDM) in the solution of the Schrödinger equation with nonclassical basis functions. J. Chem. Phys. 104, 4137–4150 (1996)

    Article  CAS  Google Scholar 

  38. H. Chen, Y. Su, B.D. Shizgal, A direct spectral collocation poisson solver in polar and cylindrical coordinates. J. Comput. Phys. 160, 453–469 (2000)

    Article  Google Scholar 

  39. H.H. Yang, B.D. Shizgal, Chebyshev pseudospectral multi-domain technique for viscous flow calculation. Comput. Methods Appl. Mech. Eng. 118, 47–61 (1994)

    Article  Google Scholar 

  40. L. Gibelli, B.D. Shizgal, A.W. Yau, Ion energization by wave–particle interactions: comparison of spectral and particle simulation solutions of the Vlasov equation. Comput. Math. Appl. 59, 2566–2581 (2010)

    Article  Google Scholar 

  41. D. Bǵué, N. Gohaud, C. Pouchan, P. Cassam-Chenaï, J. Lie\(\acute{\text{v}}\)in, A comparison of two methods for selecting vibrational configuration interaction spaces on a heptatomic system: ethylene oxide. J. Chem. Phys. 127, 164115 (2007)

  42. G. Avila, T. Carrington Jr., Reducing the cost of using collocation to compute vibrational energy levels: results for \(\text{ CH }_2\)NH. J. Chem. Phys. 147, 064103 (2017)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant to Bernard Shizgal from the Natural Sciences and Engineering Research Council of Canada (NSERC), Grant Number (03190). Conor Morrison was supported in part by an Undergraduate Student Research Award (USRA) from NSERC, Reference Number (527568). We would like to thank Lucas Philipp for helpful discussions throughout the course of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Shizgal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morrison, C.L., Shizgal, B. Pseudospectral solution of the Schrödinger equation for the Rosen-Morse and Eckart potentials. J Math Chem 57, 1035–1052 (2019). https://doi.org/10.1007/s10910-019-01007-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-019-01007-2

Keywords

Navigation